US Army Corps of Engineers
Hydrologic Engineering Center

Modeling Water Resources Systems for Water Quality

February 1985

Approved for Public Release. Distribution Unlimited.

TP-104
Title and Subtitle
Modeling Water Resources Systems for Water Quality

Authors
R.G. Willey, D.J. Smith, J.H. Duke

Performing Organization
US Army Corps of Engineers
Institute for Water Resources
Hydrologic Engineering Center (HEC)
609 Second Street
Davis, CA 95616-4687

Report Date
February 1985

Dates Covered
(From - To)

Technical Paper

Distribution / Availability Statement
Approved for public release; distribution is unlimited.

Abstract
A reservoir system analysis computer model has been recently developed with the capability to simulate up to ten reservoirs, thirty control points and eight water quality parameters. With this model the user can evaluate a "best" system operation analysis for multipurpose reservoir regulation to obtain target water quality conditions at user specified control points.

The model uses a linear programming algorithm to evaluate the "best" system operation among all the reservoirs and nonlinear routing for operation of multilevel intakes at each reservoir in the system. The user may select to operate the system for a balanced reservoir pool operation and its associated water quality or to allow for a modified flow distribution between reservoirs to improve the water quality operation.

This model, HEC-5Q, has been applied to the 10,000 square mile (26,000 square kilometers) drainage area of the Sacramento River System. The Sacramento system includes two tandem reservoirs, three parallel reservoirs and 400 miles (640 km) of stream channel network.

Subject Terms
reservoir system analysis, water quality, case study, stream system analysis, computer model
Modeling Water Resources Systems for Water Quality

February 1985

US Army Corps of Engineers
Institute for Water Resources
Hydrologic Engineering Center
609 Second Street
Davis, CA 95616

(530) 756-1104
(530) 756-8250 FAX
www.hec.usace.army.mil
Papers in this series have resulted from technical activities of the Hydrologic Engineering Center. Versions of some of these have been published in technical journals or in conference proceedings. The purpose of this series is to make the information available for use in the Center's training program and for distribution with the Corps of Engineers.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.
MODELING WATER RESOURCES SYSTEMS FOR WATER QUALITY*

by

R. G. Willey¹, M. ASCE, D. J. Smith², A.M. ASCE
and J. H. Duke³, M. ASCE

ABSTRACT

A reservoir system analysis computer model has been recently developed with the capability to simulate up to ten reservoirs, thirty control points and eight water quality parameters. With this model the user can evaluate a "best" system operation analysis for multipurpose reservoir regulation to obtain target water quality conditions at user specified control points.

The model uses a linear programming algorithm to evaluate the "best" system operation among all the reservoirs and a nonlinear routine for operation of multilevel intakes at each reservoir in the system. The user may select to operate the system for a balanced reservoir pool operation and its associated water quality or to allow for a modified flow distribution between reservoirs to improve the water quality operation.

This model, HEC-5Q, has been applied to the 10,000 square mile (26,000 square kilometers) drainage area of the Sacramento River System. The Sacramento system includes two tandem reservoirs, three parallel reservoirs and 400 miles (640 km) of stream channel network.

INTRODUCTION

The U.S. Army Corps of Engineers is responsible for the operation of hundreds of multiple purpose reservoirs in addition to maintenance of hundreds of miles of non-reservoir projects (e.g., levees and navigation channels). Management of reservoir releases can be analyzed to determine the best operation with any of the numerously available reservoir computer programs (2,3,5,6,7). With river analysis programs, the impact of specified reservoir releases can be evaluated at downstream points of interest.

*Presented at the ASCE Water Resources Planning and Management Division National Specialty Conference, Buffalo, New York, June 10-12, 1985.

¹Hydraulic Engineer, U.S. Army Corps of Engineers, Hydrologic Engineering Center, 609 Second Street, Davis, CA. 95616.
³Consulting Water Engineer, 5303 Pony Chase, Austin, TX. 78759.
The problem with using single project models is the difficulty of coordinating releases among projects which impact on a single location. This is particularly obvious in Figure 1 where the operation of both Reservoirs A and B impact on the amount and quality of water at City A (i.e., control point 3). As the system is expanded further downstream, the computations necessary to provide a best operation of Reservoirs A through D for control point 7 obviously require a comprehensive system approach.

MATHMATICAI MODEL

"HEC-5Q, Simulation of Flood Control and Conservation Systems (Including Water Quality Analysis)" computer model (4) has been developed specifically for evaluating the type of problem shown in Figure 1. The model is capable of evaluating a reservoir system of up to ten reservoirs and up to thirty control points. The model will define a best system operation for water quantity and quality; evaluating operational concerns like flood control, hydropower, water supply, and irrigation diversions. Since the computer program users manual (4), and several technical papers (1,8,9) adequately document the details of the model concepts and the input description, only a brief overview is provided below.

Flow Simulation Module

The flow simulation module was developed to assist in planning studies for evaluating proposed reservoirs in a system and to assist in sizing the flood control and conservation storage requirements for each project recommended for the system. The program can be used to show the effects of existing and/or proposed reservoirs on flows and damages in a complex reservoir system. The program can also be used in selecting the proper reservoir releases throughout the system to minimize flooding as much as possible while maintaining a balance of flood control storage ("balanced pool") among the reservoirs.

Water Quality Simulation Module

The water quality simulation module is capable of analyzing water temperature and up to three conservative and three non-conservative constituents. If
at least one of the nonconservative constituents is an oxygen demanding parameter, dissolved oxygen can also be analyzed.

The water quality simulation module accepts system flows generated by the flow simulation module and computes the distribution of all the water quality constituents in up to ten reservoirs and their associated downstream reaches. The ten reservoirs may be in any arbitrary parallel and tandem configuration.

Gate openings in reservoir multilevel withdrawal structures are selected to meet user-specified water quality objectives at downstream control points. If the objectives cannot be satisfied with the previously computed "balanced pool" flows, the model will compute a modified flow distribution necessary to better satisfy all downstream objectives. With these capabilities, the planner may evaluate the effects on water quality of proposed reservoir-stream system modifications and determine how a reservoir intake structure should be operated to achieve desired water quality objectives within the system.

RESERVOIR SYSTEM DESCRIPTION

The Sacramento Valley reservoir system consists of four major reservoirs as shown in Figure 2. Shasta and Keswick Reservoirs are located on the Sacramento River in northern California about 240 miles (390 km) north of Sacramento. Below Shasta and above Keswick, inter-basin water transfers enter the Sacramento River through Spring Creek. Along the Sacramento River, Cow Creek and Cottonwood Creek are major inflowing tributaries and the Anderson-Cottonwood, Tehama-Colusa, Corning and Glenn-Colusa Irrigation District Canals are major irrigation diversions.

Oroville Reservoir is located on the Feather River in the Sierra foothills about 100 miles (160 km) north of Sacramento. Major tributaries entering the Feather River include the Yuba and Bear Rivers. Major diversions are located immediately below Oroville Dam from the Thermalito Afterbay. The Feather River flows into the Sacramento River near Verona.

Folsom Reservoir is located on the American River in the Sierra foothills about 30 miles (50 km) east of Sacramento. The American River below Folsom Reservoir is leveed with no major tributaries entering before its confluence with the Sacramento River at Sacramento.

The Sacramento River continues to flow south towards the San Francisco Bay. This study's lower boundary is located near Hood about 20 miles (30 km) south of Sacramento.
APPLICATION PROCEDURE

The application of the HEC-5Q model to the Sacramento Valley reservoir system, or to any other system, includes data assembly, model execution and interpretation of results.

Data Assembly

The HEC-5Q model data requirements are similar to those of most comprehensive water quality models. The data to be assembled are categorized into three types: time independent, required time dependent and optional time dependent.

The time independent data include: physical description of the reservoir (i.e., elevation vs. volume, surface area and discharge capacity; and vertical reservoir segmentation), physical description of the river (i.e., river mile vs. cross section and channel discharge capacity; and river reach segmentation), control point desired and required flows, model coefficients (i.e., flow routing; reservoir diffusion; physical, chemical and biological reactions rates) and initial conditions for the start of the simulation. The required time
dependent data include: evaporation, meteorology, diversions, inflow quantity and quality for all reservoir and river tributaries, discharge quantity from reservoirs, and control point target water quality conditions. The optional time dependent data include: reservoir storages; river flows at other than control points; and reservoir and river water quality profiles. These data are used as checks on the model output in contrast to the previously mentioned data which are required to make the model work.

Sources for the data categorized above are numerous. In general, they include all water-related agencies at the federal, state, local and private levels. Meteorological data are readily available from the U.S. Weather Service, local airports and universities. The primary data source is the NOAA's National Weather Service (NWS) office in Asheville, North Carolina.

Tributary inflows, diversions and reservoir discharges may be readily available from WATSTORE and STORET data systems. WATSTORE is managed by the USGS and contains streamflow data. STORET is managed by the EPA and contains water quality data. These computer data systems can often provide the necessary tributary inflow quantity and quality data.

Model Execution

The model simulation for the Sacramento Valley system used temperature, specific conductance (sometimes called electrical conductivity), alkalinity, carbonaceous biochemical oxygen demand (BOD), ammonia (NH3) and dissolved oxygen (DO). These specific parameters were chosen based on the availability of at least limited data.

The model can be used for existing and/or proposed reservoirs. If an existing condition is being simulated, usually the objective is to reproduce historical events through model calibration. Selection of the calibration option can significantly decrease computer time by not using the time-consuming linear and non-linear programming algorithms in the model.

Once the model has been calibrated, the objective may be to modify an existing reservoir operation pattern or to evaluate the impact of proposed new reservoirs or channel modifications. This analysis requires the use of the linear and non-linear programming algorithms.

The simulation mode discussed above can be used either to evaluate the best water quality that can be provided throughout the system for given reservoir discharges (obtained either external to the simulation or determined by the HEC-5 quantity part of the model) or to evaluate the best water quality operation without preconceived discharge quantities. The former operation is referred to as a balanced pool operation and the latter as a flow augmentation operation.

When using the balanced pool operation, the HEC-5Q program simply evaluates the best vertical level for withdrawal (assuming multiple level intakes are available) at each reservoir to meet all downstream
water quality targets for the given reservoir discharge determined by the flow simulation module.

The flow augmentation operation allows the model to relax the balanced pool concept and to decide how much flow should come from which reservoir and at which vertical level in order to meet downstream water quality targets. Sometimes downstream water quality improvements require significantly increased discharge rates to obtain only small improvements in water quality. This flow augmentation operation is the most costly mode of execution.

For this application, the input data set was executed using the calibration option. Application of this option allows the user to define the exact level of the intake structure operated. This is the normal method of model application when calibrating the model to observed historical data.

Interpretation of Results

The Sacramento Valley reservoir system was executed and produced results which were compared to observed water quantity and quality data in the four reservoirs and at all downstream control points. The data for comparison purposes consisted of discharge rates at most control points as well as water temperature at many of the same locations. Other water quality parameters are less available but were compared where they were available. Selected portions of the graphical display of these results are shown in Figures 3-6 for the reservoirs and at selected locations along the stream network.

These plots satisfactorily demonstrate the capability of HEC-5Q to reasonably reproduce observed reservoir and stream profiles on large systems. The legends at the bottom of the reservoir temperature plots define simulated and observed data for various dates. Shasta, Oroville and Folsom Reservoirs have sufficient observed temperature data to be useful for calibration purposes. Sufficient observed data for the other parameters were not available. (Only data for Shasta Reservoir are shown due to space limitations). Considering the model limitation of having only one weather station for the entire system, it is the authors' opinion that the reproduction is quite good. Perhaps some further refinement could be achieved with additional trials but the acceptability of the model can be demonstrated with these results.

The legend at the bottom of the stream profile plots defines the various observed and simulated water quality parameters for the study period. Simulated constituents 1 and 2 are specific conductance (or EC) and alkalinity. Unlike the simulated data, the observed data points are often more than one day apart. Some caution should be applied to interpretation of the connecting line between observed data points further apart than one or two days.

In general, the calibration of the model is quite good along the Sacramento River for all the observed parameters down to Hamilton City inclusive. (Only data for Hamilton City are shown due to space limitations.) Butte City and Colusa measured temperatures show
Figure 3

SHASTA RESERVOIR TEMPERATURE PROFILES

Figure 4

SACRAMENTO RIVER AT HAMILTON CITY - WATER TEMPERATURE
SACRAMENTO RIVER AT HAMILTON CITY - DISSOLVED OXYGEN

Figure 5

SACRAMENTO RIVER AT HAMILTON CITY - SPECIFIC CONDUCTANCE (EC) & ALKALINITY

Figure 6
significant warming of the reach of the Sacramento River takes place at least during the Spring (April and May 1956). This temperature consideration, in addition to the lack of sufficient simulated quantity of flow at Butte City and Colusa (compared to accurate simulation of flow at Bend Bridge), suggests that the undefined return flows on the Sacramento River between Hamilton City and Knights Landing are sufficiently large and need to be evaluated.

The Feather River below Oroville and the American River below Folsom lack sufficient water quality data to provide adequate information for calibration purposes.

Since the Sacramento River below Sacramento is the combination product of all three river systems, the inaccuracies already discussed are also apparent at this location. Careful interpretation and evaluation of all these results lead the authors to encourage the continued application of this model to help develop understanding of the workings and operation of any stream system.

SUMMARY

HEC-5Q model is capable of simulating the effects of the operation of as many as ten reservoirs and the stream network of the basin. Each reservoir may be operated to satisfy a number of objectives, including flood control, low flow maintenance, hydropower production, water conservation and water quality control. The water quality portion of the model will simulate temperature and seven other constituents including dissolved oxygen. The model will internally determine the water quality needed from all reservoir releases to meet specified downstream water quality objectives and will determine the gate openings in each reservoir that will yield the appropriate reservoir release water quality.
REFERENCES

Technical Paper Series

TP-1 Use of Interrelated Records to Simulate Streamflow
TP-2 Optimization Techniques for Hydrologic Engineering
TP-3 Methods of Determination of Safe Yield and Compensation Water from Storage Reservoirs
TP-4 Functional Evaluation of a Water Resources System
TP-5 Streamflow Synthesis for Ungaged Rivers
TP-6 Simulation of Daily Streamflow
TP-7 Pilot Study for Storage Requirements for Low Flow Augmentation
TP-8 Worth of Streamflow Data for Project Design - A Pilot Study
TP-9 Economic Evaluation of Reservoir System Accomplishments
TP-10 Hydrologic Simulation in Water-Yield Analysis
TP-11 Survey of Programs for Water Surface Profiles
TP-12 Hypothetical Flood Computation for a Stream System
TP-13 Maximum Utilization of Scarce Data in Hydrologic Design
TP-14 Techniques for Evaluating Long-Term Reservoir Yields
TP-15 Hydrostatistics - Principles of Application
TP-16 A Hydrologic Water Resource System Modeling Techniques
TP-17 Hydrologic Engineering Techniques for Regional Water Resources Planning
TP-18 Estimating Monthly Streamflows Within a Region
TP-19 Suspended Sediment Discharge in Streams
TP-20 Computer Determination of Flow Through Bridges
TP-21 An Approach to Reservoir Temperature Analysis
TP-22 A Finite Difference Methods of Analyzing Liquid Flow in Variably Saturated Porous Media
TP-23 Uses of Simulation in River Basin Planning
TP-24 Hydroelectric Power Analysis in Reservoir Systems
TP-25 Status of Water Resource System Analysis
TP-26 System Relationships for Panama Canal Water Supply
TP-27 System Analysis of the Panama Canal Water Supply
TP-28 Digital Simulation of an Existing Water Resources System
TP-29 Computer Application in Continuing Education
TP-30 Drought Severity and Water Supply Dependability
TP-31 Development of System Operation Rules for an Existing System by Simulation
TP-32 Alternative Approaches to Water Resources System Simulation
TP-33 System Simulation of Integrated Use of Hydroelectric and Thermal Power Generation
TP-34 Optimizing flood Control Allocation for a Multipurpose Reservoir
TP-35 Computer Models for Rainfall-Runoff and River Hydraulic Analysis
TP-36 Evaluation of Drought Effects at Lake Atitlan
TP-37 Downstream Effects of the Levee Overtopping at Wilkes-Barre, PA, During Tropical Storm Agnes
TP-38 Water Quality Evaluation of Aquatic Systems
TP-39 A Method for Analyzing Effects of Dam Failures in Design Studies
TP-40 Storm Drainage and Urban Region Flood Control Planning
TP-41 HEC-5C, A Simulation Model for System Formulation and Evaluation
TP-42 Optimal Sizing of Urban Flood Control Systems
TP-43 Hydrologic and Economic Simulation of Flood Control Aspects of Water Resources Systems
TP-44 Sizing Flood Control Reservoir Systems by System Analysis
TP-45 Techniques for Real-Time Operation of Flood Control Reservoirs in the Merrimack River Basin
TP-46 Spatial Data Analysis of Nonstructural Measures
TP-47 Comprehensive Flood Plain Studies Using Spatial Data Management Techniques
TP-48 Direct Runoff Hydrograph Parameters Versus Urbanization
TP-49 Experience of HEC in Disseminating Information on Hydrological Models
TP-50 Effects of Dam Removal: An Approach to Sedimentation
TP-51 Design of Flood Control Improvements by Systems Analysis: A Case Study
TP-52 Potential Use of Digital Computer Ground Water Models
TP-53 Development of Generalized Free Surface Flow Models Using Finite Element Techniques
TP-54 Adjustment of Peak Discharge Rates for Urbanization
TP-55 The Development and Servicing of Spatial Data Management Techniques in the Corps of Engineers
TP-56 Experiences of the Hydrologic Engineering Center in Maintaining Widely Used Hydrologic and Water Resource Computer Models
TP-57 Flood Damage Assessments Using Spatial Data Management Techniques
TP-58 A Model for Evaluating Runoff-Quality in Metropolitan Master Planning
TP-59 Testing of Several Runoff Models on an Urban Watershed
TP-60 Operational Simulation of a Reservoir System with Pumped Storage
TP-61 Technical Factors in Small Hydropower Planning
TP-62 Flood Hydrograph and Peak Flow Frequency Analysis
TP-63 HEC Contribution to Reservoir System Operation
TP-64 Determining Peak-Discharge Frequencies in an Urbanizing Watershed: A Case Study
TP-65 Feasibility Analysis in Small Hydropower Planning
TP-66 Reservoir Storage Determination by Computer Simulation of Flood Control and Conservation Systems
TP-67 Hydrologic Land Use Classification Using LANDSAT
TP-68 Interactive Nonstructural Flood-Control Planning
TP-69 Critical Water Surface by Minimum Specific Energy Using the Parabolic Method
TP-70 Corps of Engineers Experience with Automatic Calibration of a Precipitation-Runoff Model
TP-71 Determination of Land Use from Satellite Imagery for Input to Hydrologic Models
TP-72 Application of the Finite Element Method to Vertically Stratified Hydrodynamic Flow and Water Quality
TP-73 Flood Mitigation Planning Using HEC-SAM
TP-74 Hydrographs by Single Linear Reservoir Model
TP-75 HEC Activities in Reservoir Analysis
TP-76 Institutional Support of Water Resource Models
TP-77 Investigation of Soil Conservation Service Urban Hydrology Techniques
TP-78 Potential for Increasing the Output of Existing Hydroelectric Plants
TP-79 Potential Energy and Capacity Gains from Flood Control Storage Reallocation at Existing U.S. Hydropower Reservoirs
TP-80 Use of Non-Sequential Techniques in the Analysis of Power Potential at Storage Projects
TP-81 Data Management Systems of Water Resources Planning
TP-82 The New HEC-1 Flood Hydrograph Package
TP-83 River and Reservoir Systems Water Quality Modeling Capability
TP-84 Generalized Real-Time Flood Control System Model
TP-85 Operation Policy Analysis: Sam Rayburn Reservoir
TP-86 Training the Practitioner: The Hydrologic Engineering Center Program
TP-87 Documentation Needs for Water Resources Models
TP-88 Reservoir System Regulation for Water Quality Control
TP-89 A Software System to Aid in Making Real-Time Water Control Decisions
TP-90 Calibration, Verification and Application of a Two-Dimensional Flow Model
TP-91 HEC Software Development and Support
TP-92 Hydrologic Engineering Center Planning Models
TP-93 Flood Routing Through a Flat, Complex Flood Plain Using a One-Dimensional Unsteady Flow Computer Program
TP-94 Dredged-Material Disposal Management Model
TP-95 Infiltration and Soil Moisture Redistribution in HEC-1
TP-96 The Hydrologic Engineering Center Experience in Nonstructural Planning
TP-97 Prediction of the Effects of a Flood Control Project on a Meandering Stream
TP-98 Evolution in Computer Programs Causes Evolution in Training Needs: The Hydrologic Engineering Center Experience
TP-99 Reservoir System Analysis for Water Quality
TP-100 Probable Maximum Flood Estimation - Eastern United States
TP-101 Use of Computer Program HEC-5 for Water Supply Analysis
TP-102 Role of Calibration in the Application of HEC-6 Engineering and Economic Considerations in Formulating
TP-103 Modeling Water Resources Systems for Water Quality
TP-104 Use of a Two-Dimensional Flow Model to Quantify Aquatic Habitat
TP-105 Flood-Runoff Forecasting with HEC-1F
TP-106 Dredged-Material Disposal System Capacity Expansion
TP-107 Role of Small Computers in Two-Dimensional Flow Modeling
TP-108 One-Dimensional Model for Mud Flows
TP-109 Subdivision Froude Number
TP-110 HEC-5Q: System Water Quality Modeling
TP-111 New Developments in HEC Programs for Flood Control
TP-112 Modeling and Managing Water Resource Systems for Water Quality
TP-113 Accuracy of Computer Water Surface Profiles - Executive Summary
TP-114 Application of Spatial-Data Management Techniques in Corps Planning
TP-115 The HEC’s Activities in Watershed Modeling
TP-116 HEC-1 and HEC-2 Applications on the Microcomputer
TP-117 Real-Time Snow Simulation Model for the Monongahela River Basin
TP-118 Multi-Purpose, Multi-Reservoir Simulation on a PC
TP-119 Technology Transfer of Corps’ Hydrologic Models
TP-120 Development, Calibration and Application of Runoff Forecasting Models for the Allegheny River Basin
TP-121 The Estimation of Rainfall for Flood Forecasting Using Radar and Rain Gage Data
TP-122 Review of U.S. Army corps of Engineering Involvement With Alluvial Fan Flooding Problems
TP-123 An Integrated Software Package for Flood Damage Analysis
TP-124 The Value and Depreciation of Existing Facilities: The Case of Reservoirs
TP-125 Floodplain-Management Plan Enumeration
TP-126 Two-Dimensional Floodplain Modeling
TP-127 Status and New Capabilities of Computer Program HEC-6: “Scour and Deposition in Rivers and Reservoirs”
TP-128 Estimating Sediment Delivery and Yield on Alluvial Fans
TP-129 Predicting Deposition Patterns in Small Basins
TP-130 Hydrologic Aspects of Flood Warning - Preparedness Programs
TP-131 Annual Extreme Lake Elevations by Total Probability Theorem
TP-132 Twenty-five Years of Developing, Distributing, and Supporting Hydrologic Engineering Computer Programs
TP-133 A Muskingum-Cunge Channel Flow Routing Method for Drainage Networks
TP-134 Prescriptive Reservoir System Analysis Model - Missouri River System Application
TP-135 A Generalized Simulation Model for Reservoir System Analysis
TP-136 The HEC NexGen Software Development Project
TP-137 Issues for Applications Developers
TP-138 HEC-2 Water Surface Profiles Program
TP-139 HEC Models for Urban Hydrologic Analysis
<table>
<thead>
<tr>
<th>TP-142</th>
<th>Systems Analysis Applications at the Hydrologic Engineering Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP-143</td>
<td>Runoff Prediction Uncertainty for Ungauged Agricultural Watersheds</td>
</tr>
<tr>
<td>TP-144</td>
<td>Review of GIS Applications in Hydrologic Modeling</td>
</tr>
<tr>
<td>TP-145</td>
<td>Application of Rainfall-Runoff Simulation for Flood Forecasting</td>
</tr>
<tr>
<td>TP-146</td>
<td>Application of the HEC Prescriptive Reservoir Model in the Columbia River Systems</td>
</tr>
<tr>
<td>TP-147</td>
<td>HEC River Analysis System (HEC-RAS)</td>
</tr>
<tr>
<td>TP-148</td>
<td>HEC-6: Reservoir Sediment Control Applications</td>
</tr>
<tr>
<td>TP-149</td>
<td>The Hydrologic Modeling System (HEC-HMS): Design and Development Issues</td>
</tr>
<tr>
<td>TP-150</td>
<td>The HEC Hydrologic Modeling System</td>
</tr>
<tr>
<td>TP-151</td>
<td>Bridge Hydraulic Analysis with HEC-RAS</td>
</tr>
<tr>
<td>TP-152</td>
<td>Use of Land Surface Erosion Techniques with Stream Channel Sediment Models</td>
</tr>
<tr>
<td>TP-153</td>
<td>Risk-Based Analysis for Corps Flood Project Studies - A Status Report</td>
</tr>
<tr>
<td>TP-154</td>
<td>Modeling Water-Resource Systems for Water Quality Management</td>
</tr>
<tr>
<td>TP-155</td>
<td>Runoff simulation Using Radar Rainfall Data</td>
</tr>
<tr>
<td>TP-156</td>
<td>Status of HEC Next Generation Software Development</td>
</tr>
<tr>
<td>TP-157</td>
<td>Unsteady Flow Model for Forecasting Missouri and Mississippi Rivers</td>
</tr>
<tr>
<td>TP-158</td>
<td>Corps Water Management System (CWMS)</td>
</tr>
<tr>
<td>TP-159</td>
<td>Some History and Hydrology of the Panama Canal</td>
</tr>
<tr>
<td>TP-160</td>
<td>Application of Risk-Based Analysis to Planning Reservoir and Levee Flood Damage Reduction Systems</td>
</tr>
<tr>
<td>TP-161</td>
<td>Corps Water Management System - Capabilities and Implementation Status</td>
</tr>
</tbody>
</table>