
HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-1

Chapter 7
7 Scripting

Scripting provides a way to control the operation of HEC-DSSVue in a non-
interactive way. The user can build and save scripts to be executed later –
possibly on different data sets.

This chapter provides an introduction to scripting, describing the components
of the user interface, scripting language and application program interface
(API), and offering examples illustrating how to use the API.

7.1 Executing Scripts

HEC-DSSVue allows the execution of scripts in interactive and batch modes.
Scripts are executed interactively by starting the HEC-DSSVue program and
selecting the desired script from the Toolbar or the Script Selector from the
Utilities menu. Scripts are executed in batch mode by starting the HEC-
DSSVue program with a script file name as a parameter (e.g.
HecDssVue.bat c:\test\myScript.py).

Interactive scripts are not passed any parameters upon script execution. In a
script executed interactively the variable sys.argv is a list of length 1, with the
only element set to the empty string (e.g. sys.argv = [“”]).

Scripts executed in batch mode may take parameters from the command line
(e.g HecDssVue.bat c:\test\myScript.py a b c). In a script
executed in batch mode the variable sys.argv is a list whose length is one
greater than the number of parameters passed on the command line, with the
first element set to the file name of the executing script and the remaining
elements set to the parameters (e.g. sys.argv =
[“c:\\test\\myScript.py”, “a”, “b”, “c”]).

7.1.1 Script Selector
The Script Selector (Figure 7.1) displays buttons for all the available scripts
which have the “Display Script on Toolbar” box checked (see Section 7.2.2, “

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-2

Editor Panel”). Buttons are displayed in alphabetical order.

To access the Script
Selector, select the Script
Selector command from
the Utilities menu of
HEC-DSSVue. Once the
Script Selector is open, it
will remain open until
you close it.

When you press a button,
the Jython script engine
will execute the
associated script.

Figure 7.1 Script Selector

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-3

7.2 Script Browser
The Script Browser, shown in Figure 7.2, allows you to add, delete, and
modify scripts.

You can access the Script Browser from HEC-DSSVue’s Utilities menu by
clicking Script Browser. Alternatively, from the shortcut menu of the Script
Selector. In the Script Selector, right click on a button to access the shortcut
menu, then select Edit. The Script Browser will open with that script selected
and ready for editing.

Components of the Script Browser include the Menu Bar, the Editor Panel,
and the Tree Hierarchy. The following sections describe these components.

7.2.1 Menu Bar
The Menu Bar (Figure 7.3) contains three primary
menu items, File , Edit, and Options.

File Menu Commands
New Creates a new script stored at the currently selected position.

Available only when a folder node is the selected node in the
scripts tree.

Open Edits the currently displayed script. Double clicking on the
script also edits the currently displayed script. Available only
when a script node is the selected node in the scripts tree.

Figure 7.2 Script Browser

Figure 7.3 Menu Bar

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-4

Import Imports a file into the script browser. If the import is successful
the browser is placed in edit mode. Available only when a folder
node is the selected node in the scripts tree.

Save Saves the current script. Available only when a script is being
edited.

Save As Saves the current script, allowing the user to change the label.
Note that the name of the script file does not change. Available
only when a script is being edited.

Delete Deletes the currently opened script. Prompts user for
confirmation. Available only when a script node is the selected
node in the scripts tree.

Test Executes the currently selected script.

Close Closes the Script Browser Window.

Edit Menu Commands
Cut
Script

Cuts the script at the currently selected tree node to the system
clipboard. Available only when a script node is selected in the
tree view.

Copy
Script

Copies the script at the the currently selected tree node to the
system clipboard. Available only when a script node is selected
in the tree view.

Paste
Script

Pastes the script in the system clipboard to the currently selected
tree node. Available only when a folder node is selected in the
tree view.

Option Menu Commands
Set Font Opens a dialog box that allows setting of the font used in the

script text area. Fixed-space fonts such as “Courier New” and
“Lucida Console” are recommended over proportional fonts.

Set Tab
Size

Opens a dialog box that allows setting the number of spaces that
will be displayed in the script text area for each tab character.

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-5

7.2.2 Editor Panel
You can select and edit scripts in the Editor Panel of the Script Browser
(Figure 7.4).

The Label field allows you to
specify the label displayed on
a script’s button in the Script
Selector.

Script displays the name of
the file in which the script is
stored.

Display Script on Toolbar,
when checked, enables the
script to display in the Script
Selector and the Toolbar.
When you uncheck this
option, the script will not
display on the Script Selector
or Toolbar.

The Icon field allows you to
choose the Icon to display for
the script’s button. If you do not select an icon, the script name displays in the
script’s button.

The Description field allows you to add a description of the script. The first
line of your description serves as a tooltip for the corresponding button on the
Script Selector and Toolbar.

The Script Text field contains the script text itself and serves as an editing
window for creating new scripts.

The script text field has a context menu that can be accessed by right-clicking
in the script text field.

Script Text Field Context Menu Commands
Cut Copies the currently-selected script text to the system clipboard

and removes it from the script.

Copy Copies the currently-selected script text to the system clipboard
and leaves it in the current script.

Paste Copies text in the system clipboard into the script at the current
cursor location.

Select All Selects all the text in the script.

Find Opens a dialog that allows the user to search for specific text in
the script. If text is currently selected in the script, the dialog is

Figure 7.4 Editor Panel

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-6

initialized with this text.

Find Next

Locates the next text in the script that matches the conditions of
the most recently executed find command.

Find
Previous

Locates the previous text in the script that matches the
conditions of the most recently executed find command.

Goto Line Opens a dialog that allows the user to cause the cursor to jump
to the beginning of a specified line in the script text.

7.2.3 Tree Hierarchy
The Tree Hierarchy (Figure 7.5)
uses a Windows Explorer-style tree
structure to allow you to navigate
folders in your directory structure
and access scripts. By default, the
scripts are stored in a “scripts”
directory under the directory where
HEC-DSSVue was installed.

The Tree Hierarchy also has a
context menu that displays Cut
Script, Copy Script, and Edit
Script commands for script nodes
and New Script, Import Script,
and Paste Script for folder nodes.
These commands cause the same
actions as the File and Edit menu
commands discussed above.

To access the context menu, point to
a node in the “tree” and right-click
with your mouse.

Figure 7.5 Tree Hierarchy

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-7

7.3 Scripting Basics
Scripting in HEC-DSSVue is accomplished using Jython, an implementation
of the Python programming language designed specifically for integration
with the Java programming language. More information about Jython can be
found at the official Jython website – www.jython.org.

Python (of which Jython is an implementation) is an interpreted language with
simple syntax and high-level data types. This section is not a comprehensive
Python tutorial, but rather a simple primer to allow the creation of simple
scripts. This primer does not cover defining classes in Python.

The official Python website - www.python.org - has links to online Python
tutorials as well as programming books.

7.3.1 Outputting Text
Text information can be displayed in the console window using the print
statement which has the syntax:

 print [item[, item…]]

The items are comma-separated and do not need to be of the same type. The
print statement will insert a space between every specified item in the output.

Example 1: Outputting Text

print “Testing myFunction, i =”, i, “, x =”, x

7.3.2 Data Types
Python has integer, long integer, floating-point, imaginary number, and
sequence and dictionary data types. Sequences are divided into mutable (or
changeable) sequences called lists, immutable sequences called tuples.
Strings are special tuples of characters that have their own syntax.
Dictionaries are like sequences but are indexed by non-numeric values. In
addition, Python also has a special type called None, which is used to indicate
the absence of any value.

Python does not have a specific type for boolean (logical, or “true / false”)
data. Tests, such as conditional expressions, which must evaluate to true or
false are conducted such that the result is false if the expression evaluates to
None, integer or floating-point zero, or an empty sequence. Any other result
is true. Python statements that generate Boolean information (such as the if
statement) generate integer 0 for false and integer 1 for true. This becomes an

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-8

issue in Jython which allows calling Java functions and methods which expect
a Java boolean for input or generate a Java boolean for output. Jython maps
these boolean values to integer 0 or 1. Documentation for the HEC-DSSVue
API uses the term Constants.TRUE (1), or Constants.FALSE (0), or
sometimes the shorthand “0/1”, for arguments (these are constants defined to
1 and 0, respectively, in hec.script), and “0/1” to specify that the return type is
a Python integer, but its value is restricted to 0 or 1, corresponding to a Java
boolean. The hec.script module supplies constants to use in these situations.

There are also situations regarding the HEC-DSSVue API where it is
necessary or desirable to set a time-series value to “missing” or to test whether
a time-series value is missing. The hec.script module also supplies a constant
to use in these situations.

The currently-defined constants in the hec.script module are:

Constant Type Represents

Constants.TRUE integer true

Constants.FALSE integer false

Constants.UNDEFINED floating-point missing data value

It is recommended that these defined constants be used where applicable for
portability and clarity.

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-9

Example 2: Variable Types

set some integer values
i = 0
j = 1
k = -10998
m = Constants.TRUE

set a long integer
n = 79228162514264337593543950336L

set some floating-point values
x = 9.375
y = 6.023e23
z = -7.2e-3
t = Constants.UNDEFINED

set some strings
string_1 = “abc”
string_2 = ‘xyz’
string_3 = “he said \“I won’t!\””
string_4 = ‘he said “I will not!”‘
string_5 = “””this is a
 multi-line string”””

set a tuple – tuples are contained within ()
tuple_1 = (1, 2, “abc”, x, None)

set a list – lists are contained within []
list_1 = [1, 2, “abc”, x, tuple_1]

set a dictionary, using key : value syntax
dictionaries are contained within {}
dict_1 = {“color” : “red”, “size” : 10, “list” : [1, 5, 8]}

Indexing into sequence types is done using [i] where i starts at 0 for the first
element . Subsets of sequence types (called slices) are accessed using [i:j]
where i is the first element in the subset and j is the element after the last
element in the subset. If negative numbers are used to specify and index or
slice, the index is applied to the end of the sequence, where [-1] specifies the
last element, [-2] the next-to last and so on. If i is omitted in slice syntax it
defaults to 0. If j is omitted in slice syntax it defaults to the length of the
sequence, so list_1[0:len(list_1)] is the same as list_1[:].
Indexing into dictionaries is done using [x] where x is the key.

The number of elements in a sequence type or dictionary is returned by the
len() function.

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-10

Example 3: Sequence Indexing and Slicing

string_4[3] # 4th element
string_4[3:5] # 4th & 5th elements
list_1[-1] # last element
list_1[2:-1] # 3rd through next-to-last element
list_1[2:len(list_1)] # 3rd through last element (also list_1[2:])
dict_1[“size”] # value associated with “size” key
i = len(list_1) # length of list_1

7.3.3 Variables
Python variable names consist of an upper- or lower-case letter or the “_”
(underscore) character followed by an unlimited number of upper- or lower-
case characters, digits or underscore characters.

Variables are assigned values by use of the “=” (equals) character. A
sequence may be assigned to multiple variables using a single equals
character. Variable names are case sensitive, so the name “startdate” is not
the same name as “startDate”.

Example 4: Assigning Values to Variables

i = 0
j = 1
k = -10998
string_1 = “abc”
i, j, k, string_1 = 0, 1, -10998, “abc”

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-11

7.3.4 Operators
Each of the following operators can be used in the form a = b operator c.
Each can also be used as an assignment operator in the form a operator= b
(e.g. a += 1, x **= 2).

+ arithmetic addition
- negation or arithmetic subtraction
* arithmetic multiplication
/ arithmetic division
** arithmetic power
% arithmetic modulo
& bit-wise and
| bit-wise or
~ bit-wise not
^ bit-wise xor (exclusive or)
<< bit-wise left shift
>> bit-wise right shift

Each of the following operators returns 0 (false) or 1 (true) and can be used in
conditional expressions as discussed in Section 0.

> greater than
< less than
>= greater than or equal to
<= less than or equal to
!= not equal to
== equal to

7.3.5 Comments
Python uses the “#” (hash) character to indicate comments. Everything from
the “#” character to the end of the line is ignored by the interpreter.
Comments may not be placed after a program line continuation (“\”) character
on the same input line.

7.3.6 Program Lines
Unless otherwise indicated, every input line corresponds to one logical
program statement. Two or more statements can be combined on line input
line by inserting the “;” (semicolon) character between adjacent statements. A
single statement may be continued across multiple input lines by ending each
line with the “\” (back slash) character. Comments may not be placed after a
program line continuation (“\”) character on the same input line.

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-12

Example 5: Input vs. Program Lines

multiple statements per line
r = 1; pi = 3.1415927; a = pi * r ** 2

multiple lines per statement
a = \
 pi * \
 r ** 2

Input lines are grouped according to their function. Input lines forming the
body of a conditional, loop, exception handler, or function or class definition
must be grouped together. Input lines not in any of the construct comprise
their own group. In Python, grouping of input lines is indicated by
indentation. All lines of a group must be indented the same number of spaces.
A horizontal tab character counts as 8 spaces on most systems. In some
Python documentation, a group of input lines is called a suite.

Example 6: Input Line Grouping

this is the main script group
dist = x2 – x1
if dist > 100.:
 # this is the “if” conditional group
 y = dist / 2.
 z = y ** 2.
else :
 # this is the “else” conditional group
 y = dist.
 z = y ** 2. / 1.5
back to main script group
q = y * z

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-13

7.3.7 Conditional Expressions
Conditional expressions have the form:

if [not] condition :
 if-group
[elif [not] condition :
 elif-group]
[else :
 else-group]

The “:” (colon) character must be placed after each condition.

The condition in each test is an expression built from one or more simple
conditions using the form:

simple-condition (and | or) [not] simple-condition

Parentheses can be used to group conditions.

The simple-condition in each expression is either an expression using one of
the conditional operators mentioned in Section 0 or is of the form:

item [not] in sequence

Example 7: Conditional Expressions

if (x < y or y >= z) and string_1.index(“debug”) != -1 :
 # do something
 …
elif z not in value_list or (x < z * 2.5) :
 # do something different
 …
else :
 # do something else

If the statement group to be processed upon a condition is a single statement,
that statement may follow the condition on the same line (after the colon
character).

Example 8: Simple Conditional Expressions

if x1 < x2 : xMax = x2
else : xMax = x1

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-14

7.3.8 Looping
Python supports conditional looping and iterative looping. For each type, the
body of the loop (the loop-group) can contain break and/or continue
statements.

The break statement immediately halts execution of the loop-group and
transfers control to the statement immediately following the loop.

The continue statement skips the remainder of the current iteration of the
loop-group and continues with the next iteration of the loop-group.

7.3.8.1 Conditional Looping
Python supports conditional looping with the while statement, which has the
form:

while condition :
 loop-group

Conditional looping executes the body of the loop (the loop-group) as long as
the condition evaluates to true.

Example 9: Conditional Looping

print the first 10 characters
string_1 = “this is a test string”
i = 0
while i < 10 :
 print string_1[i]
 i += 1

7.3.8.2 Iterative Looping
Python supports iterative looping with the for statement, which has the form:

for item in sequence :
 loop-group
[else :
 else-group]

Iterative looping executes the body of the loop (the loop-group) once for each
element in sequence, first setting item to be that element. If the iteration
proceeds to completion without being interrupted by a break statement the
else-group will be executed, if specified.

The range([start,] stop[, increment]) helper function generates a sequence of
numbers from start (default = 0) to stop, incrementing by increment (default =
1). Thus range(4) generates the sequence (0, 1, 2, 3).

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-15

Example 10: Iterative Looping

print the first 10 characters
string_1 = “this is a test string”
for i in range(10) :
 print string_1[i]

print all the characters
string_1 = “this is a test string”
for i in range(len(string_1)) :
 print string_1[i]

print all the characters (more Python-y)
string_1 = “this is a test string”
for c in string_1 :
 print c

7.3.9 Defining and Using Functions
In Python, functions are defined with the syntax:

def functionName([arguments]) :
 function-body

Function names follow the same naming convention as variable names
specified in Section 7.3.2. The arguments are specified as a comma-delimited
list of variable names that will be used within the function-body. These
variables will be positionally assigned the values used in the function call.
More complex methods of specifying function arguments are specified in
Python tutorials and references listed at the official Python website
(www.python.org).

A function must be defined in a Python program before it can be called.
Therefore, function definitions must occur earlier in the program than calls to
those functions.

A function may optionally return a value or sequence of values.

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-16

Example 11: Defining and Using Functions

def printString(stringToPrint) :
 “Prints a tag plus the supplied string”
 tag = “function printString : “
 print tag + stringToPrint

def addString(string_1, string_2) :
 “Concatenates 2 strings and returns the result”
 concatenatedString = string_1 + string_2
 return concatenatedString

testString = “this is a test”
printString(testString)
wholeString = addString(“part1:”, “part2”)
printString(wholeString)
printString(addString(“this is “, “another test”))

7.3.10 Modules, Functions and Methods
A function is a procedure which takes zero or more parameters, performs
some action, optionally modifies one or more of the parameters and optionally
returns a value or sequence of values.

A class is the definition of a type of object. All objects of that type (class)
have the same definition and thus have the same attributes and behavior.
Classes may define functions that apply to individual objects of that type.
These functions are called methods.

An object is an instance of a class, which behaves in the way defined by the
class, and has any methods defined by the class.

Python provides many functions and classes by default. In our examples we
have used functions len() and range() which Python provides by default. We
have also used the classes list and string, which Python also provides by
default. We didn’t use any methods of the class list, but we used the string
method index() in the example in Section 0 (string_1.index(“debug”) !=
-1). It is important to note that the object method index() doesn’t apply to the
string class in general, but to the specific string object string_1.

There are other functions and classes which Python does not provide by
default. These functions and classes are grouped into modules according to
their common purpose. Examples of modules are “os” for operating system
functions and “socket” for socket-based network functions. Before any of the
functions or classes in a module can be accessed, the module must be
imported with the import statement, which has the syntax:

from module import *

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-17

Other methods of using the import statement are specified in Python tutorials
and references listed at the official Python website (www.python.org). In the
Jython implementation, Java packages can be imported as if they were Python
modules, and the Java package java.lang is imported by default.

Example 12: Using a Function from an Imported Module

use the getcwd() function in the os module to get
the current working directory

from os import *
cwd = getcwd()

A module does not have to be imported in order to work with objects of a
class defined in that module if that object was returned by a function or
method already accessible. For example, the Python module “string” does not
have to be imported to call methods of string objects, but does have to be
imported to access string functions.

7.3.11 Handling Exceptions
Certain errors within a Python program can cause Python to raise an
exception. An exception that is not handled by the program will cause the
program to display error information in the console window and halt the
program.

Python provides structured exception handling with the following constructs:
try :
 try-group
except :
 except-group
[else :
 else-group]

try :
 try-group
finally :
 finally-group

In the try-except-else construct, if an exception is raised during execution of
the try-group control immediately transfers to the first line of the except-
group. If no exception is raised during execution of the try-group control
transfers to the first line of the else-group, if present. If there is no exception
raised and no else-group is specified, the control transfers to the first line after
the except-group.

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-18

In the try-finally construct, control is transferred to the first line of the finally-
group when either an exception is raised during the execution of the try-group
or the try-group completes without an exception.

The two constructs cannot be combined into a try-except-finally construct, but
the same effect can be obtained by making a try-except-else construct the try-
group of a try-finally construct.

Example 13: Exception Handling
try :
 try :
 string_1.find(substring) # may raise an exception
 except :
 print substring + “ is not in “ + string_1
 # do some stuff that might raise another exception
 …
 else :
 print substring + “ is in “ + string_1
 # do some stuff that might raise another exception
 …
finally :
 print “No matter what, we get here!”

More exception handling information, including filtering on specific types of
exceptions, exception handler chains, and raising exceptions, is provided in
Python tutorials and references listed at the official Python website
(www.python.org).

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-19

7.4 Displaying Messages
It is often useful to display messages to inform the user that something has
occurred, to have the user answer a Yes/No question, or offer debugging
information to help determine why a script isn’t working as expected. Text
information can be displayed in the console window as described in Section
7.3.1, “Outputting Text.”

7.4.1 Displaying Message Dialogs
The MessageBox class in the hec.script module, and the MessageDialog class
in the MessageDialog module have several functions used to display messages
in message box dialogs. The dialogs can be one of four different types: Error,
Warning, Informational or Plain. The difference between the MessageBox
functions and their MessageDialog counterparts is the the MessageBox
versions do not allow interaction with any object other than the message box
itself, while the MessageDialog versions allow the user to interact with the
HecDssVue program window, as well as any displayed tables or plots while
the message box is displayed. If MessageDialog functions are used in a script
that is to be executed other than from the command line, they must not be
used in the main script thread.

MessageBox and MessageDialog functions with multiple buttons return a
string containing the text of the button that was selected to dismiss the
message box.

Note: Do not use the MessageBox or MessageDialog functions in a script that
is to run unattended since these functions cause scripts to pause for user
interaction.

Table 7.1 describes MessageBox and MesssageDialog functions.

Table 7.1 – MessageBox and MessageDialog Functions

Function Returns Comments
showError(string message, string title)

None Display an error dialog to
you with the message
and title

showWarning(string message, string title)

None Display a warning dialog
to you with the message
and title

showInformation(string message, string
title)

None Display a Informational
dialog to you with the
message and title

showPlain(string message, string title) None Display a plain dialog to
you with the message
and title

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-20

Function Returns Comments
showYesNo(string message, string title) string Display a Yes/No dialog

to you with the message
and title

showYesNoCancel(string message, string
title)

string Display a Yes/No/Cancel
dialog to you with the
message and title

showOkCancel(string message, string
title)

string Display a Ok/Cancel
dialog to you with the
message and title

Example 14: Display Error Dialog with MessageBox class
from hec.script import *

MessageBox.showError("An Error Occurred”, "Error")

Example 15: Display OK/Cancel Dialog with MessageDialog class
from hec.script import *
import MessageDialog
import thread

def main() :
 ok=MessageDialog.showOkCancel(“Continue with Operation”, “Confirm”)

thread.start_new_thread(main, ())

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-21

7.5 Accessing the Main Program Window
Situations arise that necessitate accessing the main HEC-DSSVue program
window. Examples of such situations are:

• Having a script determine whether it is running in an interactive mode
or without a graphical display.

• Having a script gather information about interactively-selected
pathnames and time windows for automated processing.

• Having a script launch the interactive graphical editor.

The ListSelection class in the hec.dssgui module facilitates these activities.
An import statement of the form “from hec.dssgui import ListSelection” is
necessary to use the ListSelection class. (For CWMS-VUE, the import
statement is “from hec.cwmsVue import CwmsListSelection”.)

If the script is not running in a mode without a graphical display (i.e. the
HEC-DSSVue was launched with the script as a parameter) then a main
program window will not exist. If the script needs to have the user utilize the
graphical editor, the script will need to create a main program window for the
duration of the graphical edit session.

7.5.1 ListSelection Class
Table 7.2 lists the static functions of the ListSelection class.

Table 7.2 – ListSelection Static Functions

Function Returns Description
createMainWindow() ListSelection Returns a new ListSelection object. This

should not be called unless the script is not
running in interactive mode.

getMainWindow() ListSelection Returns the main program window
(ListSelection object) of the script. Returns
None if the script is not running in interactive
mode.

ListSelection objects can be used to gather information about pathnames and
time windows that the user selected interactively before launching the script.
ListSelection objects can also be used to launch the interactive graphical
editor. Table 7.3 lists the ListSelection methods

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-22

Table 7.3 – ListSelection Methods

Method Returns Description
getEndTime() HecTime Returns the current end time

of the ListSelection as an
HecTime object.2

getLocation() Point Returns the location of the
dialog in screen coordinates.1

getSelectedPathnames() list of
DataReference
objects

Returns a list of
DataReference objects that
represent the interactive
pathname and time window
selections.

getSize() Dimension Returns the dimensions of the
dialog in screen coordinates.

getStartTime() HecTime Returns the current start time
of the ListSelection as an
HecTime object.2

graphicalEdit() None Launches the graphical editor
for the intereactively-selected
pathnames and time
windows.

graphicalEdit(TimeSeriesContainer
tsc)

None Launches the graphical editor
for the specified
TimeSeriesContainer.

graphicalEdit(list tscList) None Launches the graphical editor
for all TimeSeriesContainers
in the list.

isVisible() 0/1 Returns whether the dialog is
currently visible on the
screen.

setLocation(integer x, integer y) None Sets the location of the dialog
in screen coordinates.1

setSize(integer width, integer
height)

None Sets the size of the dialog in
screen coordinates.

setVisible(0/1 visible) None Sets whether the dialog is
visible on the screen.

1The coordinate system used is a graphics coordinate system, where X increases to
the right and Y increases downward from the origin (0,0) which is located in the top
left corner of the display. Locations set or retrieved refer to the top left corner of the
dialog in reference to this coordinate system.
2The current start and end times of a ListSelection object are not necessarily the
same as the start and end times of any DataReference objects in the ListSelection.
Rather they represent the start and end times that will be applied to subsequent
selections.

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-23

7.5.2 DataReference Class
The getSelectedPathnames() ListSelection method returns a list of
DataReference objects that represent the interactive selections. Each
individual selection may have a different DSS filename, pathname, and time
window than other selections. Table 7.4 lists the methods of the
DataReference class.

Table 7.4 – DataReference Methods

Method Returns Description
getFilename() string Returns the name of the DSS file from which

this selection was made.

getPathname() string Returns the pathname for this selection

getTimeWindow(
 HecTime startTime,
 HecTime endTime)

0/1 Sets the startTime and endTime parameters
with the start time and end time of the
selection, respectively. Returns
Constants.TRUE if a time window is defined
for the selection. Returns Constants.FALSE
otherwise.

hasTimeWindow() 0/1 Returns Constants.TRUE if a time window is
defined for the selection. Returns
Constants.FALSE otherwise.

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-24

7.6 Reading and Writing to HEC-DSS Files
Reading or writing a data set from a DSS file involves using functions and
methods from 3 classes in the hec.hecmath module: DSS, DSSFile and
HecMath. The DSS class is used to get a DSSFile object which represents a
DSS File. The DSSFile object is then used to get individual data sets out of the
DSS File by returning a HecMath object.

7.6.1 DSS Class
 DSS.open(string filename)
 DSS.open(string filename, string timeWindow)

 DSS.open(string filename, string startTime, string endTime)

The DSS class is used to gain access to a HEC-DSS File, as illustrated in
Example 16.

Example 16: Opening a DSS File

theFile = DSS.open(“MyFile.dss”)
or
theFile = DSS.open(“MyFile.dss”, “T-14D T”)
or
theFile = DSS.open(“MyFile.dss”, “01Jan2002,1300”, “02Jan2002,1300”)

7.6.2 DSSFile Class
DSSFile objects are used to read and write data sets in a DSS file, and to
retrieve cataloged pathnames in a DSS file. Table 7.5 describes DSSFile
methods

Table 7.5 - DSSFile Methods

Method Returns Description
close() None Close the DSS file.

getCatalogedPathnames() list of
strings

Returns a list of all cataloged
pathnames without generating a new
catalog.

getCatalogedPathnames(0/1
forceNew)

list of
strings

Returns a list of all cataloged
pathnames, optionally generating a
new catalog first.

getCatalogedPathnames(string
pattern)

list of
strings

Returns a list of all cataloged
pathnames that match the specified
pattern without generating a new
catalog.

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-25

Method Returns Description
getCatalogedPathnames(string
pattern, 0/1 forceNew)

list of
strings

Returns a list of all cataloged
pathnames that match the specified
pattern, optionally generating a new
catalog first.

read(string pathname)1 HecMath Return an HecMath object that holds
the data set specified by pathname.

read(string pathname, string
timeWindow) 1

HecMath Return an HecMath object that holds
the data set specified by pathname
with the specified time window.

read(string pathname, string
startTime, string endTime) 1

HecMath Return an HecMath object that holds
the data set specified by pathname
with the specified time window.

setTimeWindow(string
timeWindow)

None The default time window for this
DSSFile.

setTimeWindow(string
startTime, string endTime)

None The default time window for this
DSSFile.

setTrimMissing(0/1 trim) None Sets whether TimeSeriesMath
objects retrieved via calls to read(…)
will have missing data trimmed from
the beginning and end of the time
window. 2

write(HecMath dataset) 1 integer Write the data set to the DSS file. A
return value of zero indicates
success.

1 Currently, the read(…) and write(…) methods can operate only on time-series data,
paired data and stream rating data represented by TimeSeriesMath,
PairedDataMath, and StreamRatingMath objects, respectively. Other record types,
such as text data and gridded data are not yet supported by these methods.
2 By default, TimeSeriesMath objects retrieved via calls to read(…) contain data only
between the first non-missing value and the last non-missing value within the
specified time window. Calling setTrimMissing(Constants.FALSE) causes the data
retrieved to include all data for the specified time window, including blocks of missing
values at the beginning and end of the time window.

Example 17: Reading a DSS Data Set

from hec.hecmath import *

open myFile.dss and read a data set
theFile = DSS.open(“myFile.dss”)
flowDataSet = theFile.read(“/BASIN/LOC/FLOW/01NOV2002/1HOUR/OBS/")
theFile.close()

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-26

7.6.2.1 Pattern Strings
The pattern strings used with the getCatalogedPathnames(…) methods filter
the list of returned pathnames in a user-specified manner. Pattern strings can
be specified in two modes: pathname mode and pathname part mode. Both
modes make use of pathname part filters:

• Pathname mode = /AFilter/BFilter/CFilter/DFilter/EFilter/FFilter/

• Pathname part mode = [A=AFilter] [B=BFilter] [C=CFilter]
[D=DFilter] [E=AFilter] [F=FFilter]

In pathname mode, filters must be supplied for all pathname parts. In
pathame part mode, only those parts that will not match everything must be
specified.

Filters are comprised of the following components:

• Normal text characters. These characters are interpreted as they
appear. For example, a pattern string of “B=XYZ” specifies matching
every pathname that has a B-part of “XYZ”.

• Special characters. The special characters are comprised of the
following list:

o ‘@’ or ‘*’ (used interchangeably). This character can be
specified as the first and/or last character of a filter and
specifies matching a string of zero or more characters. For
example, a pattern string of “B=XYZ@” specifies matching
every pathname that as a B-part that begins with “XYZ”. A
pattern string of “B=*XYZ” specifies matching every
pathname that has a B-part that ends with “XYZ”. A pattern
string of “B=*XYZ*” specifies matching every pathname that
“XYZ” anywhere in the B-part. Note that the @ or * character
must be the first and/or last character of the filter (e.g. a pattern
string of “B=ABC*XYZ” is invalid).

o ‘#’ or ‘!’ (used interchangeably). This character must be
specified as the first character of a filter and specifies matching
of every string except the remainder of the filter (e.g. it negates
the remainder of the filter). A pattern string of “B=!XYZ*”
specifies matching every pathname that does not have a B-part
that begins with “XYZ”.

• No character. The absence of any character specifies an empty filter,
which matches a blank pathname part. Both of the following pattern
strings match every pathname that has a blank A-part:

o “//*/*/*/*/*/”

o “A=”

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-27

Using getCatalogedPathnames(…) with a pattern string utilizes the pathname
matching in the underlying DSS library. To accomplish more sophisticated
pathname filtering, use one of the getCatalogedPathnames(…) methods in
conjunction with python text parsing and matching utilities.

7.6.2.2 Time Windows
Dates and times used to specify time windows should not contain blank
characters and should include the 4 digit year. An example date and time is
“04MAR2003 1400”. If a single string is used to specify the time window,
the starting date and time must precede the ending date and time, for example
dssFile.setTimeWindow (“04MAR2003 1400 06APR2004 0900”). A relative
time may be used in the single string command, where the letter “T”
represents the current time, and the days or hours can be subtracted or added
to that. For example dssFile.setTimeWindow(“T-14D T-2H”) would specify
the starting time as current time minus 14 days and the ending time as the
current time minus 2 hours.

Time Windows (specified by starting time and ending time) effect how the
DSSFile.read(…) method operates for the various data types.

• Time-series data. The time window supplied to DSS.open(…) or
dssFile.setTimeWindow(…) specifies the default time window for all
subsequent dssFile.read(…) operations. If no time window is supplied
to DSS.open(…) then the default time window is undefined until
dssFile.setTimeWindow(…) is called. If the default time window is
undefined , then all dssFile.read(…) operations involving time-series
data must specify a time window either implicitly via the D-part of the
specified pathname or explicitly via the startTime and endTime
parameters. The order of precedence for time windows is as follows:

o Explicit time window. Specified in dssFile.read(pathname,
startTime, endTime) or dssFile.read(pathname, timeWindow).
The D-part of the pathname is ignored and may be empty.

o Default time window. Specified in DSS.open(filename,
startTime, endTime) or DSS.open(filename, timeWindow) or
dssFile.setTimeWindow(startTime, endTime) or
dssFile.setTimeWindow(timeWindow). The D-part of the
pathname is ignored and may be empty. The default time
window can be set to undefined by calling
dssFile.setTimeWindow(“”, “”).

o Implicit time window. Specified as the D-part of the
pathname supplied to dssFile.read(pathname) when the default
time window is undefined. The D-part of the pathname must
not be empty.

• Paired data. Time windows have no effect on reading paired data
records.

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-28

• Stream rating data. Stream rating data are comprised of a time-series
of individual rating records for a common location. The reading of
stream rating data is not effected by default time windows. The
implicit time window for reading stream rating data is the entire time
span covered by the rating records. An explicit time window may be
supplied by using the dssFile.read(pathname, startTime, endTime)
method. If an explicit time window is specified, a (possible) subset of
the rating records is retrieved that cover the specified time window.
The explicit time window is interpreted as the time window containing
all time-series data that is to be rated via the stream rating data. The
set of rating records retrieved for an explicit time window meets the
following criteria.

o The earliest record retrieved is the latest rating that is on or
before the start of the time window. If no such record exists,
the earliest record in the rating time-series is retrieved.

o The latest record retrieved is the earliest rating that is on or
after the end of the time window. If no such record exists, the
latest record in the rating time-series is retrieved.

o All rating records between the earliest and latest retrieved
records are also retrieved.

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-29

7.7 HecMath Class
The objects returned from the dssFile.read(…) methods and supplied to the
dssFile.write(…) method are HecMath objects. There are currently three
types of HecMath classes: TimeSeriesMath class, PairedDataMath class, and
StreamRatingMath class which represent time-series data, paired data, and
stream rating data, respectively.

An HecMath object can be created for writing to new DSS data by first
creating a new DataContainer as discussed in Sections 7.8.1
(TimeSeriesContainer Class) and 7.8.2 (PairedDataContainer Class), and then
calling the HecMath.createInstance() function with the DataContainer object
as the only parameter (e.g. myTimeSeriesMath =
HecMath.createInstance(myTimeSeriesContainer)). Table 7.6 lists the
methods for HecMath Objects, which are described in Section 7.15

Table 7.6 – HecMath Methods

Method Returns Description
Section

abs() HecMath 7.15.1

accumulation() TimeSeriesMath 7.15.2

add(floating-point constant) HecMath 7.15.3

add(TimeSeriesMath dataset) TimeSeriesMath 7.15.4

applyMultipleLinearRegression(
string startTimeString,
string endTimeString,
sequence datasets,
floating-point minLimit,
floating-point maxLimit)

TimeSeriesMath 7.15.5

centeredMovingAverage(integer number,
0/1 onlyValid,
0/1 useReduced)

TimeSeriesMath 7.15.6

conicInterpolation(TimeSeriesMath dataset,
string inputType,
string outputType, floating-point
storageFactor)

TimeSeriesMath 7.15.7

convertValuesToEnglishUnits() HecMath 7.15.8

convertValuesToMetricUnits() HecMath 7.15.9

correlationCoefficients(
TimeSeriesMath dataset)

LinearRegression
Statistics

7.15.10

cos() HecMath 7.15.11

cyclicAnalysis() sequence of
TimeSeriesMath

7.15.12

decayingBasinWetnessParameter(
TimeSeriesMath tsPrecip,
floating-point decayRate)

TimeSeriesMath 7.15.13

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-30

Method Returns Description
Section

divide(floating-point constant) HecMath 7.15.14

divide(TimeSeriesMath dataset) TimeSeriesMath 7.15.15

estimateForMissingPrecipValues(
integer maxMissing)

TimeSeriesMath 7.15.16

estimateForMissingValues(
integer maxMissing)

TimeSeriesMath 7.15.17

exponentiation(floating-point constant) HecMath 7.15.18

extractTimeSeriesDataForTimeSpecification(
string timeLevel,
string range,
0/1 isInclusive,
integer intervalWindow,
0/1 setAsIrregular)

TimeSeriesMath 7.15.19

flowAccumulatorGageProcessor(
TimeSeriesMath dataset)

TimeSeriesMath 7.15.20

forwardMovingAverage(integer number) TimeSeriesMath 7.15.21

generateDataPairs(TimeSeriesMath dataset,
0/1 sort)

PairedDataMath 7.15.22

generateRegularIntervalTimeSeries(
string startTime,
string endTime,
string timeInterval,
string timeOffset,
floating-point initialValue)

TimeSeriesMath 7.15.23

getData() DataContainer 7.15.24

getType() string 7.15.25

getUnits() string 7.15.26

interpolateDataAtRegularInterval(
string timeInterval,
string timeOffset)

TimeSeriesMath 7.15.27

inverse() HecMath 7.15.28

isEnglish() 0/1 7.15.29

isMetric() 0/1 7.15.30

isMuskingumRoutingStable(
integer subReachCount,
floating-point muskingumK,
floating-point muskingumX)

string 7.15.31

lastValidDate() integer 7.15.32

lastValidValue() floating-point 7.15.33

log() HecMath 7.15.35

log10() HecMath 7.15.36

max() floating-point 7.15.37

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-31

Method Returns Description
Section

maxDate() integer 7.15.38

mean() floating-point 7.15.39

mergePairedData(PairedDataMath dataset) PairedDataMath 7.15.40

mergeTimeSeries(TimeSeriesMath dataset) TimeSeriesMath 7.15.41

min() floating-point 7.15.42

minDate() integer 7.15.43

modifiedPulsRouting(
TimeSeriesMath dataset,
integer subReachCount,
floating-point muskingumX)

TimeSeriesMath 7.15.44

multipleLinearRegression(sequence datasets,
floating-point minLimit,
floating-point maxLimit)

PairedDataMath 7.15.45

multiply(floating-point constant) HecMath 7.15.46

multiply(TimeSeriesMath dataset) TimeSeriesMath 7.15.47

muskingumRouting(integer subReachCount,
floating-point muskingumK,
floating-point muskingumX)

TimeSeriesMath 7.15.48

numberMissingValues() integer 7.15.49

numberValidValues() integer 7.15.50

olympicSmoothing(integer number,
0/1 onlyValid,
0/1 useReduced)

TimeSeriesMath 7.15.51

periodConstants(TimeSeriesMath dataset) TimeSeriesMath 7.15.52

polynomialTransformation(
TimeSeriesMath dataset)

TimeSeriesMath 7.15.53

polynomialTransformationWithIntegral(
TimeSeriesMath dataset)

TimeSeriesMath 7.15.54

ratingTableInterpolation(
TimeSeriesMath dataset)

TimeSeriesMath 7.15.55

reverseRatingTableInterpolation(
TimeSeriesMath dataset)

TimeSeriesMath 7.15.56

round() HecMath 7.15.57

roundOff(integer digits, integer place) HecMath 7.15.58

screenWithForwardMovingAverage(
integer number,
floating-point changeLimit,
0/1 setMissing, string invalidQuality)

TimeSeriesMath 7.15.59

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-32

Method Returns Description
Section

screenWithMaxMin(floating-point min,
floating-point max,
floating-point rate,
0/1 setMissing,
string invalidQuality)

TimeSeriesMath 7.15.60

setCurve(string name) None 7.15.61

setCurve(integer number) None 7.15.62

setData(DataContainer data) None 7.15.63

setLocation(string location) None 7.15.64

setParameter(string parameter) None 7.15.65

setPathname(string pathname) None 7.15.66

setTimeInterval(string interval) None 7.15.67

setType(string type) None 7.15.68

setUnits(string units) None 7.15.69

setVersion(string version) None 7.15.70

setWatershed(string watershed) None 7.15.71

shiftAdjustment(TimeSeriesMath dataset) TimeSeriesMath 7.15.72

shiftInTime(string timeShift) TimeSeriesMath 7.15.73

sin() HecMath 7.15.74

skewCoefficient() floating-point 7.15.75

snapToRegularInterval(string timeInterval,
string timeOffset,
string timeBackward,
string timeForward)

TimeSeriesMath 7.15.76

sqrt() HecMath 7.15.77

standardDeviation() floating-point 7.15.78

straddleStaggerRouting(integer avgCount,
integer lagCount,
integer subReachCount)

TimeSeriesMath 7.15.79

subtract(floating-point constant) HecMath 7.15.80

subtract(TimeSeriesMath dataset) TimeSeriesMath 7.15.81

successiveDifferences() TimeSeriesMath 7.15.82

sum() floating-point 7.15.83

tan() HecMath 7.15.84

timeDerivative() TimeSeriesMath 7.15.85

transformTimeSeries(string timeInterval,
string timeOffset,
string functionType)

TimeSeriesMath 7.15.86

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-33

Method Returns Description
Section

transformTimeSeries(
TimeSeriesMath dataset,
string functionType)

TimeSeriesMath 7.15.87

truncate() HecMath 7.15.88

twoVariableRatingTableInterpolation(
TimeSeriesMath dataset1,
TimeSeriesMath dataset2)

TimeSeriesMath 7.15.89

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-34

7.8 DataContainer Class
HecMath objects – data sets read from DSS files - cannot be added to plots
and tables directly. Instead, DataContainer objects must be extracted from the
HecMath objects for adding to plots or tables. The TimeSeriesContainer and
PairedDataContainer classes discussed below are both types of DataContainer
classes and are extracted from HecMath objects using the getData() method as
documented in Section 7.15.24 (Get Data Container). HecMath objects can be
updated from DataContainer objects using the setData() method as
documented in Section 7.15.63 (Set Data Container). DataContainer objects
have no methods that can be called by the user, but all data fields of
DataContainer objects are directly accessible. Table 7.7 describes
DataContainer data fields.

Table 7.7 – DataContainer Data Fields

Field Type Description
fullName string The full name associated with the data in the data store

(DSS pathname,if the DataContainer is associated with a
DSS file)

location string The location associated with the data (DSS pathname B-
part if the DataContainer is associated with a DSS file).

subVersion string The sub-version associated with the data.

version string The version associated with the data (DSS pathname F-
part if the DataContainer is associated with a DSS file).

watershed string The watershed associated with the data (DSS pathname A-
part if the DataContainer is associated with a DSS file).

Example 18: Extracting and Using a DataContainer Object
from hec.script import *
from hec.hecmath import *
theFile = DSS.open(“myFile.dss”)
flowDataSet = theFile.read(“/BASIN/LOC/FLOW/01NOV2002/1HOUR/OBS/")
theFile.close()
flowData = flowDataSet.getData()
thisWatershed = flowData.watershed

7.8.1 TimeSeriesContainer Class
TimeSeriesContainer is a type of DataContainer that contains information
about time series data. TimeSeriesContainer objects are returned by the
getData() method and are required in the setData() method of TimeSeriesMath
objects. TimeSeriesContainer objects have all the data fields described
Section 7.8 (DataContainerClass) in addition to those described in Table 7.8 .
New TimeSeriesContainer objects can be created by a script if the
TimeSeriesContainer class has been imported from the hec.io module (e.g.
“from hec.io import *” or “from hec.io import TimeSeriesContainer”) The

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-35

new object can be created by calling TimeSeriesContainer () (e.g. “myTSC =
TimeSeriesContainer ()”).

Table 7.8 – TimeSeriesContainer Data Fields

Field Type Description
endTime integer1 The end time of the time window. If the data

were retrieved, the end time may be later than
the last time in the times list.

interval Integer The interval, in minutes, between each set of
consecutive times in the times list. For irregular-
interval times, the interval field is set to –1.

numberValues Integer The length of values and times lists.

parameter string The parameter associated with the data.

quality list of
integers2

The optional list of quality flags. If this list is
present, there must be a quality for each value in
the values array. If this list is not present, the
quality field is set to None.

startTime integer1 The start time of the time window. If the data
were retrieved, the start time may be earlier than
the first time in the times list.

subLocation string The sub-location associated with the data.

subParameter string The sub-parameter associated with the data.

times list of
integers1

The list of times. There must be a time for each
value in the values list, and times must increase
from one index to the next.

timeZoneID string The time-zone for times in the times list. If
unknown, the timeZoneID field is set to None

timeZoneRawOffset integer The offset, in milliseconds, from UTC to the time
zone for the times in the times list.

type string The type of the data (e.g. “INST-VAL”, “INST-
CUM”, “PER-AVER”, “PER-CUM”).

units String The units of the data.

values list of
floating-
point

The data values, each of which has a
corresponding time in the times list and optionally
a corresponding quality in the quality list. All lists
must be the same length.

1 Integer times from this field can be converted to string representations by using the
set() and dateAndTime() methods of HecTime objects discussed in Section 7.9
(HecTime class). Additionally, integer times suitable for this field can be generated
by the HecTime value() method.
2 Quality values are interpreted according to Table 7.9

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-36

.Table 7.9 – Data Quality Bits

Bit(s) Description
1 Set when the datum has been tested (screened).

2 Set when the datum passed all tests.

3 Set when the datum is missing (either originally missing or set to missing
by a test).

4 Set when at least one test classified the datum as questionable.

5 Set when at least one test classified the datum as rejected.

6-7 Set by the RANGE test. Interpreted as a 2-bit unsigned integer with
values having the following meanings:

0 value of datum < than 1st limit
1 1st limit <= value of datum < 2nd limit
2 2nd limit <= value of datum < 3rd limit
3 3rd limit <= value of datum

8 Set when the datum has been changed from the original value.

9-11 Datum replacement indicator. Interpreted as a 3-bit unsigned integer
with values having the following meanings:

0 datum was not replaced (original value)
1 datum was replaced by DATCHK
2 datum was replaced by DATVUE
3 datum was replaced by manual edit in DATVUE
4 original value was accepted in DATVUE
5-7 reserved for future use

12-15 Datum replacement value computation method. Interpreted as a 4-bit
unsigned integer with values having the following meanings:

0 datum was not replaced (original value)
1 datum value computed by linear interpolation
2 datum value was entered manually
3 datum value was replaced with a missing value
4-15 reserved for future use

16 set when datum failed an absolute magnitude test

17 set when datum failed a constant value test

18 set when datum failed a rate of change test

19 set when datum failed a relative magnitude test

20 set when datum failed a duration magnitude test

21 set when datum failed a negative incremental value test

22 reserved for future use

23 set when datum is excluded from testing (e.g. DATCHK GAGEFILE
entry)

24 reserved for future use

25 set when datum failed a user-defined test

26 set when datum failed a distribution test

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-37

Bit(s) Description
27-31 reserved for future use

32 set when datum is protected from being replaced

Example 19: Using a TimeSeriesContainer Object
from hec.script import *
from hec.hecmath import *
from hec.io import TimeSeriesContainer
from hec.heclib.util import HecTime

watershed = "GREEN RIVER"
loc = "OAKVILLE"
param = "STAGE"
ver = "OBS"
startTime = "12Oct2003 0100"
values = [12.36, 12.37, 12.42, 12.55, 12.51, 12.47, 12.43, 12.39]
hecTime = HecTime()
tsc = TimeSeriesContainer()
tsc.watershed = watershed
tsc.location = loc
tsc.parameter = param
tsc.version = ver
tsc.fullName = "/%s/%s/%s//1HOUR/%s/" % \
 (watershed, loc, param, ver)
tsc.interval = 60
hecTime.set(startTime)
times = []
for value in values :
 times.append(hecTime.value())
 hecTime.add(tsc.interval)
tsc.values = values
tsc.times = times
tsc.startTime = times[0]
tsc.endTime = times[-1]
tsc.numberValues = len(values)
tsc.units = "FEET"
tsc.type = "INST-VAL"
stageRecord = HecMath.createInstance(tsc)
dssFile = DSS.open("myFile.dss")
dssFile.write(stageRecord)
dssFile.close()

7.8.2 PairedDataContainer Class
PairedDataContainer is a type of DataContainer that contains information
about paired data. PairedDataContainer objects are returned by the getData()
method and are required in the setData() method of PairedDataMath objects.
TimeSeriesContainer objects have all the data fields described Section 7.8 (

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-38

DataContainer Class) in addition to those described in Table 7.10. New
PairedDataContainer objects can be created by a script if the
PairedDataContainer class has been imported from the hec.io module (e.g.
“from hec.io import *” or “from hec.io import PairedDataContainer”) The
new object can be created by calling PairedDataContainer () (e.g. “myPDC =
PairedDataContainer ()”).

Table 7.10 – PairedContainer Data Fields

Field Type Description
date string The date associated with the paired-data.

datum floating-point The zero-stage elevation of a stream gauge.

labels list of strings The list of labels used to identify each of the y-
ordinates lists. If there is only 1 y-ordinates list
(e.g. numberCurves == 1), the labels field is set
to None.

labelsUsed 0/1 A flag specifying whether labels are used. This
field is set to Constants.TRUE if there is more
than 1 y-ordinates list, and Constants.FALSE
otherwise.

numberCurves integer The number of y-ordinates lists.

numberOrdinates integer The length of the x-ordinates list and each of
the y-ordinates lists.

offset floating-point The offset value of a stream rating.

shift floating-point The shift value for a stream rating.

transformType integer Type of transformation to use (1 = “LINLIN”, 2
= “LOGLOG”)

xOrdinates list of
floating-point

The x-ordinate values. Each y-ordinate values
list must be of the same length as this field.

xparameter string The parameter of the x-ordinates.

xtype string The type of the x-ordinates (“UNT” for unitary
or “LOG” for logarithmic).

xunits string The units of the x-ordinates.

yOrdinates list of lists of
floating-point

The y-ordinate values. Each list of y-ordinate
values must be of the same length as the list of
x-ordinate values. The nth value of each y-
ordinates list is associated with the nth value of
the x-ordinates list.

yparameter string The parameter of the y-ordinates.

ytype string The type of the y-ordinates (“UNT” for unitary
or “LOG” for logarithmic).

yunits string The units of the y-ordinates.

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-39

Example 20: Using a PairedDataContainer Object
from hec.script import *
from hec.hecmath import *
from hec.io import TimeSeriesContainer

watershed = "GREEN RIVER"
loc = "OAKVILLE"
xParam = "STAGE"
yParam = "FLOW"
date = "12Oct2003"
stages = [0.4, 0.5, 1.0, 2.0, 5.0, 10.0, 12.0]
flows = [0.1, 3, 11, 57, 235, 1150, 3700]
pdc = PairedDataContainer()
pdc.watershed = watershed
pdc.location = loc
pdc.parameter = param
pdc.version = ver
pdc.fullname = "/%s/%s/%s-%s///%s/" % \
 (watershed, loc, xParam, yParam, date)
pdc.xOrdinates = stages
pdc.yOrinates = [flows]
pdc.numberCurves = 1
pdc.numberOrdinates = len(stages)
pdc.labelsUsed = Constants.FALSE
pdc.xUnits = "FEET"
pdc.yUnits = "CFS"
pdc.xType = "LOG"
pdc.yType = "LOG"
pdc.xParameter = xParam
pdc.yParameter = yParam
pdc.date = date
pdc.transformType = 2

rating = HecMath.createInstance(pdc)
dssFile = DSS.open("myFile.dss")
dssFile.write(rating)
dssFile.close()

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-40

7.9 HecTime Class
HecTime objects are used to manipulate dates and times and to convert dates
and times among different formats. To use HecTime objects, the HecTime
class must be imported from the hec.heclib.util module (e.g “from
hec.heclib.util import *” or “from hec.heclib.util import HecTime”). After
importing the class, a new HecTime object can be created by calling
HecTime() (e.g. “myTime = HecTime()”).Table 7.11 describes HecTime
methods.

Table 7.11: HecTime Methods

Method Returns Description
add(HecTime increment) None Adds the specified increment to the

object’s date and time.

add(integer increment) None Adds the specified increment in
minutes to the object’s date and
time.

compareTimes(HecTime other) integer Returns one of the following values:

-1 The object’s date and time is
less than the other object’s

0 The objects’ dates and times
are equal

1 The object’s date and time is
greater than the other
object’s

date() string Returns a string representation of

the object’s date. Same as date(2).

date(integer format) string Returns a string representation of
the object’s date, formatted
according to the integer parameter1.

dateAndTime() string Returns a string representation of
the object’s date and time. Same as
dateAndTime(2).

dateAndTime(integer format) string Returns a string representation of
the object’s date and time, formatted
according to the integer parameter1.

day() integer Returns the day portion of the
object’s date as an integer

equalTo(HecTime other) 0/1 Returns Constants.TRUE if the
object’s date and time is equal to
the other object’s date and time.
Returns Contstants.FALSE
otherwise.

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-41

Method Returns Description
greaterThan(HecTime other) 0/1 Returns Contstants.TRUE if the

object’s date and time is greater
(later) than the other object’s date
and time. Returns
Constants.FALSE otherwise.

greaterThanEqualTo(HecTime
other)

0/1 Returns Contstants.TRUE if the
object’s date and time is greater
(later) than or equal to the other
object’s date and time. Returns
Constants.FALSE otherwise.

hour() integer Returns the hours portion of the
object’s time as an integer

isDefined() 0/1 Returns Constants.TRUE if the
object is set to a valid time and
Constants.FALSE if not.

lessThan(HecTime other) 0/1 Returns Contstants.TRUE if the
object’s date and time is less
(earlier) than the other object’s date
and time. Returns
Constants.FALSE otherwise.

lessThanEqualTo(HecTime
other)

0/1 Returns Contstants.TRUE if the
object’s date and time is less
(earlier) than or equal to the other
object’s date and time. Returns
Constants.FALSE otherwise.

minute() integer Returns the minutes portion of the
object’s time as an integer

month() integer Returns the month portion of the
object’s date as an integer

notEqualTo(HecTime other) 0/1 Returns Constants.FALSE if the
object’s date and time is equal to
the other object’s date and time.
Returns Contstants.TRUE
otherwise.

second() integer Returns the seconds portion of the
object’s time as an integer

set(integer time) None Sets the object to the date and time
represented by the integer (minutes
since 31Dec1899 00:00)

set(string dateAndTime) integer Sets the object to the date and time
represented by the string, and
returns zero if successful.

set(string date, string time) integer Sets the object to the date
represented by the date string and
the time represented by the time
string, and returns zero if
successful.

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-42

Method Returns Description
set(HecTime time) None Sets the object to the date and time

represented by the HecTime
parameter.

setDate(string date) integer Sets the object to the date
represented by the string, and
returns zero if successful. The time
portion of the object is not modified.

setTime(string time) integer Sets the object to the time
represented by the string, and
returns zero if successful. The date
portion of the object is not modified.

setUndefined() None Sets the object to represent an
undefined time, as if the object had
just been created.

showTimeAsBeginningOfDay(0/1
showBeginning)

None Specifies whether the object is to
show midnight times as 00:00 (vs
24:00)

subtract(HecTime increment) None Subtracts the specified increment
from the object’s date and time.

subtract(integer increment) None Subtracts the specified increment in
minutes from the object’s date and
time.

time() string Returns a string representation of
the object’s time.

value() integer Returns the object’s date and time
as an the number of minutes since
31Dec1899 0000.

year() integer Returns the year portion of the
object’s date as an integer

1 The format of the string returned by the date(integer format) method and the date
portion of the string returned by the dateAndTime(integer format) method are
displayed in Table 7.12.

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-43

Table 7.12: HecTime Date Formats

0 June 2, 1985 10 June 2, 85 100 JUNE 2, 1985 110 JUNE 2, 85

1 Jun 2, 1985 11 Jun 2, 85 101 JUN 2, 1985 111 JUN 2, 85

2 2 June 1985 12 2 June 85 102 2 JUNE 1985 112 2 JUNE 85

3 June 1985 13 June 85 103 JUNE 1985 113 JUNE 85

4 02Jun1985 14 02Jun85 104 02JUN1985 114 02JUN85

5 2Jun1985 15 2Jun85 105 2JUN1985 115 2JUN85

6 Jun1985 16 Jun85 106 JUN1985 116 JUN85

7 02 Jun 1985 17 02 Jun 85 107 02 JUN 1985 117 02 JUN 85

8 2 Jun 1985 18 2 Jun 85 108 2 JUN 1985 118 2 JUN 85

9 Jun 1985 19 Jun 85 109 JUN 1985 119 JUN 85

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-44

7.10 Plotting Basics
Figure 7.6 identifies the title, viewport, axis label, axis tics, and legend of a
plot, each of which are accessible via scripts.

Figure 7.6 Plot Components

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-45

7.10.1 Plot Class
Plot.newPlot()
Plot.newPlot(string title)

The Plot class in the hec.script module is used to create a new Plot dialog. It
contains two methods to create a Plot dialog, each of which returns a
G2dDialog object.

Example 21: Creating a Plot

myPlot = Plot.newPlot()

or
thePlot = Plot.newPlot(“Elevation vs Flow”)

7.10.2 Changing Plot Component Attributes
Not all Plot Component attributes are visible by default, and setting the
attribute may not make that attribute visible. Often it is necessary to set the
visibility of the attribute by calling setAttributeVisible(Constants.TRUE) method.

Example 22 illustrates reading a flow data set from a DSS file, plotting the
data set, setting the minor Y grid color to black and making it display.

Example 22: Plotting DSS Data

from hec.script import *
from hec.script.Constants import TRUE, FALSE
from hec.hecmath import *

theFile = DSS.open(“myFile.dss”) # open myFile.dss
thePath = “/BASIN/LOC/FLOW/01NOV2002/1HOUR/OBS/"
flowDataSet = theFile.read(thePath) # read a path name
thePlot = Plot.newPlot() # create the plot
thePlot.addData(flowDataSet.getData()) # add the flow data set to

the plot
thePlot.showPlot() # show the plot
viewport0=thePlot.getViewport(0) # get the first viewport
viewport0.setMinorGridYColor(“black”) # set the viewport’s minor Y

grid to black
viewport0.setMinorGridYVisible(TRUE) # tell the minor Y grid to

display

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-46

7.10.3 G2dDialog Class
G2dDialog objects are the dialog that plots display in. Table 7.13 describes
G2dDialog methods.

Table 7.13: G2dDialog Methods

Method Returns Description
addData(DataContainer dc) None Add the DataContainer

specified by dc to the plot.
Must be called before
showPlot(). Do not use
this if a PlotLayout object
is used on this plot.

applyTemplate(string templateFile) None Apply the given template
to this plot

configurePlotLayout() None Display the “Configure Plot
Layout” dialog for this plot

configurePlotLayout(PlotLayout layout) None Configures the plot layout
for this plot according to
the specifed PlotLayout
object. If this method is
used, do not use the
addData() method with the
same plot.

close() None Closes the plot

configurePlotTypes() None Display the configure plot
types dialog

copyToClipboard() None Copy the plot to the
system clipboard

defaultPlotProperties() None Display the default plot
properties dialog

exportProperties() None Allows you to save the
properties of the plot to a
disk.

exportProperties(string templateName) None Allows you to save the
properties of the plot to the
file specified by
templateName.

getCurve(HecMath dataSet) G2dLine Return the G2dLine for the
DataSet specified by
dataSet

getCurve(string dssPath) G2dLine Return the G2dLine for the
path specified in dssPath

getHeight() integer Return the height of the
dialog in screen
coordinates.

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-47

Method Returns Description
getLegendLabel(DataContainer dc) G2dLabel Return the legend label

object for the specified
data container.

getLocation() Point Return the location of the
dialog in screen
coordinates1.

getPlotTitle() G2dTitle Return the title for the
G2dDialog

getPlotTitleText() string Return the text of the title
for the G2dDialog

getSize() Dimension Return the dimensions of
the dialog in screen
coordinates.

getViewport(HecMath dataSet)

Viewport Return the Viewport that
contains the curve
specified by dataSet

getViewport(int viewportIndex) Viewport Return the viewport at
index specified by
viewportIndex

getViewport(string dataSetPath) Viewport Return the Viewport that
contains the curve
specified by dataSetPath

getWidth() Integer Return the width of the
dialog in screen
coordinates.

hide() None Hide the dialog

iconify() None Minimize (iconify) the
dialog

isPlotTitleVisible() 0/1 Return the visibility state of
the title of this plot.

maximize() None Maximize the dialog

minimize() None Minimize (iconify) the
dialog

newPlotLayout() PlotLayout Return a PlotLayout object
that can be used to
configure the layout of this
plot.

plotProperties() None Display the plot properties
dialog for this plot

print() None Display the print dialog for
this plot

printMultiple() None Display the print multiple
dialog for this plot

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-48

Method Returns Description
printPreview() None Display the print preview

dialog for this plot

printToDefault() None Prints using the printer
defaults such as page
format and printer. This
method does not display
the printer dialog for user
interaction.

repaint() None Forces the plot to be
refreshed.

restore() None Restore the dialog from a
minimized or maximized
state

saveAs() None Display the saveAs dialog
for this plot

saveToJpeg(string fileName) None Save the plot to the Jpeg
file specified by fileName

saveToJpeg(string fileName, integer
quality)

None Save the plot to the Jpeg
file specified by filename,
with the specified quality2.

saveToMetafile(string filename) None Save the plot to the
Windows Meta file
specified by filename

saveToPng(string fileName) None Save the plot to the
Portable Network Graphics
file specified by filename

saveToPostscript(string fileName) None Save the plot to the
PostScript file specified by
filename

setLegendBackgound(string color) None Sets the background (fill)
color of the legend.

setLegendLabelText(DataContainer dc,
string text)

None Sets the legend label text
for the specified data
container.

setLegendLocation(string location) None Sets the location of the
legend3.

setLocation(integer x,integer y) None Sets the location of the
dialog in screen
coordinates1.

setPlotTitleText(string text) None Sets the text of the title for
this plot

setPlotTitleVisible(0/1 state) None Sets the visibility of the title
for this plot

setSize(integer width, integer height) None Sets the size of the dialog
in screen coordinates.

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-49

Method Returns Description
setVisible(0/1 visible) None Sets the visibility of the

plot to true or false

showPlot() None Show the dialog

tabulate() TableFrame Display the table view of
this plot

1 The coordinate system used is a graphics coordinate system, where X increases to
the right and Y increases downward from the origin (0,0) which is located in the top
left corner of the display. Locations set or retrieved refer to the top left corner of the
plot in reference to this coordinate system.
2 The specified quality is limited to an effective range of 0 – 100, inclusive. Higher
qualities produce larger files and take longer to generate. The
saveToJpeg(fileName) call currently produces the same results as
saveToJpeg(fileName, 75).
3 Valid legend locations are “Right” and “Bottom”.

Example 23 shows how to create a new plot with a flow data set, show the
plot, and place at location 50,50 on the screen.

Example 23: Plot Dialog

from hec.script import * # for Plot class
from hec.hecmath import * # for DSS class
theFile = DSS.open(“myFile.dss”) # open myFile.dss
thePath = “/BASIN/LOC/FLOW/01NOV2002/1HOUR/OBS/"
flowDataSet = theFile.read(thePath) # read a path name

dc = flowDataSet.getData() # create flow data container
thePlot = Plot.newPlot() # create a new Plot
thePlot.addData(dc) # add flow data container
thePlot.showPlot() # show the plot
thePlot.setLocation(50,50) # moves plot to 50,50

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-50

7.10.4 PlotLayout Class
PlotLayout objects hold information about the layout of the plot dialog. The
use of ViewportLayout objects, in conjuction with PlotLayout objects, allows
scripts to specify the same layout information accessible interactive via the
“Configure Plot Layout” dialog. A PlotLayout object is obtained by calling
Plot.newPlotLayout(). Table 7.14 describes PlotLayout methods.

Table 7.14: PlotLayout Methods

Method Returns Description
addViewport() ViewportLayout Adds a ViewportLayout to

the PlotLayout with a default
weight of 100. Returns a
reference to the new
ViewportLayout.

AddViewport(floating-point
weight)

ViewportLayout Adds a ViewportLayout to
the PlotLayout with the
specified weight. Returns a
reference to the new
ViewportLayout.

hasLegend() 0/1 Returns whether this
PlotLayout is configured to
display the legend.

hasToolbar() 0/1 Returns whether this
PlotLayout is configured to
display the toolbar.

getViewportCount() integer Returns the number of
ViewportLayout objects
currently in the PlotLayout
object.

getViewports() java.util.List of
ViewportLayouts

Returns the ViewportLayout
objects currently in the
PlotLayout object.

getViewportWeights() list of floating-points Returns the weights of the
ViewportLayout objects
currently in the PlotLayout
object.

setHasLegend(0/1 state) None Configures the PlotLayout
object to display the legend
or not, depending upon the
specified state.

setHasToolbar(0/1 state) None Configures the PlotLayout
object to display the toolbar
or not, depending upon the
specified state.

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-51

7.10.5 ViewportLayout Class
ViewportLayout objects hold information about the layout of an individual
viewport withing the plot dialog. The use of ViewportLayout objects, in
conjuction with PlotLayout objects, allows scripts to specify the same layout
information accessible interactive via the “Configure Plot Layout” dialog. A
ViewportLayout object is obtained by calling one of the addViewport methods
of a PlotLayout object. ViewportLayout objects are only used to configure
the plot layout. Manipulation of axis labels, background colors, etc… is
performed using Viewport objects as described in below. Table 7.15
describes ViewportLayout methods.

Table 7.15: ViewportLayout Methods

Method Returns Description
addCurve(string axis,
DataContainer curve)

None Adds the specified curve to
the specified axis of the
ViewportLayout object.

getY1Data() List Returns a java.util.List of all
curves that have been added
to the Y1 axis of this object

getY2Data() List Returns a java.util.List of all
curves that have been added
to the Y2 axis of this object

hasY1Data() 0/1 Returns whether any curves
have been added to the Y1
asix of this object

hasY2Data() 0/1 Returns whether any curves
have been added to the Y2
asix of this object

Example 24 reads precipitation, stage and flow data set from a DSS file, and
configures a plot to display the precipitation on top in a viewport that occupies
30% of the available space and to display the stage and flow on separate axes
of a bottom viewport that occupies the remaining 70% of available space.

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-52

Example 24: PlotLayout and ViewportLayout Objects

from hec.script import * # for Plot class
from hec.hecmath import * # for DSS class
theFile = DSS.open(“myFile.dss”) # open myFile.dss
precipPath = “/BASIN/LOC/FLOW/01NOV2002/1HOUR/OBS/"
stagePath = “/BASIN/LOC/FLOW/01NOV2002/1HOUR/OBS/"
flowPath = “/BASIN/LOC/FLOW/01NOV2002/1HOUR/OBS/"
precipData = theFile.read(precipPath) # read the precip
stageData = theFile.read(stagePath) # read the stage
flowData = theFile.read(flowPath) # read the flow
precipDC = precipData.getData() # extract data container
stageDC = stageData.getData() # extract data container
flowDC = flowData.getData() # extract data container
thePlot = Plot.newPlot() # create a new Plot
layout = Plot.newPlotLayout() # create a new PlotLayout
topView = layout.addViewport(30) # get the top viewport
bottomView = layout.addViewport(70) # get the bottom viewport
topView.addCurve(“Y1”, precipDC) # add the precip to top
bottomView.addCurve(“Y1”, stageDC) # add the stage to bottom
bottomView.addCurve(“Y2”, flowDC) # add the flow to bottom
thePlot.configurePlotLayout(layout) # configure the plot
thePlot.showPlot() # show the plot

7.10.6 Viewport Class
Viewport objects hold the data set curves. Table 7.16 describes Viewport
methods.

Table 7.16: Viewport Methods

Method Returns Description
addAxisMarker(AxisMarker marker) None Adds a marker line

described by the
AxisMarker parameter

addXAxisMarker() None Display the Axis Marker
Properties Dialog for a
marker line to add to the
X axis

addXAxisMarker(floating-point value) None Add an X Axis marker at
the location specified by
value

addXAxisMarker(string value) None Add a X Axis marker at
the location specified by
value

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-53

Method Returns Description
addYAxisMarker() None Display the Axis Marker

Properties Dialog for a
marker line to add to the
Y axis

addYAxisMarker(string value) None Add a Y Axis marker at
the location specified by
value

editProperties() None Display the Edit
Properties dialog for this
Viewport

getAxis(string axisName) Axis return the Axis specified
by axisName for this
Viewport

getAxisLabel(string axisName) AxisLabel Return the AxisLabel for
the axis specified by
axisName for this
Viewport

getAxisTics(string axisName) AxisTics Return the AxisTics for
the axis specified by
axisName for this
Viewport

getBackground() Color Return the background
color for the Viewport as
a Color.

getBackgroundString() string Return the background
color name for the
Viewport as a string.

getBorderColor() Color Return the border color
for the Viewport as a
Color.

getBorderColorString() string Return the background
color name for the
Viewport as a string

getBorderWeight() float Return the border weight
for this Viewport

getFillPatternString() string Return the fill pattern for
this Viewport as a String

getMajorGridXColor() Color Return the color of the
vertical lines of the major
grid for this Viewport as
a Color

getMajorGridXColorString () string Return the color of the
vertical lines of the major
grid for this Viewport as
a string

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-54

Method Returns Description
getMajorGridXWidth () floating

point
Return the width of the
vertical lines of the major
grid for this Viewport

getMajorGridYColor () Color Return the color of the
horizontal lines of the
major grid of this
Viiewport as a Color

getMajorGridYColorString () string Return the color of the
horizontal lines of the
major grid for this
Viewport as a string

getMajorGridYWidth () floating
point

Return the width of the
vertical lines of the major
grid for this Viewport

getMinorGridXColor() Color Return the color of the
vertical lines of the minor
grid for this Viewport as
a color

getMinorGridXColorString() string Return the color of the
vertical lines of the minor
grid for this Viewport as
a string

getMinorGridXWidth() floating
point

Return the width of the
vertical lines of the minor
grid for this Viewport

getMinorGridYColor() Color Return the color of the
horizontal lines of the
minor grid for this
Viewport as a Color.

getMinorGridYColorString() string Return the color of the
horizontal lines of the
minor grid for this
Viewport as a string

getMinorGridYWidth() floating
point

Return the width of the
vertical lines of the minor
grid for this Viewport

isBackgroundVisible() 0/1 Return whether the
background is drawn for
this Viewport

isBorderVisible() 0/1 Return whether the
border is drawn for this
Viewport

isMajorGridXVisible() 0/1 Return whether the
vertical lines of the major
grid are drawn for this
Viewport

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-55

Method Returns Description
isMajorGridYVisible () 0/1 Return whether the

horizontal lines of the
major grid are drawn for
this Viewport

isMinorGridXVisible() 0/1 Return whether the
vertical lines of the minor
grid are drawn for this
Viewport

isMinorGridYVisible () 0/1 Return whether the
horizontal lines of the
minor grid are drawn for
this Viewport

setBackground(string colorString) None Set the background to
the color specified by
colorString

setBorderColor(string borderColor) None Set the border color for
this Viewport

setBorderWeight(floating-
point borderWeight)

None Set the border weight for
this Viewport

setBackgroundVisible(0/1 state) None Set whether to draw the
background for this
Viewport

setBorderVisible(0/1 state) None Set whether to draw the
border for this Viewport

setFillPattern(string pattern) None Set the fill pattern for this
Viewport

setGridColor(string colorString) None Set the color of the
horizontal and vertical
lines of the major and
minor grids for this
Viewport.

setGridXColor(string colorString) None Set the color of the
vertical lines of the major
and minor grids for this
Viewport.

setGridYColor(string colorString) None Set the color of the
horizontal lines of the
major and minor grids for
this Viewport.

setMajorGridXColor(string majorGridXColor) None Set the color of the
vertical lines of the major
grid for this Viewport.

setMajorGridXVisible(0/1 state) None Set whether to draw the
vertical lines of the major
grid for this Viewport

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-56

Method Returns Description
setMajorGridXWidth(floating-
point gridLineWidth)

None Set the width of the
vertical lines of the major
grid for this Viewport

setMajorGridYColor(string majorGridYColor) None Set the color of the
horizontal lines of the
major grid for this
Viewport.

setMajorGridYVisible(0/1 state) None Set whether to draw the
horizontal lines of the
major grid for this
Viewport

setMajorGridYWidth(floating-
point gridLineWidth)

None Set the width of the
horizontal lines of the
major grid for this
Viewport

setMinorGridXColor(string minorGridXColor) None Set the color of the
vertical lines of the minor
grid for this Viewport.

setMinorGridXVisible(0/1 state) None Set whether to draw the
vertical lines of the minor
grid for this Viewport

setMinorGridXWidth(floating-
point gridLineWidth)

None Set the width of the
vertical lines of the minor
grid for this Viewport

setMinorGridYColor(string minorGridYColor) None Set the color of the
horizontal lines of the
minor grid for this
Viewport.

setMinorGridYVisible(0/1 state) None Set whether to draw the
horizontal lines of the
minor grid for this
Viewport

setMinorYGridWidth(floating-
point gridLineWidth)

None Set the width of the
horizontal lines of the
minor grid for this
Viewport

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-57

7.10.7 AxisMarker Class
AxisMarker objects hold complete descriptions of marker lines to be added to
viewports. AxisMarker objects have fields that are settable by the user to
create marker lines of various styles. New AxisMarker objects are created by
calls to AxisMarker() (e.g. myMarker = AxisMarker()).

Table 7.17 describes AxisMarker fields.

Table 7.17 – AxisMarker Fields

Field Type Description Default
axis string “X” or “Y” “Y”

fillColor string Color of the filled area “black”

fillPattern string Pattern of the filled area “solid”

fillStyle string Specifies whether the filled area is to be
above or below the marker line, or to
not fill at all

“none”

labelAlignment string Specifies whether the label text is to
appear left justified, right justified or
centered

“left”

labelColor string Color of the label text “black”

labelFont string The font to use for the label1. None

labelPosition string Specifies whether the label text is to
appear above, below, or in the center of
the marker line

“above”

labelText string Text to appear with marker line “”

lineColor string Color of the marker line “black”

lineStyle string Style of the marker line “solid”

lineWidth floating point Width of the marker line 1.0

value string Location of marker on axis (e.g. “712.5”
or “23Aug2003 1015”)

“0”

1 Fonts are specified as name[,style[,size]] where style is Plain, Bold, Italic, or
BoldItalic (e.g. “Arial,BoldItalic,12”, “Lucida Console,Plain,10”).

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-58

Example 25 reads a data set from a DSS file, plots that data set, sets the
Viewport’s background to light gray and adds a marker line on the Y axis.

Example 25: Viewport Class

from hec.script import * # for Plot class
from hec.script.Constants import TRUE, FALSE
from hec.hecmath import * # for DSS class
theFile = DSS.open(“myFile.dss”) # open myFile.dss
thePath = “/BASIN/LOC/FLOW/01NOV2002/1HOUR/OBS/"
flowDataSet = theFile.read(thePath) # read a path name
thePlot = Plot.newPlot() # create a new Plot
thePlot.addData(flowDataSet.getData()) # add the flow data
viewport0=thePlot.getViewport(0) # get the first Viewport
viewport0.setBackground(“lightgray”) # set the Viewport’s
 # background to lightgray
viewport0.setBackgroundVisible(TRUE) # tell the Viewport to draw
 # its background
marker = AxisMarker() # create a new marker
marker.axis = “Y” # set the axis
marker.value = “20000” # set the value
marker.labelText = “Damaging Flow” # set the text
marker.labelColor = “red” # set the text color
marker.lineColor = “red” # set the line color
marker.fillColor = “red” # set the fill color
marker.fillType = “above” # set the fill type
maker.fillPattern = “diagonal cross” # set the fill pattern
viewport0.addAxisMarker(marker) # add the marker to the
 # viewport

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-59

7.10.8 Axis Class
Table 7.18 describes Axis methods.

Table 7.18 - Axis Methods

Method Returns Description
getLabel() string Return the Axis label

getMajorTic() floating-
point

Return the major tic interval
for this Axis

getMinorTic() floating-
point

Return the minor tic interval
for this Axis

getNumTicLabelLevels() integer Return the number of tic
label levels for this Axis

getScaledLabel() String Return the label with
scientific notation

getScaleMax() floating-
point

Return the maximum value
for this Axis

getScaleMin() floating-
point

Return the minimum value
for this Axis

getTicColor() Color Return the tic color

getTicColorString() String Return the Tic color as a
String

getTicTextColor() Color Return the tic text color

getTicTextColorString() String Return the tic text color as a
String

getViewMax() floating-
point

Return the maximum value
for the (possibly) zoomed
view for this Axis

getViewMin() floating-
point

Return the minimum value
for the (possibly) zoomed
view for this Axis

isComputingMajorTics() 0/1 Return if major tics are to be
computed

isComputingMinorTics() 0/1 Return if minor tics are to be
computed

isReversed() 0/1 Returns whether the Axis is
reversed1.

setComputeMajorTics(0/1 state) None Set whether to compute
major tics

setComputeMinorTics(0/1 state) None Set whether to compute
minor tics

setLabel(string label) None Set the label of this Axis

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-60

Method Returns Description
setMajorTicInterval(floating-point interval) None Set the major tic interval for

this Axis to interval

setMinorTicInterval(floating-point interval) None Set the minor tic interval for
this Axis to interval

setNumTicLabelLevels(integer layers) None Set the maximum number of
tic label layers to specified
number. -1 is unrestricted.
Used mostly for time series
axis.

setReversed(0/1 state) None Set the reversed state of
the Axis1..

setScaleLimits(floating-point min, floating-
point max)

None Sets the minimum and
maximum values for the axis
(range of un-zoomed view)

setTicColor(String colorString) None Set the tic color to the color
represented by colorString

setTicTextColor(String colorString) None Set the tic text color to the
color represented by
colorString

setViewLimits(floating-point min, floating-
point max)

None Zooms based on world
coordinates

unZoom() None Returns the view to the full
axis range.

zoomByFactor(floating-point factor) None Change the zoom scaling by
the given factor

1 The coordinate system used is a graphics coordinate system with the origin (0,0)
located at the top left corner of the display, with X increasing to the right and Y
increasing downward. The reversed state is in respect to this coordinate system (i.e.
Y is reversed if it increases upward).

Example 26 reads a data set from a DSS file, adds that data set to a new Plot,
and zooms in on the Y Axis.

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-61

Example 26: Using Axis Objects

from hec.script import * # for Plot class
from hec.hecmath import * # for DSS class
thePlot = Plot.newPlot() # create a Plot
dssFile = DSS.open(“J:/apps/forecast.dss”) # open the DSS file
flow = dssFile.read(“/BASIN/LOC/FLOW/01NOV2002/1HOUR/OBS/”)
 # read a data set
thePlot.addData(flow.getData() # add the data set
thePlot.showPlot() # show the plot
viewport0 = thePlot.getViewport(0) # get the first Viewport
yaxis = viewport0.getAxis(“Y1”) # get the Y1 axis
yaxis.setScaleLimits(0., 25000.) # set the scale
yaxis.zoomByFactor(.”5”) # zoom in

7.10.9 AxisTics Class
Table 7.19 describes AxisTics methods.

 Table 7.19 – AxisTics Methods

Method Returns Description
areMajorTicLabelsVisible() 0/1 Return whether the major tic

labels are visible.

areMajorTicsVisible() 0/1 Return whether the major tics
are visible

areMinorTicLabelsVisible() 0/1 Return whether the minor tic
labels are visible

areMinorTicsVisible() 0/1 Return whether the minor tics
are visible

computeRatingFromOppositeAxis() None When used on the right (Y2)
AxisTics object, with related
curves on the Y1 and Y2
axes (e.g. stage and flow, or
elevation and storage),
causes the AxisTics to
behave in a non-linear
fashion such that Y1 and Y2
curves are coincident.

editProperties() None Display the Edit Properties
Dialog for the AxisTics

getAxis() Axis Returns a reference to the
axis that this object draws

getAxisTicColor() Color Return the tic color

getAxisTicColorString() String Return the tic color as a
String

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-62

Method Returns Description
getFontSizes() tuple of 3

integers
Return the regular, tiny, min
and max font sizes for this
AxisTics

getMajorTicLength() Integer Return the major tic length

getMinorTicLength() integer Return the minor tic length

setAxisTicColor(string colorString) None Set the tic color to the color
represented by colorString

setFontSizes(integer sz,integer tiny,
integer min, integer max)

None Set the regular, tiny, min and
max font sizes for this
AxisTics

setMajorTicLabelsVisible(0/1 state) None Set the visibility of the major
tic labels

setMajorTicLength(int ticLength) None Set the major tic length

setMajorTicsVisible(0/1 state) None Set the visibility of the major
tics

setMinorTicLabelsVisible(0/1 state) None Set the visibility of the minor
tic labels.

setMinorTicLength(int ticLength) None Set the minor tic length

setMinorTicsVisible(0/1 state) None Set the visibility of the minor
tics

Example 27 creates a new Plot with a data set read from DSS and tells the
data set’s axis tics to draw its minor tic marks.

Example 27: Using AxisTics Objects
from hec.script import * # for Plot class
from hec.script.Constants import TRUE, FALSE

from hec.hecmath import * # for DSS class
thePlot = Plot.newPlot() # create the Plot
dssFile = DSS.open("J:/apps/forecast.dss") # open the DSS file
flow = dssFile.read("/BASIN/LOC/FLOW/01NOV2002/1HOUR/OBS/")
 # read the data set
thePlot.addData(flow.getData()) # add the data set
thePlot.showPlot() # show the plot
viewport0 = thePlot.getViewport(flow) # get the viewport for the

#flow data set
yAxisTics = viewport0.getAxisTics("Y1") # get the axis tics for the

#Viewport
yAxisTics.setMinorTicsVisible(TRUE) # tell axis tics to show tics

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-63

7.10.10 G2dLine Class
Table 7.20 describes G2dLine methods

Table 7.20 - G2dLine Methods

Method Returns Description
areSymbolsAutoInterval() 0/1 Return whether the symbols

for this line are placed at
program-decided intervals

areSymbolsVisible() 0/1 Return whether this line draws
its symbols

editLineProperties() None Method that allows the editing
of line properties. This method
displays a visible dialog for line
editing.

getFillColor() Color Return the fill color for this line

getFillColorString() string Return the fill color for this line
as a String

getFillPatternString() string Return the fill pattern for this
line as a String

getFillTypeString() string Return the Fill type for this line
as a String.

getFirstSymbolOffset() integer Return the offset for the first
symbolfor this line

getLineColor() Color Return the line color for this
line

getLineColorString() string Return the line color for this
line as a String

getLineStepStyleString() string Return the line step style for
this line as a String

getLineStyleString() string Return the line style for this
line as a string

getLineWidth() floating-point Return the Line Width of the
line

getNumPoints() integer Returns the Number of Points
that this line has

getSymbolFillColor() Color Return the symbol fill color for
this line’s symbols

getSymbolFillColorString() string Return the symbol fill color for
this line’s symbols as a String

getSymbolInterval() integer Return the interval of data
points (>0) on which symbols
are drawn.

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-64

Method Returns Description
getSymbolLineColor() Color Return the symbol line color for

this line’s symbols

getSymbolLineColorString() string Return the symbol line color for
this line’s symbols as a String

getSymbolSize() floating-point Return the symbol size for this
line

getSymbolSkipCountl() integer Return the number of points
skipped between symbols
(same as getSymbolInterval()
– 1)

getSymbolTypeString() string Return the symbol type for this
line as a string

isLineVisible() 0/1 Return this line is drawn

setFillColor(string fillColor) None Set the fill color for this line

setFillPattern(string fillPattern) None Set the fill pattern for this line

setFillType(string fillType) None Set the Fill type for this line

setFirstSymbolOffset(integer offset) None Set the offset for first symbol
for this line

setLineColor(string lineColor) None Set the line color for this line

setLineStepStyle(string stepStyle) None Set the line step style for this
line

setLineStyle(string style) None Set the line style for this line

setLineVisible(0/1 state) None Set whether to draw this line

setLineWidth(floating-point width) None Set the width for this line

setSymbolFillColor(string
symbolFillColor)

None Set the symbol fill color for this
line’s symbols

setSymbolInterval(integer interval) None Set the interval of data points
(>0) on which symbols are
drawn.

setSymbolLineColor(string
symbolLineColor)

None Set the symbol line color for
this line’s symbols

setSymbolsAutoInterval(0/1 state) None Set whether to have the
program decide the interval at
which to draw symbols

setSymbolSize(floating-point size) None Set the symbol size for this line

setSymbolSkipCount(integer count) None Set the number of points
skipped between symbols.

setSymbolsVisible(0/1 state) None Set whether to draw the
symbols for this line

setSymbolType(string symbolType) None Set the symbol type for this
line

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-65

Example 28 creates a plot with a data set read from DSS, then tells that data
set’s curve to draw its symbols auto skipped.

Example 28: Using G2dLine Objects
from hec.script import * # for Plot class
from hec.hecmath import * # for DSS class
from hec.script.Constants import TRUE, FALSE

thePlot = Plot.newPlot() # create the Plot
file = "j:/apps/forecast.dss";
dssfile = DSS.open(file) # open the file
stage = dssfile.read("/BASIN/LOC/STAGE/01NOV2002/1HOUR/OBS/");
 # read the data set
thePlot.addData(stage.getData()) # add the data set to the

plot

thePlot.showPlot() # show the plot
stageCurve = thePlot.getCurve(stage) # get the stage curve
stageCurve.setSymbolsAutoInterval(TRUE) # turn on symbols auto skip

7.10.11 G2dLabel, G2dTitle, and AxisLabel Classes
Table 7.21 describes G2dLabel, G2dTitle and AxisLabel methods.

Table 7.21 - Label Methods

Method Returns Description
editProperties() None Display the Edit Properties Dialog for

the label

getAlignmentString() string Return the text alignment for this
label as a String

getBackground() Color Return the background color for the
label1

getBackgroundString() string Return the background color for the
label as a String1

getBorderStyleString() string Return the border style for this label
as a string

getBorderWeight() floating-
point

Return the border weight for this
label

getFillColor() Color Return the fill color for this label as a
Color1

getFillColorString() string Return the fill color for this label as a
string1

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-66

Method Returns Description
getFillPatternString() string Return the fill pattern for this label as

a string1

getFontFamily() string Return the font family for the label

getFontSize() integer Return the font size for the label

getFontSizes() tuple of 3
integers

Return the regular, tiny, min and max
font sizes for this label

getFontString() string Return the font for the label as a
string2.

getFontStyleString() string Return the font style for the label as
a String

getForeground() Color Return the foreground color for the
label

getForegroundString() string Return the foreground color for the
label as a String

getIcon() Icon Return the Icon to display for this
label

getIconPath() string Return the Icon path to display for
this label

getRotation() integer Return the text rotation for this label

getSpacing() integer Return the spacing around this label

getText() string Return the text for the label

isBackgroundVisible() 0/1 Return whether the background is
visible

isBorderVisible() 0/1 Return whether the border is visible

setAlignment(string alignment) None Set the text alignment for this label

setBackground(string
colorString)

None Set the background color for the
label1

setBackgroundVisible(0/1
state)

None Set the background visibility for the
label

setBorderColor(string
colorString)

None Set the border color for this label

setBorderStyle(string style) None Set the border style for this label

setBorderVisible(0/1 state) None Set the border visibility for this label

setBorderWeight(floating-
point weight)

None Set the border weight for this label

setFillColor(string color) None Set the fill color for this label1

setFillPattern(string pattern) None Set the fill pattern for this label1

setFont(string font) None Set the font for the label2.

setFontFamily(string fam) None Set the font family for the label

setFontSize(integer sz) None Set the font size for the label

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-67

Method Returns Description
setFontSizes(integer sz,
integer tiny, integer min,
integer max)

None Set the regular, tiny, min and max
font sizes for this label

setFontStyle(string style) None Set the font style for the label

setForeground(string
colorString)

None Set the foreground color for the label

SetIcon(Icon icon) None Set the Icon to display for this label

SetIcon(string iconPath) None Set the Icon to display for this label

setRotation(integer rotation) None Set the text rotation for this label

setSpacing(integer space) None Set the spacing around this label

SetText(string text) None Set the text for the label

1 In the current version, fill color and background color are synonymous (e.g. fills are
performed with the background color). Future version may support separate fill and
background colors.

2 Fonts are specified as name[,style[,size]] where style is Plain, Bold, Italic, or
BoldItalic (e.g. “Arial,BoldItalic,12”, “Lucida Console,Plain,10”).

Example 29 creates a plot from a DSS data set and sets the Y1 axis label text
to blue.

Example 29: Using AxisLabel Objects
from hec.script import * # for Plot class
from hec.hecmath import * # for DSS class
thePlot = Plot.newPlot() # create the plot
dssFile = DSS.open("J:/apps/forecast.dss") # open the DSS file
flow = dssFile.read("/BASIN/LOC/FLOW/01NOV2002/1HOUR/OBS/")
 # read the data set
thePlot.addData(flow.getData()) # add the data set to the

plot
thePlot.showPlot() # show the plot
viewport0 = thePlot.getViewport(0) # get the first viewport
yaxislabel = viewport0.getAxisLabel("Y1") # get the Y1 axis label
yaxislabel.setForeground(“blue”) # set the Y1 axis label text

to blue

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-68

7.10.12 Templates

Template files saved interactively from HEC-DSSVue may be applied to plots
via scripting. When saving a template interactively from the plot window via
the “Save Template…” entry on the “File” menu, HEC-DSSVue:

1. Chooses the “My Documents” subdirectory of the directory specified in
the USERPROFILE environment variable as the default location for the
template file.

2. Appends “.template” to the end of the specified file name.

The applyTemplate(string filename) G2dDialog method requires the actual
file name for the template file. To apply a template saved in the default
directory, the complete template file name must be re-created as demonstrated
in Example 30.

Example 30: Applying Template Saved in Default Directory

import os # for getenv() & sep
from hec.script import * # for Plot class
from hec.hecmath import * # for DSS class
thePlot = Plot.newPlot() # create a new Plot
dssfile = DSS.open(“C:/mydb.dss”) # open the DSS file
stage = dssfile.read("//AXEMA/STAGE/01OCT2001/1HOUR/OBS/");
 # read the data set
thePlot.addData(stage.getData()) # add the data set
thePlot.showPlot() # show the plot
templateName = “myTemplate” # template base name
templateFileName = \ # re-create the file name
 os.getenv(“userprofile”) \
 + os.sep \
 + “My Documents” \
 + os.sep \
 + templateName \
 + “.template”
thePlot.applyTemplate(templateFileName) # apply the template

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-69

7.11 Plot Component Properties
The following tables are the valid values to be used when calling plot related
functions that take a color (setBackground(string color), etc…), an alignment
(setAlignment()), a rotation (setRotation()), a fill pattern (setFillPattern()), a
fill type (setFillType()), a line style (setLineStyle()), a step style
(setLineStepStyle()).or a symbol type (setSymbolType()).

7.11.1 Colors
Colors can be specified either by a String or by a java.awt.Color object. If
setting a color through the use of a String object the String can either be a
standard color name (i.e. “darkred”) or an RGB string (i.e. “255,20,20”).
Table 7.22 lists standard color names.

Table 7.22 Standard Colors
black
blue
cyan
darkblue
darkcyan
darkgray
darkgreen

darkmagenta
darkorange
darkpink
darkpurple
darkred
darkyellow
gray

green
lightblue
lightcyan
lightgray
lightgreen
lightmagenta

lightorange
lightpink
lightpurple
lightred
lightyellow
magenta

orange
pink
purple
red
white
yellow

7.11.2 Alignment
Table 7.23 lists supported text alignments.

Table 7.23 Alignment
Left Center Right

7.11.3 Positions
Table 7.24 lists supported text positions.

Table 7.24 Positions
Above Center Below

7.11.4 Rotation
Table 7.25 lists supported text rotation values.

Table 7.25 Rotations
0 90 180 270

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-70

7.11.5 Fill Patterns
Table 7.26 lists supported fill patterns.

Table 7.26 Fill Patterns

Solid Horizontal Vertical
Cross FDiagonal BDiagonal
Diagonal Cross None

7.11.6 Fill Types
Table 7.27 lists supported fill types.

Table 7.27 Fill Types

None Above Below

7.11.7 Line Styles
Table 7.28 lists supported line style values.

Table 7.28 Line Styles

Solid Dash Dot
Dash Dot Dash Dot-Dot

7.11.8 Step Style
Table 7.29 lists supported step style values.

Table 7.29 Step Styles

Normal Step cubic

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-71

7.11.9 Symbol Types
Table 7.30 lists supported symbol type values.

Table 7.30 Symbol Types

Asterisk Backslash Backslash Square

Circle Diamond Forwardshlash

Forwardslash Square Hash Hash Diamond

Hash Square Hash Triangle Hash Triangle2

Hourglass Open Circle Open Diamond

Open Hourglass Open Square Open Triangle

Open Triangle2 Pipe Pipe Diamond

Pipe Square Plus Plus Circle

Plus Diamond Plus Square Square

Triangle Triangle2 X

X Circle X Square X Triangle

X Triangle2

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-72

7.12 Tables
Tables allow you to view data in a vertical scrolling window that shows the
ordinates, the dates and times and the values for the selected data sets.

7.12.1 Tabulate Class
Tabulate.newTable()
Tabulate.newTable(string title)

The Tabulate class in the hec.script module is used to create a new Table
dialog. It contains two functions to create a Table dialog, each of which
returns as a TableFrame object.

Example 31 illustrates creation of a table.

Example 31: Creating a Table
from hec.script import *
myTable = Tabulate.newTable()

or
from hec.script import *
myTable = Tabulate.newTable(“Elevation vs Flow”)

7.12.2 TableFrame Class
Table 7.31 describes TableFrame methods.

Table 7.31 - TableFrame Methods

Method Returns Description
addData(DataContainer dc) integer Adds Data Set to the table.

export() None Brings up the Table Export
Options dialog.

export(string fileName,
TableExportOptions options)

None Exports table to specified file
with specified options

exportAsHTML(string fileName) None Exports table in HTML format
to specified file with no title and
elements indented with tabs

exportAsHTML(string fileName,
string title, string indent)

None Exports table in HTML format
to specified file with specified
title and indentation string

exportAsXML(string fileName) None Exports table in XML format to
specified file with no title and
elements indented with tabs

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-73

Method Returns Description
exportAsXML(string fileName, string
title, string indent)

None Exports table in XML format to
specified file with specified title
and indentation string

getCellBackground(integer row,
integer column)

Color Returns the background color
of the specified cell as a Color

getCellBackgroundString(integer
row, integer column)

string Returns the background color
of the specified cell as a string

getCellForeground(integer row,
integer column)

Color Returns the foreground color of
the specified cell as a Color

getCellForegroundString(integer row,
integer column)

string Returns the foreground color of
the specified cell as a string

getColumn(DataContainer dc) integer Returns the number of the
column that contains the
specified data, if the parameter
is time series data, or the
number of the column that
contains the x-ordinates if the
parameter is paired data

getColumn(string header) integer Returns the number of the
column that has the specified
header text. Line breaks in the
header text are specified as
“\n”

getColumnBackground(integer
column)

Color Returns the background color
of the specified column as a
Color

getColumnBackgroundString(integer
column)

string Returns the background color
of the specified column as a
string

getColumnForeground(integer
column)

Color Returns the foreground color of
the specified column as a
Color

getColumnForegroundString(integer
column)

string Returns the boreground color
of the specified column as a
string

getColumnHeaderBackgroung(
integer column)

Color Returns the background color
of the header of the specified
column as a Color

getColumnHeaderBackgroungString(
integer column)

string Returns the background color
of the header of the specified
column as a string

getColumnHeaderFontString(integer
column)

string Returns the font of the header
of the specified column as a
string1.

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-74

Method Returns Description
getColumnHeaderForegroung(
integer column)

Color Returns the foreground color of
the header of the specified
column as a Color

getColumnHeaderForegroungString(
integer column)

string Returns the foreground color of
the header of the specified
column as a string

getColumnLabel(integer colNum) string Returns the column header
text for the specified column

getColumnLabels() list of
strings

Returns the column header
text for all columns

getColumnWidth(integer colNum) integer Returns the width of the
specified column in pixels

getColumnWidths() list of
integers

Returns a list of all the column
widths in pixels

getCommasState() 0/1 Get whether the commas are
shown

getDateTimeAsTwoColumnsState() 0/1 Get whether date/time columns
are shown as 1 or 2 columns in
the table

getExportString(TableExportOptions
options)

string Returns a string representation
of the table exported according
to the specified options

getHeight() integer Return the height of the table
in screen coordinates.

getHTMLExportString() string Returns a string representation
of the table exported in HTML
format with no title and
elements indented with tabs

getHTMLExportString(string title,
string indent)

string Returns a string representation
of the table exported in HTML
format with the specified title
and indentation string

getLocation() Point Returns the location of the
table in screen coordinates2.

getRowBackground(integer row) Color Returns the background color
of the specified row as a Color

getRowBackgroundString(integer
row)

string Returns the row background
color of the specified column
as a string

getRowForeground(integer row) Color Returns the foreground color of
the specified row as a Color

getRowForegroundString(integer
row)

string Returns the row foreground
color of the specified column
as a string

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-75

Method Returns Description
getSize() Dimension Return the dimensions of the

table in screen coordinates.

getTableTitle() G2dTitle Returns the title of the
TableFrame object as a
G2dTitle object.

getTableTitleText() string Returns the title of the
TableFrame object as a string.

getWidth() integer Return the width of the table in
screen coordinates.

GetXMLExportString() string Returns a string representation
of the table exported in XML
format with no title and
elements indented with tabs

getXMLExportString(string title,
string indent)

string Returns a string representation
of the table exported in XML
format with the specified title
and indentation string

hide() None Hide the table

iconify() None Minimize (iconify) the table

maximize() None Maximize the table

minimize() None Minimize (iconify) the table

print() None Display the print table

restore() None Restore the table from a
minimized or maximized state

setCellBackgound(integer row,
integer column, string color)

None Sets the background color of
the specified cell to the
specified color

setCellForeground(integer row,
integer column, string color)

None Sets the foreground color of
the specified cell to the
specified color

setColumnBackgound(integer
column, string color)

None Sets the background color of
the specified column to the
specified color

setColumnForeground(integer
column, string color)

None Sets the foreground color of
the specified column to the
specified color

setColumnHeaderBackgound(integer
column, string color)

None Sets the background color of
the header of the specified
column to the specified color

setColumnHeaderFont(integer
column, string font)

None Sets the font of the header of
the specified column to the
specified font1.

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-76

Method Returns Description
setColumnHeaderForeground(
integer column, string color)

None Sets the foreground color of
the header of the specified
column to the specified color

setColumnLabel(integer column,
string label)

None Sets the column header text of
the specified column to the
specified label

setColumnLabels(list labels) None Sets the column header text of
all columns to the labels
specified in the list of strings

setColumnPrecision(integer colNum,
integer precision)

None Sets the number of decimal
places to display for the
specified column

setColumnWidth(integer colNum,
integer width)

None Sets the width of the specified
column in pixels

setColumnWidths(list widths) None Sets the width in pixels of all
the columns to those specified
in the parameter (list of
integers)

setCommasState(0/1 showCommas) None Set state to show commas or
not

setDateTimeAsTwoColumnsState(
integer showDateTimeAs2Columns)

None Set whether date/time columns
should show as 1 or 2 columns
in the table

setLocation(integer x, integer y) None Sets the location of the table in
screen coordinates2.

setSize(int width, int height) None Sets the size of the table in
screen coordinates.

setRowBackgound(integer row,
string color)

None Sets the background color of
the specified row to the
specified color

setRowForeground(integer row,
string color)

None Sets the foreground color of
the specified row to the
specified color

setTableTitleText(string title) None Sets the title of the
TableFrame object.

showTable() None Show the table

1Fonts are specified as name[,style[,size]] where style is Plain, Bold, Italic, or
BoldItalic (e.g. “Arial,BoldItalic,12”, “Lucida Console,Plain,10”).
2The coordinate system used is a graphics coordinate system, where X increases to
the right and Y increases downward from the origin (0,0) which is located in the top
left corner of the display. Locations set or retrieved refer to the top left corner of the
plot in reference to this coordinate system.

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-77

7.13 TableExportOptions Class
TableExportOptions objects hold complete descriptions of options for
exporting tables to fixed-column-width or column-delimited text files.
TableExportOptions objects have fields that are settable by the user to create
marker lines of various styles. New TableExportOptions objects are created
by calls to TableExportOptions() (e.g. myOptions = TableExportOptions()).
Table 7.32 describes TableExportOptions fields.

Table 7.32 – TableExportOptions Fields

Field Type Description Default
delimiter string (one

character)
Placed between fields if
fixedWidthCol is
Constants.FALSE

‘\t’ (tabcharacter)

quotedStrings 0/1 Specifies whether to enclose text
in quotes

Constants.FALSE

title string Title of the table None

fixedWidthCols 0/1 Specifies whether fields are
exported as fixed-width columns
or fields separated by delimiter

Constants.FALSE

columnHeader 0/1 Specifies whether the column
headers are to be exported

Constants.TRUE

rowHeader 0/1 Specifies whether the row
headers are to be exported

Constants.FALSE

gridLines 0/1 Specifies whether the table will
be exported with text “lines”
between the rows and columns

Constants.FALSE

Example 32 creates a table from two DSS data sets and exports the table as a
comma-separated-value text file.

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-78

Example 32: Filling, Displaying and Exporting a Table
from hec.hecmath import * # for DSS
from hec.script import * # for Tabulate
file = "j:/apps/forecast.dss" # specify the DSS file
dssfile = DSS.open(file) # open the file
read 2 paths
stage = dssfile.read("//AXEMA/STAGE/01OCT2001/1HOUR/OBS/")
flow = dssfile.read("//AXEMA/FLOW/01OCT2001/1HOUR/OBS/")
theTable = Tabulate.newTable() # create the table
theTable.setTitle("Test Table") # set the table title
theTable.setLocation(5000,5000) # set the location of the table off
 the screen
flowDC = flow.getData() # extract data containers
stageDC = stage.getData()
theTable.addData(flowDC) # add the data
theTable.addData(stageDC)
theTable.showTable() # show the table
flowCol = theTable.getColumn(flowDC) # adjust columns
stageCol = theTable.getColumn(stageDC)
flowWidth = theTable.getColumnWidth(flowDC)
stageWidth = theTable.getColumnWidth(stageDC)
theTable.setColumnPrecision(flowCol, 0)
theTable.setColumnPrecision(stageCol, 2)
theTable.setColumnWidth(flowCol, flowWidth - 10)
theTable.setColumnWidth(stageCol, stageWidth + 10)
opts = TableExportOptions() # get new export options
opts.delimiter = “,” # delimit with commas
opts.title = “My Table” # set the title
fileName = “c:/table.txt” # set the output file name
theTable.export(fileName, opts) # export to the file
theTable.close() # close

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-79

7.14 Deprecated Items
Deprecated items are items whose use is discouraged. Deprecated items are
currently supported, but may not be in a future version of the software. As
such, they should be removed and replaced with the recommended items at
the earliest convenience.

Table 7. 33 lists currently deprecated items.

Table 7. 33– Deprecated Items

Item Comment
addDisplayObject(DisplayObject)
G2dDialog method

Replaced with
addData(DataContainer) G2dDialog
method

addDisplayObject(DisplayObject)
TableFrame method

Replaced with
addData(DataContainer) TableFrame
method

areMajorTicLabelsDrawn() AxisTics
method

Replaced with
areMajorTicLabelsVisible() AxisTics
method

areMajorTicsDrawn() AxisTics method Replaced with areMajorTicsVisible()
AxisTics method

areMinorTicLabelsDrawn() AxisTics
method

Replaced with
areMinorTicLabelsVisible() AxisTics
method

areMinorTicsDrawn() AxisTics method Replaced with areMinorTicsVisible()
AxisTics method

areSymbolsDrawn() G2dLine method Replaced with areSymbolsVisible()
G2dLine method

createDisplayObject(HecMath) function Replaced with getData() HecMath
method

DisplayUtilities import module No longer needed

getActMax() Axis method Replaced with getViewMax() Axis
method

getActMin() Axis method Replaced with getViewMin() Axis
method

getAutoSkipSymbols() G2dLine method Replaced with
areSymbolsAutoInterval() G2dLine
method

getGridColorX() Viewport method Replaced with getMajorGridXColor()
Viewport method

getGridColorY() Viewport method Replaced with getMajorGridYColor()
Viewport method

getGridXColorString() Viewport method Replaced with
getMajorGridXColorString() Viewport
method

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-80

Item Comment
getGridYColorString() Viewport method Replaced with

getMajorGridYColorString() Viewport
method

getMajorXGridWidth() Viewport method Replaced with getMajorGridXWidth()
Viewport method

getMajorYGridWidth() Viewport method Replaced with getMajorGridYWidth()
Viewport method

getMax() Axis method Replaced with getScaleMax() Axis
method

getMin() Axis method Replaced with getScaleMin() Axis
method

getMinorXGridWidth() Viewport method Replaced with getMinorGridXWidth()
Viewport method

getMinorYGridWidth() Viewport method Replaced with getMinorGridYWidth()
Viewport method

getReversed() Axis method Replaced with isReversed() Axis
method

getSymbolOffset() G2dLine method Replaced with getFirstSymbolOffset()
G2dLine method

getSymbolSkipInterval() G2dLine
method

Replaced with getSymbolInterval()
and getSymbolSkipCount() G2dLine
methods

isBackgroundDrawn() G2dLabel method Replaced with isBackgroundVisible()
G2dLabel method

isBackgroundDrawn() Viewport method Replaced with isBackgroundVisible()
Viewport method

isBorderDrawn() G2dLabel method Replaced with isBorderVisible()
G2dLabel method

isBorderDrawn() Viewport method Replaced with isBorderVisible()
Viewport method

isLineDrawn() G2dLine method Replaced with isLineVisible() G2dLine
method

isMajorGridXDrawn() Viewport method Replaced with isMajorGridXVisible()
Viewport method

isMajorGridYDrawn() Viewport method Replaced with isMajorGridYVisible()
Viewport method

isMinorGridXDrawn() Viewport method Replaced with isMinorGridXVisible()
Viewport method

isMinorGridYDrawn() Viewport method Replaced with isMinorGridYVisible()
Viewport method

isTitleDrawn() G2dTitle method Replaced with isPlotTitleVisible()
G2dDialog method

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-81

Item Comment
setAutoSkipSymbolsOff() G2dLine
method

Replaced with
setSymbolsAutoInterval(0/1) G2dLine
method

setAutoSkipSymbolsOn() G2dLine
method

Replaced with
setSymbolsAutoInterval(0/1) G2dLine
method

setComputeMajorTicsOff() Axis method Replaced with
setComputeMajorTics(0/1) Axis
method

setComputeMajorTicsOn() Axis method Replaced with
setComputeMajorTics(0/1) Axis
method

setComputeMinorTicsOff() Axis method Replaced with
setComputeMinorTics(0/1) Axis
method

setComputeMinorTicsOn() Axis method Replaced with
setComputeMinorTics(0/1) Axis
method

setDrawBackgroundOff() Viewport
method

Replaced with
setBackgroundVisible(0/1) Viewport
method

setDrawBackgroundOn() Viewport
method

Replaced with
setBackgroundVisible(0/1) Viewport
method

setDrawBackroundOff() G2dLabel
method

Replaced with
setBackgroundVisible(0/1) G2dLabel
method

setDrawBackroundOn() G2dLabel
method

Replaced with
setBackgroundVisible(0/1) G2dLabel
method

setDrawBorderOff() G2dLabel method Replaced with setBorderVisible(0/1)
G2dLabel method

setDrawBorderOff() Viewport method Replaced with setBorderVisible(0/1)
Viewport method

setDrawBorderOn() G2dLabel method Replaced with setBorderVisible(0/1)
G2dLabel method

setDrawBorderOn() Viewport method Replaced with setBorderVisible(0/1)
Viewport method

setDrawLineOff() G2dLine method Replaced with setLineVisible(0/1)
G2dLine method

setDrawLineOn() G2dLine method Replaced with setLineVisible(0/1)
G2dLine method

setDrawMajorTicLabelsOff() AxisTics
method

Replaced with
setMajorTicLabelsVisible(0/1) Axis
method

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-82

Item Comment
setDrawMajorTicLabelsOn() AxisTics
method

Replaced with
setMajorTicLabelsVisible(0/1) Axis
method

setDrawMajorTicsOff() AxisTics method Replaced with
setMajorTicsVisible(0/1) Axis method

setDrawMajorTicsOn() AxisTics method Replaced with
setMajorTicsVisible(0/1) Axis method

setDrawMinorTicLabelsOff() AxisTics
method

Replaced with
setMinorTicLabelsVisible(0/1) Axis
method

setDrawMinorTicLabelsOn() AxisTics
method

Replaced with
setMinorTicLabelsVisible(0/1) Axis
method

setDrawMinorTicsOff() AxisTics method Replaced with
setMinorTicsVisible(0/1) Axis method

setDrawMinorTicsOn() AxisTics method Replaced with
setMinorTicsVisible(0/1) Axis method

setDrawMajorXGridOff() Viewport
method

Replaced with
setMajorGridXVisible(0/1) Viewport
method

setDrawMajorXGridOn() Viewport
method

Replaced with
setMajorGridXVisible(0/1) Viewport
method

setDrawMajorYGridOff() Viewport
method

Replaced with
setMajorGridYVisible(0/1) Viewport
method

setDrawMajorYGridOn() Viewport
method

Replaced with
setMajorGridYVisible(0/1) Viewport
method

setDrawMinorXGridOff() Viewport
method

Replaced with
setMinorGridXVisible(0/1) Viewport
method

setDrawMinorXGridOn() Viewport
method

Replaced with
setMinorGridXVisible(0/1) Viewport
method

setDrawMinorYGridOff() Viewport
method

Replaced with
setMinorGridYVisible(0/1) Viewport
method

setDrawMinorYGridOn() Viewport
method

Replaced with
setMinorGridYVisible(0/1) Viewport
method

setDrawSymbolsOff() G2dLine method Replaced with setSymbolsVisible(0/1)
G2dLine method

setDrawSymbolsOn() G2dLine method Replaced with setSymbolsVisible(0/1)
G2dLine method

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-83

Item Comment
setGridColorX(string) Viewport method Replaced with seGridXColor(string)

Viewport method

setGridColorY(string) Viewport method Replaced with setGridYColor(string)
Viewport method

setMajorXGridWidth(floating-point)
Viewport method

Replaced with
setMajorGridXWidth(floating-point)
Viewport method

setMajorYGridWidth(floating-point)
Viewport method

Replaced with
setMajorGridYWidth(floating-point)
Viewport method

setMinorXGridWidth(floating-point)
Viewport method

Replaced with
setMinorGridXWidth(floating-point)
Viewport method

setMinorYGridWidth(floating-point)
Viewport method

Replaced with
setMinorGridYWidth(floating-point)
Viewport method

setReversedOff() Axis method Replaced with setReversed(0/1) Axis
method

setReversedOn() Axis method Replaced with setReversed(0/1) Axis
method

setSymbolOffset(integer) G2dLine
method

Replaced with
setFirstSymbolOffset(integer)
G2dLine method

setSymbolSkipInterval(integer) G2dLine
method

Replaced with
setSymbolInterval(integer) and
setSymbolSkipCount(integer)
G2dLine methods

setTitleDrawOff() G2dTitle method Replaced with setPlotTitleVisible(0/1)
G2dDialog method

setTitleDrawOn() G2dTitle method Replaced with setPlotTitleVisible(0/1)
G2dDialog method

zoomIn(floating-point, floating-point)
Axis method

Replaced with
setScaleLimits(floating-point,
floating-point) Axis method

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-84

7.15 Math Functions
Math functions are accessible through the general class called HecMath.
HecMath objects hold data sets and allow you to perform mathematical
operations on them. They can also be passed to plots and tables to display the
data. A HecMath object is either a TimeSeriesMath object or a
PairedDataMath object, which handle time series and paired data sets,
respectively.

Before using PairedDataMath methods, be sure to read the description for the
setCurve Method. Paired data sets may contain multiple curves. The
setCurve method provides user control over which paired data curve is
operated upon by subsequent function calls.

7.15.1 Absolute Value
abs()

Derive a new time series or paired data set from the absolute value of values
of the current data set. For time series data, missing values are kept as
missing. For paired data sets, use the setCurve method to first select the
paired data curve(s).

See also: setCurve().

Parameters: Takes no parameters.
Example: NewDataSet = dataSet.abs()

Returns: A new HecMath object of the same type as the current object.

7.15.2 Accumulation (Running)
accumulation()

Derive a new time series by computing a running accumulation of the current
time series.
For time points in which the current time series value are missing, the value in
the accumulation time series remains constant (same as the accumulated value
at the last valid point location).

Parameters: Takes no parameters.
Example: NewTimeSeries = timeSeries.accumulation()

Returns: A new TimeSeriesMath object.

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-85

7.15.3 Add a Constant
add(floating-point constant)

Add the value constant to all valid values in the current time series or paired
data set. For time series data, missing values are kept as missing.

For paired data, constant is added to y-values only. Use the setCurve method
to first select the paired data curve(s).

See also: add(HecMath dataSet)

setCurve()

Parameters: constant - A floating-point value.
Example: newDataSet = dataSet.add(2.5)

Returns: A new HecMath object of the same type as the current object.

7.15.4 Add a Data Set
add(TimeSeriesMath tsData)

Add the values in the data set tsData to the values in the current data set. The
function only applies to time series data sets.

When adding one time series data set to another, there is no restriction that
times in the two data sets match exactly. However, only values with
coincident times will be added. Times in the current time series data set that
cannot be matched with times in the second data set are set to missing. Values
in the current data set that are missing are kept as missing. Either or both data
sets may be regular or irregular interval time series.

This function will not merge data sets. Use the mergeTimeSeries (for time
series data sets) or the mergePairedData (for paired data sets) functions for
this purpose.

See also: add(floating-point constant)

 mergeTimeSeries(TimeSeriesMath)

 mergePairedData(PairedDataMath)

Parameters: tsData - A TimeSeriesMath object.
Example: newTsData = tsData.add(otherTsData)

Returns: A new TimeSeriesMath object.

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-86

7.15.5 Apply Multiple Linear Regression Equation
applyMultipleLinearRegression(string startTimeString,

 string endTimeString,
 sequence tsDataSetSequence,
 floating-point minimumLimit,
 floating-point maximumLimit)

Apply the regression coefficients contained in the current paired data set to the
array of time series data sets in tsDataSetSequence to develop a new time
series data set. The applyMultipleLinearRegression function applies the
multiple linear regression coefficients computed with the
multipleLinearRegression function (see section 7.15.45).

For the general linear regression equation, a dependent variable, Y, may be
computed from a set independent variables, Xn:

Y = B0 + B1*X1 + B2*X2 + B3*X3

where Bn are linear regression coefficients.

For time series data sets, an estimate of the original time series data set values
may be computed from a set of independent time series data sets using
regression coefficients such that:

TsEstimate(t) = B0 + B1*TS1(t) + B2*TS2(t) + … + Bn*TSn(t)

where Bn are the set of regression coefficients and TSn are the time series
data sets contained in tsDataSetSequence.

The number of regression coefficients in the current PairedDataMath object
must be one more than the number of independent time series data sets in
tsDataSetSequence. The collection of selected time series data sets must be
in the same order as when the regression coefficients were computed with the
multipleLinearRegression method.

All the time series data sets must be regular interval and have the same time
interval. The function filters the data to determine the time period common to
all time series data sets and uses only those points in the regression analysis.
For any given time, if a value is missing in any time series, the value in
resultant time series is set to missing.

The parameters minimumLimit and maximumLimit can be used to specify
the range of valid values for the resultant data set. Values which fall outside
the specified range are set to missing. minimumLimit or maximumLimit
may be entered as Constants.UNDEFINED to ignore the minimum or
maximum value check.

If startTimeString or endTimeString are blank strings, the start and end
time of the resultant time series will be defined by the time period common to
all time series data sets in tsDataSetSequence. Otherwise the time series start

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-87

and end may be defined using startTimeString and endTimeString which
have the usual HEC time window format (e.g. “01JAN2001 1400”).

Names, parameter type and unit labels for the new time series data set are
copied over from the first time series data set in tsDataSetSequence. The F-
part in the new data set is set to “COMPUTED.”

Parameters:
startTimeString – A string containing an HEC time (e.g.
“01JAN2001 1400”) specifying the start time of the resultant time
series data set. May be blank (“ “).

endTimeString – A string containing an HEC time (e.g.
“01JAN2001 1400”) specifying the ending time of the resultant time
series data set. May be blank (“ “).

tsDataSetSequence – Sequence of TimeSeriesMath objects. Must all
be regular interval and have the same time interval.

minimumLimit – A floating-point value specifying the minimum valid
value in the resultant time series data set. Set to
Constants.UNDEFINED to ignore this option.

maximumLimit – A floating-point value specifying the maximum valid
value in the resultant time series data set. Set to
Constants.UNDEFINED to ignore this option.

Example:

newTsData =
pairedData.applyMultipleLinearRegression(

“01Jan2000 0000”,
“31Dec2000 2300”,
(tsData1, tsData2, tsData3),
Constants.UNDEFINED,
Constants.UNDEFINED)

Returns: A new regular interval TimeSeriesMath object.

Generated Exceptions: Throws a HecMathException if the number of data
sets in tsDataSetSequence is not equal to the number of regression
coefficients -1, or if the data sets in tsDataSetSequence are not regular
interval time series data sets with the same interval time.

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-88

7.15.6 Centered Moving Average Smoothing
centeredMovingAverage(integer numberToAverageOver,
 boolean onlyValidValues,
 boolean useReduced)

Derive a new time series from the centered moving average of
numberToAverageOver values in the current time series.
numberToAverageOver must be an odd integer greater than 2.

If onlyValidValues is set to true, then if any points in the averaging interval
are missing, the point in the new time series is set to missing. If
onlyValidValues is set to false and missing values are contained in the
averaging interval, a smoothed point is still computed using the remaining
valid values in the interval. If there are no valid values in the averaging
interval, the point is set to missing.

If useReduced is set to true, then centered moving average points can still be
computed at the beginning and end of the time series, even if there are less
than numberToAverageOver values in the averaging interval. If
useReduced is set to false, then the first and last numberToAverageOver/2
points of the resultant time series are set to missing.

Parameters:

numberToAverageOver – An integer containing the number of values
to average over for computing the centered moving average. Must be
odd and greater than 2.

onlyValidValues – Either Constants.TRUE, or Constants.FALSE,
specifying whether all values in the averaging interval must be valid
for the computed point in the new time series to be valid.

useReduced – Either Constants.TRUE, or Constants.FALSE,
specifying whether to allow points at the beginning and end of the
resultant time series to be computed from a reduced (less than
numberToAverageOver) set of points.

Example:
avgData = tsData.centeredMovingAverage (5,

Constants.TRUE,
Constants.TRUE)

Returns: A new TimeSeriesMath object.

Generated Exceptions: Throws a HecMathException if the
numberToAverageOver is less than 3 or not odd.

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-89

7.15.7 Conic Interpolation from Elevation/Area Table
conicInterpolation(TimeSeriesMath tsData,
 string inputType,
 string outputType,
 floating-point storageScaleFactor)

Use the conic interpolation table in the current paired data set to develop a
new time series data set from the interpolation of tsData.

The current paired data should be an Elevation-Area table. However, the first
data pair are the initial conic depth, and the storage value at the first elevation
in the table. If the initial conic depth is undefined, the function will calculate
a value. Elevation-Area values in the table must be in ascending order.

tsData is either a time series of reservoir elevation or storage. The type is
specified by setting inputType as "S(TORAGE)" or "E(LEVATION).” The
desired output time series type is similarly set using outputType. The valid
settings for outputType are "S(TORAGE)”, "E(LEVATION)" or "A(REA).”
inputType and outputType must not be the same.

storageScaleFactor is an optional parameter used to scale input (by
multiplying) and output (by dividing) storage values. For example, if the area
in the conic interpolation table is expressed in sq.ft., storageScaleFactor
could be set to 43560. to convert the storage output to acre-ft.

Parameter type in the new time series is set according to outputType. If the
output time series values are elevation, the time series units are set to the
paired data x-units label. If the output time series values are area, the time
series units are set to the paired data y-units label. If the output is storage, the
units are not set and should be set by the user with the setUnits function.

See also: setUnits().

Parameters:
tsData – A TimeSeriesMath object representing elevation or storage.

inputType – A string specifying the parameter type for the input time
series, either "S(TORAGE)" or "E(LEVATION).” Only the first
character of the string is interpreted by the function.

outputType – A string specifying the parameter type for the output
time series, either "S(TORAGE)”, "E(LEVATION)" or “A(REA).”
Only the first character of the string is interpreted by the function.

storageScaleFactor – A floating-point number used to scale input
(by multiplying) and output (by dividing) storage values.

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-90

Examples:

 tsStorage =
conicElevAreaCurve.conicInterpolation(
tsElev,
“Elevation”,
“Storage”,
1.0)

 tsArea =
conicElevAreaCurve.conicInterpolation(
tsElev,
“Elevation”,
“Area”,
1.0)

Returns: A new TimeSeriesMath object.

Generated Exceptions: Throws an hec.hecmath.HecMathException if
inputType or outputType cannot be interpreted as one of the allowed values;
if inputType and outputType are the same parameters; if values in the conic
interpolation table are not in ascending order.

7.15.8 Convert Values to English Units
convertToEnglishUnits()

Perform unit conversion of data values and unit labels in the current time
series or paired data set from Metric (SI) units to English units.
Determination of the unit system will be based upon the current units labels
and parameter types. If the data units are already in English units or the unit
system cannot be determined, no conversion occurs.

For paired data, both x and y values are converted. For time series data,
missing values remain missing.

See also: convertToMetricUnits(), isEnglish(), isMetric().

Parameters: Takes no parameters

Example: englishDataSet = siDataSet.convertToEnglishUnits()

Returns: A HecMath object of the same type as the current object.

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-91

7.15.9 Convert Values to Metric (SI) Units
convertToMetricUnits()

Perform unit conversion of data values and unit labels in the current time
series or paired data set from English units to Metric (SI) units.
Determination of the unit system will be based upon the current units labels
and parameter types. If the units are already in Metric units or the unit system
cannot be determined, no conversion occurs.

For paired data, both x and y values are converted. For time series data,
missing values remain missing.

See also: convertToEnglishUnits(), isEnglish(), isMetric().

Parameters: Takes no parameters
Example: siDataSet = englishDataSet.convertToMetricUnits()

Returns: An HecMath object of the same type as the current object.

7.15.10 Correlation Coefficients
correlationCoefficients(TimeSeriesMath tsData)

Computes the linear regression and other correlation coefficients between data
in the current time series and tsData. Values in the current time series and
tsData are matched by time to form data pairs for the correlation analysis.
The data sets may be either regular or irregular time interval data.

 The correlations statistics computed by the function are:

Number of valid values

Regression constant

Regression coefficient

Determination coefficient

Standard error of regression

Determination coefficient adjusted for degrees of freedom

Standard error adjusted for degrees of freedom

These values are contained in a LinearRegressionStatistics object.

The current TimeSeriesMath object forms the values of the independent
variable (x-values), while values of the second time series comprise the
dependent variable (y-values). The linear regression coefficients thus express
how values in the second data set can be derived from values in the primary
data set:

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-92

TS2(t) = a + b * TS1(t)

where “a” is the regression constant and “b” the regression coefficient.

See also: LinearRegressionStatistics.

Parameters: tsData - A TimeSeriesMath object that forms the dependent
variable for the regression analysis.
Example:

linearRegressionData =

tsData.correlationCoefficients(otherTsData)

Returns:A LinearRegressionStatistics object holding the correlation data.

Generated Exceptions: Throws an hec.hecmath.HecMathException if the
times in the current time series do not exactly match times in tsData.

7.15.11 Cosine Trigonometric Function
cos()

Derive a new time series or paired data set from the cosine of values of the
current data set. The resultant data set values are in radians. For time series
data, missing values are kept as missing.

For paired data sets, use the setCurve (see sections 7.15.61 and 7.15.62)
function to first select the paired data curve (or all curves) to apply the
function. By default the function is applied to all paired data curves.

See also: setCurve().

Parameters: Takes no parameters

Returns: A HecMath object of the same type as the current object.

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-93

7.15.12 Cyclic Analysis (Time Series)
cyclicAnalysis()

Derive a set of cyclic statistics from the current regular interval time series
data set. The time series data set must have a time interval of “1HOUR”,
“1DAY” or “1MONTH.” The function sorts the time series values into
statistical "bins" relevant to the time interval. Values for the 1HOUR interval
data are sorted into 24 bins representing the hours of the day, 0100 to 2400.
The 1DAY interval data is apportioned to 365 bins for the days of the year.
The 1MONTH interval data is sorted into 12 bins for the months of the year.

The format of the resultant data sets is as a “pseudo” time series for the year
3000. For example, the cyclic analysis of one month of hourly interval data
will produce pseudo time series data sets having 24 hourly values for the day
January 1, 3000. If the statistical parameter is the “maximum” value, then the
24 values represent the maximum value occurring at that hour of the day in
the current time series. The cyclic analysis of daily interval data will produce
pseudo time series data sets having 365 daily values for the year 3000. The
cyclic analysis of monthly interval data will result in pseudo time series data
sets having 12 monthly values for the year 3000.

Fourteen pseudo time series data sets are derived by the cyclic analysis
function for the following statistical parameters:

 Number of values processed for each time interval
 Maximum value
 Time of maximum value
 Minimum value
 Time of minimum value
 Average value
 Probability exceedence percentiles for 5%, 10%, 25%, 50%

(median value), 75%, 90%, and 95%
 Standard deviation

The 14 pseudo time series of cyclic statistics are returned by the function as an
array of time series data sets. The parameter part of the record path for each
time series is modified to indicate the type of the statistical parameter. For a
flow record, the parameter "FLOW" would become "FLOW-MAX" for the
maximum values statistics, "FLOW-P5" for the 5% percentile statistics, etc.

Parameters: Takes no parameters
Example: cyclicData = tsData.cyclicAnalysis()

Returns: A sequence of 14 TimeSeriesMath objects, each of which is a
pseudo time series data sets representing a statistical parameter.

Generated Exceptions: Throws an hec.hecmath.HecMathException if the
time series is not regular interval or does not have a time interval of
"1HOUR”, "1DAY", or "1MONTH”.

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-94

7.15.13 Decaying Basin Wetness Parameter
decayingBasinWetnessParameter(TimeSeriesMath tsPrecip,
 floating-point decayRate)

Compute a time series of decaying basin wetness parameters from the regular
interval time series data set of incremental precipitation, tsPrecip, by:

TSResult(t) = Rate * TSResult(t-1) + TSPrecip(t)

where Rate is decayRate, and 0 < Rate < 1.

The first value of the resultant time series data set, TSResult(1), is set to the
first value in the current time series data set. The current time series data set
can be the same time series data set as tsPrecip. Missing values in the
precipitation time series are taken as zero when applying the above equation.

Parameters:
tsPrecip – A regular interval TimeSeriesMath object representing
precipitation.

decayRate – a floating-point number in the range 0 < decayRate < 1.
Example:

tsWetness =

tsPrecip.decayingBasinWetnessParameter(

tsPrecip,

0.87)

Returns: A new TimeSeriesMath object.

7.15.14 Divide by a Constant
divide(floating-point constant)

Divide all valid values in the current time series or paired data set by the value
constant. For time series data, missing values are kept as missing.

For paired data, constant divides the y-values only. Use the setCurve
method to select the paired data curve(s).

See also: divide(TimeSeriesMath tsData); setCurve().

Parameters:
constant - A floating-point value to divide the values in the current
data set (cannot be zero).

Example: newDataSet = dataSet.divide(1.1)

Returns: A new HecMath object of the same type as the current object.

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-95

7.15.15 Divide by a Data Set
divide(TimeSeriesMath tsData)

Divide valid values in the current data set by the corresponding values in the
data set tsData. Both data sets must be time series data sets.

When dividing one time series data set by another, there is no restriction that
times in the two data sets match exactly. However, only values with
coincident times will be divided. Times in the current time series data set that
cannot be matched with times in the second data set are set to missing. Values
in the current data set that are missing are kept as missing. If a value in the
second data set is zero or missing, the value in the resultant data set is set to
missing (divide by zero not allowed). Either or both data sets may be regular
or irregular interval time series.

See also: divide(floating-point constant).

Parameters:
tsData - A time series data set.

Example: newTsData = tsData.divide(otherTsData)

Returns: A new TimeSeriesMath object.

7.15.16 Estimate Values for Missing Precipitation Data
estimateForMissingPrecipValues(integer maxMissingAllowed)

Linearly interpolate estimates for missing values in the current regular or
irregular interval time series data set. The current data set is expected to be
cumulative precipitation and the data must be of type “INST-CUM”. Use the
estimateForMissingValues method for filling missing values in other types of
time series data.

The rules used for interpolation of missing cumulative precipitation data are:

 If the values bracketing the missing period are increasing with time, only
interpolate if the number of successive missing values does not exceed the
value of maxMissingAllowed.

 If the values bracketing the missing period are decreasing with time, do
not estimate for any missing values.

 If the values bracketing the missing period are equal, then estimate any
number of missing values.

See also: estimateForMissingValues().

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-96

Parameters:
maxMissingAllowed - An integer value for the maximum
number of consecutive missing values between valid
values.

Example:

newPrecip =
tsPrecip.estimateForMissingPrecipValues(5)

Returns: A new TimeSeriesMath object.

7.15.17 Estimate Values for Missing Data
estimateForMissingValues(integer maxMissingAllowed)

Linearly interpolate estimates for missing values in the current regular or
irregular interval time series data set. Do not interpolate if the number of
successive missing values exceeds maxMissingAllowed.

See also: estimateForMissingPrecipValues().

Parameters:
maxMissingAllowed - An integer value for the maximum
number of consecutive missing values allowed for
interpolation.

Example: newTsData = tsData.estimateForMissingValues(5)

Returns: A new TimeSeriesMath object.

7.15.18 Exponentiation Function
exponentiation(floating-point constant)

Derive a new time series or paired data set from the exponentiation of values
in the current data set by constant, by:

T2 (i) = T1(i)constant

For time series data, values that are missing in the current time series remain
missing in the new time series.

For paired data sets, use the setCurve method to first select the paired data
curve(s).

See also: setCurve().

Parameters:
constant – a floating-point value representing the exponent.

Example: squaredDataSet = dataSet.exponentiation(2.)

Returns: A new HecMath object of the same type as the current object.

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-97

7.15.19 Extract Time Series Data at Unique Time
Specification

extractTimeSeriesDataForTimeSpecification(
 string timeLevelString,
 string rangeString,
 boolean isInclusive,
 integer intervalWindow,
 boolean setAsIrregular)

Select/extract data points from the current regular or irregular interval time
series data set based upon user defined time specifications. For example, the
function may be used to extract from hourly interval data, the values observed
every day at noon.

timeLevelString defines the time level/interval for extraction (year, month,
day of the month, day of the week, or 24-hour time). rangeString defines
the interval range for data extraction applicable to the time level. For
example, if timeLevelString is "MONTH”, a valid range would be "JAN-
MAR". The rangeString variable can define a single interval value (e.g.
"JAN" - select data from January only) or a beginning and ending range (e.g.
"JAN-MAR" - select data for January through March). Table 7.34 shows the
valid timeLevelString and rangeString values.

Table 7.34 - Valid timeLevelString and rangeString Values

timeLevelString rangeString Example rangeString
"YEAR” Four-digit year value "1938" or "1938-1945"

"MONTH” Standard three-character
abbreviation for month

"JAN" or "JAN-MAR"

or

“OCT-FEB”

"DAYMON(TH)" Day of the month or
"LASTDAY" string

"15" or "1-15 or “27-5”

or

“16-LASTDAY"

"DAYWEE(K)" Standard three-character
abbreviation for day of the
week

"MON" or "SUN-TUE"

or

“FRI-WED”

"TIME" Four digit 24-hour military-style
clock time

"2400" or "0300-0600"

or

“2200-0130”

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-98

If desired, you may use one of the enumerated string constants to specify
timeLevelString:

 Year TimeSeriesMath.LEVEL_YEAR_STRING

 Month TimeSeriesMath. LEVEL_MONTH_STRING

 Day of Month TimeSeriesMath. LEVEL_DAYMONTH_STRING

 Day of Week TimeSeriesMath.LEVEL_DAYWEEK_STRING

 24-hour time TimeSeriesMath.LEVEL_TIME_STRING

The parameter isInclusive determines whether the data extraction
operation is either inclusive or exclusive of the specified range. For example,
if isInclusive is “true” and the range is set to "JAN-MAR" for the
"MONTH" time level, the extracted data will include all data in the months
January through March for all the years of time series data. If isInclusive is
“false” for this example, the extracted data covers the time April through
December (is exclusive of the period January through March).

intervalWindow is only used when the timeLevelString is "TIME.”
intervalWindow is the minutes before and after the time of day within which
the data will be extracted. intervalWindow effectively increases the time
range at the beginning and end intervalWindow minutes. For example, with
a rangeString of “0300” and an intervalWindow of 10, data will be extracted
from the selected time series if times falls within in the period 0250 to 0310.

setAsIrregular defines whether the extracted data is saved as regular
interval or irregular interval data. Most often the time series data formed by
the extraction process will no longer be regular interval, and setAsIrregular
should be set to “true.” Setting setAsIrregular to “false” will force an
attempt to save the data as regular interval time data.

Parameters:
timeLevelString – A string specifying the time level selection.

rangeString – A string specifying time or time range for selection.
Must be consistent with timeLevelString.

isInclusive – Either Constants.TRUE, or Constants.FALSE, value.
If true, data is extracted inclusive of the range specified by
rangeString. If false, data is extracted exclusive of the range specified
by rangeString.

intervalWindow – An integer value representing the minutes before
and after the time of day within which the data will be extracted. Only
applied when the timeLevelString is “TIME.”

setAsIrregular – Either Constants.TRUE, or Constants.FALSE,
value. If true, data is automatically set as irregular time interval data.
If false, the function will attempt to classify the data as regular time
interval data.

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-99

Example:

 SelectedData =
 tsData.extractTimeSeriesDataForTimeSpecification(
 “DAYMONTH”,
 “16-LASTDAY”,
 Constants.TRUE,
 0,
 Constants.TRUE)

Returns: A new TimeSeriesMath object.

Generated Exceptions: Throws an hec.hecmath.HecMathException if the
function could not successfully interpret timeLevelString or rangeString.

7.15.20 Flow Accumulator Gage (Compute Period Average
Flows)

flowAccumulatorGageProcessor(TimeSeriesMath tsCounts)

Derive a new time series of period-average flows from a flow accumulator
type gage. The current time series is assumed to containe the accumulated
flow data, while the parameter time series, tsCounts, is assumed to have the
corresponding time series of counts. The two time series data sets must match
times exactly. The two time series are combined to compute a new time series
of period average flow:

 TsNew(t) = (TsAccFlow(t) - TsAccFlow(t-1)) /

(TsCount(t) - TsCount(t-1))

where TsAccFlow is the gage accumulated flow time series and TsCount is
the gage time series of counts.

In the above equation, if TsAccFlow(t), TsAccFlow(t-1), TsCount(t) or
TsCount(t-1) are missing, TsNew(t) is set to missing. The new time series is
assigned the data type "PER-AVER".

Parameters:
tsCounts – A TimeSeriesMath object containing the counts for the
flow accumulator gage.

Example:

tsPerAvgFlow =
tsAccumFlow.flowAccumulatorGageProcessor(tsCounts)

Returns: A new TimeSeriesMath object.

Generated Exceptions: Throws an hec.hecmath.HecMathException if
times in the current object do not exactly match the times in tsCounts.

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-100

7.15.21 Forward Moving Average Smoothing
forwardMovingAverage(integer numberToAverageOver)

Derive a new time series from the forward moving average of
numberToAverageOver values in the current time series.
numberToAverageOver must be an integer greater than 2.

If the averaging interval contains a missing value, the smoothed value is
computed from the remaining valid values in the interval. However, if there
are less than 2 valid values in the interval, the value in the resultant data set is
set to missing.

Parameters:
numberToAverageOver – An integer containing the number of values
to average over for computing the forward moving average.

Example: tsAveraged = tsData.forwardMovingAverage(4)

Returns: A new TimeSeriesMath object.

Generated Exceptions: Throws an hec.hecmath.HecMathException if the
numberToAverageOver is less than 2.

7.15.22 Generate Data Pairs from Two Time Series
generateDataPairs(TimeSeriesMath tsData,
 boolean sort)

Generate a paired data set by pairing values (by time) from the current time
series data set and the time series data set tsData. The values of the current
time series form the x-ordinates, while values from tsData form the y-
ordinates of the resulting paired data set. The times in the two time series data
sets must match exactly. If a value for a time is missing in either time series,
no data value pair is formed or added to the paired data set. If sort is “true”,
data pairs in the paired data set are sorted by ascending x-value.

The units and parameter type from the current time series data set are assigned
to the paired data set x-units and x-parameter type. The units and parameter
type from tsData are assigned to the paired data set y-units and y-parameter
type.

An example application of the function would be to mate a time series record
of stage to one of flow to generate a stage-flow paired data set.

Parameters:
tsData – A TimeSeriesMath object that forms the y-ordinates of the
resulting paired data set.

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-101

sort – Either Constants.TRUE, or Constants.FALSE, value. If true,
sort data pairs in ascending x-value. If false, leave unsorted.

Example: ratingCurve = tsStage.generateDataPairs(tsFlow)

Returns: A PairedDataMath object with x-ordinates from the current time
series, and y-ordinates from tsData.

Generated Exceptions: Throws an hec.hecmath.HecMathException if
times from the current time series and tsData do not match exactly.

7.15.23 Generate a Regular Interval Time Series
generateRegularIntervalTimeSeries(string startTimeString,

 string endTimeString,
 string timeIntervalString,
 string timeOffsetString,
 floating-point initialValue)

Generate a new regular interval time series data set from scratch with times
and values specified by the parameters. This is a function provided by the
TimeSeriesMath module, and not an object method.

The parameters startTimeString and endTimeString are strings used to
specify the beginning and ending time of the generated data set. These two
parameters have the form of the standard HEC time string (e.g. "01JAN2001
0100").

The regular time interval is specified by timeIntervalString, and is a valid
HEC time increment string (e.g. “1MIN”, “15MIN”, “1HOUR”, “6HOUR”,
“1DAY”, “1MONTH”).

timeOffsetString is used to shift times in the resultant time series from the
standard interval time. As an example, the offset could be used to shift times
in regular hourly interval data from the top of the hour to 6 minutes past the
hour. The parameter has the form "nT”, where "n" is an integer number and
"T" is one of the time increments: "M(INUTES)”, "D(AYS)”, "H(OUR)”,
"W(EEKS)”, "MON(THS)" or "Y(EARS)" (characters in the parenthesis are
optional). For example, a time offset of 9 minutes would be expressed as
"9M" or "9MIN.”

Values in the time series data set are initialized to initialValue.

Parameters:

startTimeString - a string specifying a standard HEC time defining
the time series data start date/time.

endTimeString - a string specifying a standard HEC time defining the
time series data end date/time.

timeIntervalString - a string specifying a valid DSS regular time
interval which defines the time interval of the new time series.

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-102

timeOffsetString – a string specifying the offset of the new time
points from the regular interval time. This string may be an empty
string or None.

initialValue –a floating-point number set to the initial value for all
time series points. Set to HecMath.UNDEFINED to set all values to
missing.

Example:

newTsData =
TimeSeriesMath.generateRegularIntervalTimeSeries(
 “01FEB2002 0100”,
 “28FEB2002 2400”,
 “1HOUR”,
 “0M”,
 100.)

Returns: A new regular interval TimeSeriesMath object initialized to
initialValue. Data units and type are unset.

Generated Exceptions: Throws an hec.hecmath.HecMathException if time
parameters cannot be successfully interpreted.

7.15.24 Get Data Container
getData()

Returns a copy of the hec.io.DataContainer for the current data set. For time
series data sets, returns a hec.io.TimeSeriesContainer. For paired data sets,
returns a hec.io.PairedDataContainer.

The hec.io.TimeSeriesContainer contains the time series values for a time
series data set. The hec.io.PairedDataContainer contains the paired data
values for a paired data set.

Parameters: Takes no parameters
Example: container = dataset.getData()

Returns: A hec.io.DataContainer.

7.15.25 Get Data Type for Time Series Data Set
getType()

Get the data type for a time series data set.

Parameters: Takes no parameters

Example: dataSet.getType()

Returns: A string - “INST-CUM”, “INST-VAL”, “PER-AVER” or “PER-
CUM”.

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-103

7.15.26 Get Units Label for Data Set
getUnits()

Get the units label of the current data set. For a paired data set, returns the y-
units label.

Parameters: Takes no parameters
Example: dataSet.getUnits()

Returns: A string.

7.15.27 Interpolate Time Series Data at Regular Intervals
interpolateDataAtRegularInterval(string timeIntervalString,

 string timeOffsetString)

Derive a regular interval time series data set by interpolation of the current
regular or irregular interval time series data set.

The new time interval is set by timeIntervalString which must be a valid
HEC time interval string (e.g. “1MIN”, “15MIN”, “1HOUR”, “6HOUR”,
“1DAY”, “1MONTH”).

Times in the resultant time series may be shifted (offset) from the regular
interval time by the increment specified by timeOffsetString. As an
example, the offset could be used to shift times from the top of the hour to 6
minutes past the hour. If no offset is used timeOffsetString should be an
blank or empty string.

Whether the time series data type is “INST-VAL”, “INST-CUM”, “PER-
AVE”, or “PER-CUM” controls how the interpolation is performed.
Interpolated values are derived from “INST-VAL” or “INST-CUM” data
using linear interpolation. Values are derived from “PER-AVE” data by
computing the period average value over the time interval. Values are derived
from “PER-CUM” data by computing the period cumulative value over the
new time interval

For example, if the original data set is hourly data and the new regular interval
data set is to have a six hour time interval:

 The value for “INST-VAL” or “INST-CUM” type data is computed from
the linear interpolation of the hourly points bracketing the new six hour
time point.

 The value for “PER-AVE” type data is computed from the period average
value over the six hour interval.

 The value for “PER-CUM” type data is computed from the accumulated
value over the six hour interval.

The treatment of missing value data is also dependent upon data type.
Interpolated “INST-VAL” or “INST-CUM” points must be bracketed or

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-104

coincident with valid (not missing) values in the original time series;
otherwise the interpolated values are set as missing. Interpolated “PER-AVE”
or “PER-CUM” data must contain all valid values over the interpolation
interval; otherwise the interpolated value is set as missing.

Parameters:
timeIntervalString – A string specifying the regular time interval
for the resultant time series.

timeOffsetString – A string specifying the offset of the new time
points from the regular interval time. This variable may be an empty
string (“ ”).

Example:

newTsData =
tsData.interpolateDataAtRegularInterval(
 “15MIN”,
 “ ”)

Returns: A new regular interval TimeSeriesMath object.

7.15.28 Inverse (1/X) Function
inverse()

Derive a new time series or paired data set from the inverse (1/x) of values of
the current data set. The inverse value is computed by 1.0 divided by the
value of the current data set. If a data value is equal to 0.0, the value in the
resultant data set is set to missing. For time series data, if the original value is
missing, the value remains missing in the resultant data set.

For paired data sets, use the setCurve method to first select the paired data
curve(s).

See also: setCurve().

Parameters: Takes no parameters
Example: newDataSet = dataSet.inverse()

Returns: A HecMath object of the same type as the current object.

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-105

7.15.29 Determine if Data is in English Units
isEnglish()

Determine if the current time series or paired data set is in English units. The
function examines the data set parameter type and units label to establish the
unit system.

See also: isMetric(); convertToEnglishUnits().

Parameters: No parameters.
Example: if dataSet.isEnglish() : print “English Units”

Returns: Constants.TRUE if the data set units are English, otherwise
Constants.FALSE.

Generated Exceptions: Throws an hec.hecmath.HecMathException if the
unit system cannot be determined (parameter type and units label undefined).

7.15.30 Determine if Data is in Metric Units
isMetric()

Determine if the current time series or paired data set is in Metric (SI) units.
The function examines the data set parameter type and units label to establish
the unit system.

See also: isEnglish(); convertToMetricUnits().

Parameters: No parameters.
Example: if dataSet.isMetric() : print “SI Units”

Returns: Constants.TRUE if the data set units are Metric, otherwise
Constants.FALSE.

Generated Exceptions: Throws an hec.hecmath.HecMathException if the
unit system cannot be determined (parameter type and units label undefined).

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-106

7.15.31 Determine if Computation Stable for Given
Muskingum Routing Parameters

isMuskingumRoutingStable(integer numberSubreaches,
 floating-point muskingumK,
 floating-point muskingumX)

Check for possible instability for the given Muskingum Routing parameters.

Test if the input parameters satisfy the stability criteria:

1/(2(1-x)) <= K/deltaT <= 1/2x

 where deltaT = (time series time interval)/numberSubreaches

Parameters:

numberSubreaches – integer specifying the number of routing
subreaches.

muskingumK –floating-point number specifying the Muskingum "K"
parameter, in hours.

muskingumX - floating-point number specifying the Muskingum "x"
parameter, between 0.0 and 0.5 (inclusive).

Example:

warning = tsDataSet.isMuskingumRoutingStable(
reachCount,
kVal,
xVal)

 if warning :
 print warning
 return

Returns: A string if the stability criteria is not met. The string contains a
warning message detailing the specific instability problem. Otherwise returns
None.

Generated Exceptions: Throws an hec.hecmath.HecMathException if the
current time series is not a regular interval time series, or if values for
numberSubreaches or muskingumX are invalid.

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-107

7.15.32 Last Valid Value’s Date and Time
lastValidDate()

Find and return the date and time of the last valid (non-missing) value in a
time series data set.

Parameters: Takes no parameters
Example: tsData.lastValidDate()

Returns: An integer value translatable by HecTime representing the date and
time of the last valid time series value.

7.15.33 Last Valid Value in a Time Series
lastValidValue()

Find and return the last valid (non-missing) value in a time series data set.

Parameters: Takes no parameters
Example: tsData.lastValidValue()

Returns: A floating-point value representing the last valid time series value.

7.15.34 Linear Regression Statistics
LinearRegressionStatistics is a class used to contain the linear regression
and other correlation coefficients computed by the “correlationCoefficients”
function.

The data members of LinearRegressionStatistics are:

 integer numberValidValues
 floating-point regressionConstant - intercept of regression line
 floating-point regressionCoefficient - slope of regression line
 floating-point determinationCoefficient
 floating-point standardErrorOfRegression
 floating-point adjustedDeterminationCoefficient
 floating-point adjustedStandardErrorOfRegression

The “toString()” method will produce a multi-line character string that can be
used to printout the correlation values and description.
Example:

linRegData =
tsData.correlationCoefficients(otherTsData)

regCoef = linRegData.regressionCoefficient
 print linRegData

See also: correlationCoefficients().

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-108

7.15.35 Natural Log, Base “e” Function

log()

Derive a new time series or paired data set from the natural log (log base “e”)
of values of the current data set. Missing values in the original data set remain
missing. Values less than or equal to 0.0 will be set to missing.

For paired data sets, use the setCurve method to first select the paired data
curve(s).

See also: log10(), setCurve().

Parameters: Takes no parameters
Example: newDataSet = dataSet.log()

Returns: A new HecMath object of the same type as the current object.

7.15.36 Log Base 10 Function
log10()

Derive a new time series or paired data set from the log base 10 of values of
the current data set. Missing values in the original data set remain missing.
Values less than or equal to 0.0 will be set to missing.

For paired data sets, use the setCurve method to first select the paired data
curve(s).

See also: log(), setCurve().

Parameters: Takes no parameters
Example: newDataSet = dataSet.log10()

Returns: A new HecMath object of the same type as the current object.

7.15.37 Maximum Value in a Time Series
max()

Find and return the maximum value of the current time series data set.
Missing values are ignored.

Parameters: Takes no parameters
Example: maxVal = tsData.max()

Returns: A floating-point value representing the maximum value of the
current time series.

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-109

7.15.38 Maximum Value’s Date and Time
maxDate()

Find and return the date and time of the maximum value for the current time
series data set. Missing values are ignored.

Parameters: Takes no parameters
Example: maxDateTime = tsData.maxDate()

Returns: An integer value translatable by HecTime representing the date and
time of the maximum time series value.

7.15.39 Mean Time Series Value
mean()

Compute the mean value of the current time series data set. Missing values
are ignored.

Parameters: Takes no parameters
Example: meanVal = tsData.mean()

Returns: A floating-point value representing the mean value of the current
time series.

7.15.40 Merge Paired Data Sets
mergePairedData(PairedDataMath pdData)

Merge the current paired data set with the paired data set pdData. The
resultant paired data set includes all the paired data curves from the current
data set. Depending upon a previous use of the setCurveMethod on pdData, a
single selected paired data curve or all curves from pdData are appended to
the merged data set. The x-values for the two paired data sets must match
exactly.

See also: setCurve().

Parameters:
pdData – A paired data set with x-ordinates matching those of the
current data set.

Example: mergedCurve = curve.mergePairedData(anotherCurve)

Returns: A new PairedDataMath object.

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-110

7.15.41 Merge Two Time Series Data Sets
mergeTimeSeries(TimeSeriesMath tsData)

Merge data from the current time series data set with the time series data set
tsData. The resultant time series data set includes all the data points in the
two time series, except where the data points occur at the same time. When
data points from the two data sets are coincident in time, valid values in the
current time series take precedence over valid values from tsData. However,
if a coincident point is set to missing in the current time series data set, a valid
value from tsData will be used for time in the resultant data set. If the values
are missing for both data sets, the value is missing in the resultant data set.

The data sets for merging may have either regular or irregular time interval
time series data. The data sets are tested to determine if they both have the
same regular time interval. If not, the resultant data set is typed as an irregular
interval data set.

Parameters:
tsData – A time series data set for merging with the current time
series data set.

Example: tsMerged = tsData.mergeTimeSeries(otherTsData)

Returns: A new TimeSeriesMath object.

7.15.42 Minimum Value in a Time Series
min()

Find and return the minimum value of the current a time series data set.
Missing values are ignored.

Parameters: Takes no parameters
Example: minVal = tsData.min()

Returns: A floating-point value representing the minimum value of the
current time series.

7.15.43 Minimum Value’s Date and Time
minDate()

Find and return the date and time of the minimum value for the current time
series data set. Missing values are ignored.

Parameters: Takes no parameters
Example: minDateTime = tsData.minDate()

Returns: An integer value translatable by HecTime representing the date and
time of the minimum time series value.

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-111

7.15.44 Modified Puls or Working R&D Routing Function
modifiedPulsRouting(TimeSeriesMath tsFlow,
 integer numberSubreaches,
 floating-point muskingumX)

The current data set is a paired data set containing the storage-discharge table
for Puls routing, where the x-values are storage and the y-values are
discharge. The function derives a new time series data set from the Modified
Puls or Working R&D routing of the time series data set tsFlow.
numberSubreaches is the number of routing subreaches.

The Working R&D method provides a means of including the effects of
inflow on reach storage by use of the Muskingum “x” wedge coefficient. The
Working R&D method is activated in the computation if muskingumX is
greater than 0.0. However, muskingumX cannot be greater that 0.5.

Parameters:

tsFlow – A regular interval time series data set for routing.

numberSubreaches – Number of routing subreaches.

muskingumX - Muskingum "X" parameter, between 0.0 and 0.5
(inclusive). Enter 0.0 to route by the Modified Puls method, or a value
greater than 0.0 to apply the Working R&D.

Example:

routedFlow =
storDichareCurve.modifiedPulsRouting(
 tsFlow,
 reachCount,
 coefficient)

Returns: A new TimeSeriesMath object.

Generated Exceptions: Throws an hec.hecmath.HecMathException if the
tsMath is not a regular interval time series; if muskingumX is less than 0.0 or
greater than 0.5; if the current paired data set does not have both ascending x
and y values.

7.15.45 Multiple Linear Regression Coefficients
multipleLinearRegression(sequence tsDataSequence,
 floating-point minimumLimit,
 floating-point maximumLimit)

Compute the multiple linear regression coefficients between the current time
series data set and the array of independent time series data sets in
tsDataSequence. The function stores the regression coefficients in a new
paired data set. This paired data set may be used with the

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-112

multipleLinearRegression function to derive a new estimated time series data
set.

For the general linear regression equation, a dependent variable, Y, may be
computed from a set independent variables, Xn:

Y = B0 + B1*X1 + B2*X2 + B3*X3

where Bn are linear regression coefficients.

For time series data sets, an estimate of the original time series data set values
may be computed from a set of independent time series data sets using
regression coefficients such that:

TsEstimate(t) = B0 + B1*TS1(t) + B2*TS2(t) + … + Bn*TSn(t)

where Bn are the set of regression coefficients and TSn are the time series
data sets contained in tsDataSequence.

The parameters minimumLimit and maximumLimit may be used to exclude
out of range values in the current time series data set from the regression
determination. minimumLimit or maximumLimit may be entered as
“Constants.UNDEFINED” to ignore the minimum or maximum value check.

See also: applyMultipleLinearRegression().

Parameters:
tsDataSequence – sequence of TimeSeriesMath objects, which form
the independent variables in the regression equation. Must all be
regular interval and have the same time interval.

minimumLimit – A floating-point value. Values in the current time
series exceeding minimumLimit are excluded from the regression
analysis. Set to Constants.UNDEFINED to ignore this option.

maximumLimit – A floating-point value. Values in the current time
series exceeding maximumLimit are excluded from the regression
analysis. Set to Constants.UNDEFINED to ignore this option.

Example:

regression = tsFlow.multipleLinearRegression (
 [tsUpstrFlow1, tsUpstrFlow2, tsUpstrFlow3],
 0.,
 100000.)

Returns: A new PairedDataMath object containing the computed regression
coefficients.

Generated Exceptions: Throws an hec.hecmath.HecMathException if the
current data set and the data sets in tsDataSequence are not regular interval
time series data sets with the same interval time.

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-113

7.15.46 Multiply by a Constant
multiply(floating-point constant)

Multiply the value constant to all valid values in the current time series or
paired data set. For time series data, missing values are kept as missing.

For paired data, constant multiplies the y-values only. Use the
setCurveMethod to first select the paired data curve(s).

See also: multiply(TimeSeriesMath tsData); setCurve().

Parameters:
constant - A floating-point precision value.

Example: newDataSet = dataSet.multiply(1.5)

Returns: A new HecMath object of the same type as the current object.

7.15.47 Multiply by a Data Set
multiply(TimeSeriesMath tsData)

Multiply valid values in the current data set by the corresponding values in the
data set tsData. Both data sets must be time series data set.

When multiplying one time series data set to another, there is no restriction
that times in the two data sets match exactly. However, only values with
coincident times will be multiplied. Times in the current time series data set
that cannot be matched with times in the second data set are set to missing.
Values in the current data set that are missing are kept as missing. Either or
both data sets may be regular or irregular interval time series.

See also: multiply(floating-point constant).

Parameters:
tsData - A time series data set.

Example: newTsData = tsData.multiply(otherTsData)

Returns: A new TimeSeriesMath object.

7.15.48 Muskingum Hydrologic Routing Function
muskingumRouting(integer numberSubreaches,
 floating-point muskingumK,
 floating-point muskingumX)

Route the current regular interval time series data set by the Muskingum
Routing method. The current data set must be a regular interval time series
data set. muskingumK is the Muskingum “K” parameter, in hours, and
muskingumX is the Muskingum “x” parameter. muskingumX cannot be
less than 0.0 or greater than 0.5.

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-114

The set of Muskingum routing parameters may potentially produce numerical
instabilities in the routed time series. Use the function
isMuskingumRoutingStable() to test if the Muskingum routing parameters
may potentially have instabilities.

See also: isMuskingumRoutingStable().

Parameters:
numberSubreaches – An integer specifying the number of routing
subreaches.

muskingumK – A floating-point number specifying the Muskingum
"K" parameter in hours.

muskingumX – A floating-point number specifying the Muskingum "x"
parameter, between 0.0 and 0.5

Example:

routedFlows = tsFlows.muskingumRouting(reachCount, K, x)

Returns: A new TimeSeriesMath object.

Generated Exceptions: Throws an hec.hecmath.HecMathException if the
current time series is not a regular interval time series; if muskingumX is less
than 0.0 or greater than 0.5.

7.15.49 Number of Missing Values in a Time Series
numberMissingValues()

Count and return the number of missing values in the current time series data
set.

Parameters: Takes no parameters
Example: missingCount = tsData.numberMissingValues()

Returns: An integer of the count of missing time series values.

7.15.50 Number of Valid Values in a Time Series
numberValidValues()

Count and return the number of valid values in the current time series data set.

Parameters: Takes no parameters
Example: validCount = tsData.numberValidValues()

Returns: An integer of the count of valid (non-missing) time series values.

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-115

7.15.51 Olympic Smoothing
olympicSmoothing(integer numberToAverageOver,
 boolean onlyValidValues,
 boolean useReduced)

Derive a new time series from the Olympic smoothing of
numberToAverageOver values in the current time series.
numberToAverageOver must be and odd integer and greater than. Similar
to centered moving average smoothing, except that the minimum and
maximum values over the averaging interval are excluded from the
computation.

If onlyValidValues is set to true, then if any values in the averaging interval
are missing, the point in the resultant time series is set to missing. If
onlyValidValues is set to false and there are missing values in the averaging
interval, a smoothed point is still computed using the remaining valid values
in the interval. If there are no valid values in the averaging interval, the point
in the resultant time series is set to missing.

If useReduced is set to true, then moving average values can be still be
computed at the beginning and end of the time series even if there are less
than numberToAverageOver values in the interval. If useReduced is set to
false, then the first and last numberToAverageOver/2 points of the resultant
time series are set to missing.

Parameters:

numberToAverageOver – An integer specifying the number of values
to average over for computing the smoothed time series. Must be an
odd integer greater than 2.

onlyValidValues – Either Constants.TRUE, or Constants.FALSE,
specifying whether all values in the averaging interval must be valid
for the computed point in the resultant time series to be valid.

useReduced - Either Constants.TRUE, or Constants.FALSE,
specifying whether to allow points at the beginning and end of the
smoothed time series to be computed from a reduced (less than
numberToAverageOver) number of values. Otherwise, set the first
and last numberToAverageOver/2 points of the new time series to
missing.

Example:

avgData = tsData.olympicSmoothing(
 5,

1)

Returns: A new TimeSeriesMath object.

Generated Exceptions: Throws a HecMathException if the
numberToAverageOver is less than 3 or not odd.

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-116

7.15.52 Period Constants Generation
periodConstants(TimeSeriesMath tsData)

Derive a new time series data set by applying values in the current time series
data set to the times defined by the time series data set tsData. Both time
series data sets may be regular or irregular interval. Values in a new time
series are set according to:

ts1(j) ≤ tsnew(i) < ts1(j+1) , TSNEW(i) = TS1(j)

where ts1 is the time in the current time series, TS1 is the value in the current
time series, tsnew is the time in the new time series, TSNEW is the value in
the new time series.

If times in the new time series precede the first data point in the current time
series, the value for these times is set to missing. If times in the new time
series occur after the last data point in the current time series, the value for
these times is set to the value of the last point in the current time series.
Figure 7.7 shows interpolation of values with the periodConstants function.

Interpolated value

Original TS data

Missing Values

Figure 7.7 Interpolation of Time Series Values Using Period
Constants function

Parameters:
tsData – A regular or irregular interval time series data set.

Example:

tsConstants = tsValues.periodConstants(tsData)

Returns: A new TimeSeriesMath object.

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-117

7.15.53 Polynomial Transformation
polynomialTransformation(TimeSeriesMath tsData)

Compute a polynomial transformation of a regular or irregular interval time
series data set, tsData, using the polynomial coefficients stored in the current
paired data set. Missing values in tsData remain missing in the resultant data
set.

A new time series can be computed from an existing time series with the
polynomial expression:

TS2 (t) = B1* TS1(t) + B2* TS1(t) 2 + ... + Bn* TS1(t) n

where Bn are the polynomial coefficients for term “n.”

 Values for the polynomial coefficients are stored in the x-values of the
current paired data set. Before the above equation is applied, values in the
input time series are adjusted by subtracting off the paired data “datum” value
if defined. The units label and parameter type for the resultant time series are
copied from the current paired data set x-units and parameter type.

See also: polynomialTransformationWithIntegral().

Parameters:
tsData – A regular or irregular interval time series data set.

Example: tsXform = pdCoef.polynomialTransformation(tsData)

Returns: A new TimeSeriesMath object.

7.15.54 Polynomial Transformation with Integral
polynomialTransformationWithIntegral(TimeSeriesMath tsData)

Compute a polynomial transformation with integral of a regular or irregular
interval time series data set, tsData, using the polynomial coefficients stored
in the current paired data set. Missing values in tsData remain missing in the
resultant data set.

This function is similar to the polynomialTranformation method, and the same
set of polynomial coefficients are used. The equation for the polynomial
transform is modified so that the transform of tsData is computed from the
integral of the polynomial coefficients:

TS2 (t) = B1* TS1(t) 2/2 + B2*TS1(t)3/3+ ... + Bn* TS1(t) n+1/(n+1)

where Bn are the polynomial coefficients for term “n.”

 Values for the polynomial coefficients are stored in the x-values of the
current paired data set. Before the above equation is applied, values in the
input time series are adjusted by subtracting off the paired data “datum” value

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-118

if defined. The units label and parameter type for the resultant time series are
copied from the current paired data set x-units and parameter type.

See also: polynomialTransformation().

Parameters:
tsData – A regular or irregular interval time series data set.

Example:

tsXform =
 pdCoef.polynomialTransformationWithIntegral(tsData)

Returns: A new TimeSeriesMath object.

7.15.55 Rating Table Interpolation
ratingTableInterpolation(TimeSeriesMath tsData)

Transform/interpolate values in the time series data set tsData using the rating
table x-y values stored in the current paired data set. For example, you can
use the function to transform a time series of stage to a time series of flow
using a stage-flow rating table. tsData may be a regular or irregular time
interval data set. Missing values in tsData are kept missing in the resultant
data set.

Create the paired data set with the rating table option to set values for
“datum”, “shift”, and “offset.” By default these values are 0.0. The
shift is added to and the datum subtracted from all input time series values. If
the rating table is Log-Log, the table x-values are adjusted by subtracting the
offset.

Units and parameter type in resultant time series data set are defined by the y-
units label and parameter type of the current paired data set. All other names
and labels are copied over from tsData.

See also: reverseRatingTableInterpolation().

Parameters:
tsData – A regular or irregular interval TimeSeriesMath object.

Example:

tsFlow =
 stageFlowCurve.ratingTableInterpolation(tsStage)

Returns: A new TimeSeriesMath object.

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-119

7.15.56 Reverse Rating Table Interpolation
reverseRatingTableInterpolation(TimeSeriesMath tsData)

Transform/interpolate values in the time series data set tsData using the
reverse of the rating table stored in the current paired data set. For example,
the function may be used to transform a time series of flow to a time series of
stage using a stage-flow rating table. tsData may be a regular or irregular
time interval data set. Missing values in tsData are kept missing in the
resultant data set.

The paired data set should be created with the rating table option to set values
for “datum”, “shift”, and “offset.” By default, these values are 0.0.
The shift is subtracted from, and the datum added to all input time series
values. If the rating table is Log-Log, the table x-values are adjusted by
subtracting the offset. Refer to the ratingTableInterpolation() description for
comparison to this function.

Units and parameter type in resultant time series data set are defined by the x-
units label and parameter type of the current paired data set. All other names
and labels are copied over from the tsData.

See also: ratingTableInterpolation.

Parameters:
tsData – A regular or irregular interval TimeSeriesMath object.

Example:

tsStage =
 stageFlowCurve.reverseRatingTableInterpolation(

tsFlow)

Returns: A new TimeSeriesMath object.

7.15.57 Round to Nearest Whole Number
round()

Rounds values in a time series or paired data set to the nearest whole number.

The function rounds up the decimal portion of a number if equal to or greater
than .5 and rounds down decimal values less than .5. For example:

10.5 is rounded to 11.

10.499 is rounded to 10.

The x-values in paired data sets are unaffected by the function, only the y-
value data are rounded. For time series data sets, missing values are kept
missing.

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-120

For paired data sets, use the setCurve() method to first select the paired data
curve(s).

See also: roundOff();

 truncate();

 setCurve().

Parameters: Takes no parameters
Example: roundedData = dataSet.round()

Returns: A new HecMath object of the same type as the current object.

7.15.58 Round Off to Specified Precision
roundOff(integer significantDigits, integer powerOfTensPlace)

Round values in a time series or paired data set to a specified number of
significant digits and/or power of tens place. For the power of tens place, -1
specifies rounding to one-tenth (0.1), while +2 rounds to the hundreds (100).
For example:

1234.123456 will round to:

1230.0 for number of significant digits = 3, power of tens place = -1

1234.1 for number of significant digits = 6, power of tens place = -1
1234 for number of significant digits = 6, power of tens place = 0
1230 for number of significant digits = 6, power of tens place = 1

The x-values in paired data sets are unaffected by the function, only the y-
value data are rounded. For time series data sets, missing values are kept
missing.

For paired data sets, use the setCurve() method to first select the paired data
curve(s).

See also: round();

 truncate();

 setCurve().

Parameters:

significantDigits – An integer specifying the number of
significant digits to use in the rounding.

powerOfTensPlace – An integer specifying the power of tens place to
use in the rounding.

Example: roundedData = dataSet.roundOff(5, -2)

Returns: A new HecMath object of the same type as the current object.

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-121

7.15.59 Screen for Erroneous Values Based on Forward
Moving Average

screenWithForwardMovingAverage(integer numberToAverageOver,
 floating-point changeLimit,
 boolean setInvalidToMissingValue,
 string qualityFlagForInvalidValue)

Screen the current time series data set for possible erroneous values based on
the deviation from the forward moving average over numberToAverageOver
values computed at the previous point. If the deviation from the moving
average is greater than changeLimit, the value fails the screening test. Data
values failing the screening test are assigned a quality flag and/or are set to
missing.

Missing values and values failing the screening test are not counted in the
moving average and the divisor of the average is less one for each such value.
At least 2 values must be defined in the moving average else the moving
average is undefined and value being examined is screened acceptable.

If setInvalidToMissingValue is true, values failing the screening test are set
to missing.

If qualityFlagForInvalidValue is set to a character or string recognized as a
valid quality flag, the quality flag will be set for tested values. If there is no
previously existing quality available for the time series, the quality flag array
will be created for the time series. Values failing the quality test are set to the
user specified quality flag for invalid values. If there is existing quality data
and the time series value passes the quality test, the existing quality flag for
the points is unchanged. If there was no previously existing quality and the
time series value passes the quality test, the quality flag for the point is set to
"Okay.”

The acceptable values for qualityFlagForInvalidValue strings are: "M" or
"Missing”, "R" or "Rejected”, "Q" or "Questionable.” A blank string (" ") is
entered to disable the setting of the quality flag.

For the example,

resultantDataSet = dataSet.screenWithForwardMovingAverage (
16, 100., Constants.TRUE, “R”)

the forward moving average will be computed over 16 values, values
deviating from the moving average by more than 100.0 will be set to missing
and flagged as rejected.

Parameters:
numberToAverageOver – An integer specifying the number of
averaging values. Must be at least 2.

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-122

changeLimit – A floating-point number specifying the maximum
change allowed in the tested value from the forward moving average
value.

setInvalidToMissingValue – Either Constants.TRUE, or
Constants.FALSE, specifying whether time series values failing the
screening test are set to the "Missing" value.

qualityFlagForInvalidValue - A string representing the quality
flag setting for values failing the screening test. The accepted
character strings are: "M" or "Missing”, "R" or "Rejected”, "Q" or
"Questionable.” An empty string (“ ”) is entered to disable the setting
of the quality flag.

Example:

screenedData = tsData.screenWithForwardMovingAverage(
 16,
 100.,
 Constants.TRUE,
 “R”)

Returns: A new TimeSeriesMath object.

Generated Exceptions: Throws a HecMathException if
numberToAverageOver is less than 2; if an unrecognized quality flag is
entered for qualityFlagForInvalidValue or if
setInvalidToMissingValue is false and qualityFlagForInvalidValue is
blank (no action would occur).

7.15.60 Screen for Erroneous Values Based on
Maximum/Minimum Range

screenWithMaxMin(floating-point minValueLimit,
 floating-point maxValueLimit,
 floating-point changeLimit,
 boolean setInvalidToMissingValue,
 string qualityFlagForInvalidValue)

Flag values in a time series data set exceeding minimum and maximum limit
values or maximum change limit.

Values in the time series are screened for quality. Values below
minValueLimit or above maxValueLimit or with a change from the previous
time series value greater than changeLimit fail the screening test. The
maximum change comparison is done only when consecutive values are not
flagged.

If setInvalidToMissingValue is set to true, values failing the screening test
are set to the "Missing" value.

If qualityFlagForInvalidValue is set to a character or string recognized as a
valid quality flag, the quality flag will be set for tested values. If there is no

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-123

previously existing quality available for the time series, the quality flag array
will be created for the time series. Values failing the quality test are set to the
user specified quality flag for invalid values. If there is existing quality data
and the time series value passes the quality test, the existing quality flag for
the points is unchanged. If there was no previously existing quality and the
time series value passes the quality test, the quality flag for the point is set to
"Okay.”

For example,

resultantDataSet = dataSet.screenWithMaxMin (0.0, 1000., 100.,
Constants.FALSE, “R”)

time series values less than 0.0, or greater than 1000., or with a change from a
previous point greater than 100 will be flagged as “Rejected.” Flagged points
however will not be set to the “Missing” value.

Parameters:
minValueLimit – A floating-point number specifying the minimum
valid value limit.

maxValueLimit - A floating-point number specifying the maximum
valid value limit.

changeLimit - A floating-point number specifying the maximum
change allowed in the tested value from the previous time series value.

setInvalidToMissingValue – Either Constants.TRUE, or
Constants.FALSE, specifying whether time series values failing the
screening test are set to the "Missing" value.

qualityFlagForInvalidValue - A string representing the quality
flag setting for values failing the screening test. The accepted character
strings are: "M" or "Missing”, "R" or "Rejected”, "Q" or
"Questionable.” An empty string (“ ”) is entered to disable the setting
of the quality flag.

Example:

screenedData = tsData.screenWithMaxMin(
 0.,
 1000.,
 100.,
 Constants.FALSE,
 “R”)

Returns: A new TimeSeriesMath object.

Generated Exceptions: Throws a HecMathException if an unrecognized
quality flag is entered for qualityFlagForInvalidValue or if
setInvalidToMissingValue is false and qualityFlagForInvalidValue is
blank (no action would occur).

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-124

7.15.61 Select a Paired Data Curve by Curve Label
setCurve(string curveName)

Select, by curve label, the paired data curve for performing subsequent
arithmetic operations or math functions. By default, a paired data set loaded
from file has all curves selected.

A paired data set may contain more than one set of y-values. However, a user
may wish to modify only one curve of the data set. For example, using the
function ".add(2.0)" would by default add 2.0 to all y-values for all
curves. The setCurve() call may be used to limit the operation to just one
selected set of y-values.

The function searches the paired data set list of curve labels for a match to
curveName. If a match is found, that curve is set as the selected curve.

See also: setCurve(integer curveNumber).
Example: damageCurve.setCurve(“RESIDENTIAL”)

Parameters:

curveName – The curve label (a string) to set as the selected curve.

Returns: Nothing.

Generated Exceptions: Throws a HecMathException – if curveName is not
found in the paired data set curve labels.

7.15.62 Select a Paired Data Curve by Curve Number
setCurve(integer curveNumber)

Select, by curve number, the paired data curve for performing subsequent
arithmetic operations or math functions. By default, a paired data set loaded
from file has all curves selected.

A paired data set may contain more than one set of y-values. However, a user
may wish to modify only one curve of the data set. For example, using the
function ".add(2.0)" would by default add 2.0 to all y-values for all
curves. The setCurve() call can be used to limit the operation to just one
selected set of y-values. The function sets a curve index internal to the paired
data set. The option is to select one curve or all curves.

Curve numbering begins with “0.” If a paired data set has two curves, the first
curve is selected by, “setCurve(0).” To select the second curve, use
“setCurve(1).”

All curves in a paired data set are selected by setting curveNumber to -1.

See also: setCurve(String curveName).

Parameters:

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-125

curveNumber – An integer specifying the curve to set as the selected
curve. Curve numbering begins with 0. Set to –1 to select all curves.

Example: ruleCurve.setCurve(-1)

Returns: Nothing.

7.15.63 Set Data Container
setData(hec.io.DataContainer container)

Sets the data container for the current data set. For time series data sets, this is
a hec.io.TimeSeriesContainer. For paired data sets, container should be a
hec.io.PairedDataContainer. Containers are generated by some of the other
functions.

The hec.io.DataContainer class and the hec.io.TimeSeriesContainer and
the hec.io.PairedDataContainer subclasses contain the time series and paired
data values.

Parameters:
container – A hec.io.TimeSeriesContainer for time series data sets,
or a hec.io.PairedDataContainer for paired data sets.

Example: dataSet.setData(TSContainer)

Returns: Nothing.

Generated Exceptions: Throws a HecMathException if container is not of
type hec.io.TimeSeriesContainer for time series data sets or not of type
hec.io.PairedDataContainer for paired data sets.

7.15.64 Set Location Name for Data Set
setLocation(String locationName)

Set the location name for a data set, which changes the B-Part of the HEC-
DSS pathname. The new pathname will be used in plots, tables, and in the
write() method of DSSFile objects.

Parameters:
locationName – A string specifying the new location name for the
data set.

Example: dataSet.setLocation(“OAKVILLE”)

Returns: Nothing.

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-126

7.15.65 Set Parameter for Data Set
setParameterPart(String parameterName)

Set the parameter name for a data set, which changes the C-Part of the HEC-
DSS pathname. The new pathname will be used in plots, tables, and in the
write() method of DSSFile objects.

Parameters:
parameterName – A string specifying the new parameter name for the
data set.

Example: dataSet.setParameterPart(“ELEV”)

Returns: Nothing.

7.15.66 Set Pathname for Data Set
setPathname(String pathname)

Set the pathname for a data set to the specified pathname. Subsequent
operations using the data set such as getData() or DSSFile.write() will use or
reflect the new pathname..

Parameters:
pathname – A string specifying the new pathname for the data set.

Example: dataSet.setPathname(“//OAKVILLE/STAGE//1HOUR/OBS/”)

Returns: Nothing.

7.15.67 Set Time Interval for Data Set
setTimeInterval(String interval)

Set the time interval for a data set, which changes the E-Part of the pathname.
The new pathname will be used in plots, tables, and in the write() method of
DSSFile objects.

Parameters:
interval – A string specifying the new interval for the data set.

Example: dataSet.setTimeInterval(“1HOUR”)

Returns: Nothing.

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-127

7.15.68 Set Data Type for Time Series Data Set
setType(string typeString)

Set the data for a time series data set.

 Parameters:
typeString – A string specifying the data type for the data set. This
should be “INST-CUM”, “INST-VAL”, “PER-AVER” or “PER-
CUM”

Example: dataSet.setType(“PER-AVER”)

Returns: Nothing.

7.15.69 Set Units Label for Data Set
setUnits(String unitsString)

Set the units label for a data set. For a paired data set, the call sets the y-units
label.Parameters:

unitsString – A string specifying the units label for the data set.
Example: dataSet.setUnits(“CFS”)

Returns: Nothing.

7.15.70 Set Version Name for Data Set
setVersion(String versionName)

Set the version name for a data set, which changes the F-Part of the pathname.
The new pathname will be used in plots, tables, and in the write() method of
DSSFile objects.

Parameters:
version – A string specifying the new location for the data set.

Example: dataSet.setVersion(“OBSERVED”)

Returns: Nothing.

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-128

7.15.71 Set Watershed Name for Data Set
setWatershed(String watershedName)

Set the watershed (or river) name for a data set, which changes the A-Part of
the pathname. The new pathname will be used in plots, tables, and in the
write() method of DSSFile objects.

Parameters:
watershedName – A string specifying the new watershed name for the
data set.

Example: dataSet.setWatershed(“OAK RIVER”)

Returns: Nothing.

7.15.72 Shift Adjustment of Time Series Data
shiftAdjustment(TimeSeriesMath tsData)

Derive a new time series data set by linear interpolation of values in the
current time series data set at the times defined by the time series data set
tsData. If times in the new time series precede the first data point in the
current time series, the value for these times is set to 0.0. If times in the new
time series occur after the last data point in the current time series, the value
for these times is set to the value of the last point in the current time series.
Interpolation of values with the shiftAdjustment function is shown in Figure
7.8.

Interpolated value

Original TS data

Figure 7.8 Interpolation of Time Series Values using Shift
Adjustment Function

Both time series data sets may be regular or irregular interval. Interpolated
points must be bracketed or coincident with valid (not missing) values in the
original time series, otherwise the values are set as missing.

Parameters:
tsData – A regular or irregular interval time series data set.

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-129

Example:

tsInterp = tsValues.shiftAdjustment(tsData)

Returns: A new TimeSeriesMath object.

7.15.73 Shift Time Series in Time
shiftInTime(string timeShiftString)

Shift the times in the current time series data set by the amount specified with
timeShiftString. The data set may be regular or irregular interval time series
data. Data set values are unchanged.

timeShiftString has the form “nT”, where “n” is an integer number and “T” is
“M”(inute), “H”(our), “D”(ay), “W”(eek), “Mo”(nth),or “Y”(ear). Only the
first character is significant for “T”, except for “Month”, which requires at
least two characters.

Parameters:
timeShiftString – A string specifying the time increment to shift times
in the current time series data set.

Example: TsShifted = tsData.shiftInTime(“3H”)

Returns: A new TimeSeriesMath object.

7.15.74 Sine Trigonometric Function
sin()

Derive a new time series or paired data set from the sine of values of the
current data set. The resultant data set values are in radians. For time series
data, missing values are kept as missing.

For paired data sets, use the setCurveMethod to first select the paired data
curve(s).

See also: setCurve().

Parameters: Takes no parameters
Example: newDataSet = dataSet.sin()

Returns: A new HecMath object of the same type as the current object.

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-130

7.15.75 Skew Coefficient
skewCoefficient()

Compute the skew coefficient of the current time series data set. Missing
values are ignored.

Parameters: Takes no parameters
Example: skewCoefficient = dataSet.skewCoefficient()

Returns: A floating-point value representing the skew coefficient of the
current time series.

7.15.76 Snap Irregular Times to Nearest Regular Period
snapToRegularInterval(string timeIntervalString,

 string timeOffsetString,
 string timeBackwardString,
 string timeForwardString)

"Snap" data from the current irregular or regular interval time series to form a
new regular interval time series of the specified interval and offset. For
example, a time series record from a gauge recorder collects readings 6
minutes past the hour. The function may be used to “snap” or shift the time
points to the top of the hour.

The regular interval time of the resultant time series is specified by
timeIntervalString. timeIntervalString is a valid HEC time increment
string (e.g. “1MIN”, “15MIN”, “1HOUR”, “6HOUR”, “1DAY”,
“1MONTH”).

Times in the resultant time series may be shifted (offset) from the regular
interval time by the increment specified by timeOffsetString. As an
example, the offset could be used to shift times from the top of the hour to
instead 6 minutes past the hour. Data from the original time series is
"snapped" to the regular interval if the time of the data falls within the time
window set by the timeBackwardString and the timeForwardString. That
is, if the new regular interval is at the top of the hour and the time window
extends to 9 minutes before the hour and 15 minutes after the hour, an original
data point at 0852 would be snapped to the time 0900 while a point at 0916
would be ignored.

timeOffsetString, timeBackwardString and timeForwardString are time
increment strings expressed as "nT”, where "n" is an integer number and "T"
is one of the time increments: "M(INUTES)”, "D(AYS)" or "H(OUR)
(characters in the parenthesis are optional). For the example of the previous
paragraph, timeIntervalString would be "1HOUR”, timeOffsetString
would be "0M”, timeBackwardString would be "9M" (or "9min") and
timeForwardString would be "15M.” A blank string (“ ”) is equivalent to
“0M.”

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-131

By default values in the resultant regular interval time series data set are set to
missing unless matched to times in the current time series data set within the
time window tolerance set by timeBackwardString and
timeForwardString.

Parameters:
timeIntervalString – A string specifying the regular time interval
for the resultant time series.

timeOffsetString – A string specifying the offset of the new time
points from the regular interval time. This variable may be an empty
string (“ ”) or None.

timeBackwardString – A string specifying the time to look
backwards from the regular time interval for valid time points.

timeForwardString – A string specifying the time to look forward
from the regular time interval for valid time points.

Example:

rtsData = itsData.snapToRegularInterval(
 “1HOUR”,
 None,
 “5Min”,
 “5Min”)

Returns: A new regular interval TimeSeriesMath object.

7.15.77 Square Root
sqrt()

Derive a new time series or paired data set computed from the square root of
values of the current data set. For time series data, missing values are kept as
missing. Values less than zero are set to missing.

For paired data sets, use setCurve to first select the paired data curve(s).

See also: setCurve().

Parameters: Takes no parameters
Example: newDataSet = dataSet.sqrt()

Returns: A new HecMath object of the same type as the current object.

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-132

7.15.78 Standard Deviation of Time Series
standardDeviation()

Compute the standard deviation value of the current time series data set.
Missing values are ignored.

Parameters: Takes no parameters
Example: stdDev = tsData.standardDeviation()

Returns: A floating-point value representing the standard deviation of the
current time series.

7.15.79 Straddle Stagger Hydrologic Routing
straddleStaggerRouting(integer numberToAverage,
 integer numberToLag,
 integer numberSubreaches)

Route the current regular interval time series data set using the Straddle-
Stagger hydrologic routing method. numberToAverage specifies the number
of ordinates to average over (Straddle). numberToLag specifies the number
ordinates to lag (Stagger). The number of routing subreaches is set by
numberSubreaches.

Parameters:
numberToAverage – An integer specifying the number of ordinates to
average over (Straddle).

numberToLag – An integer specifying the number of ordinates to lag
(Stagger).

numberSubreaches – An integer specifying the number of routing
subreaches.

Example:

tsRouted = tsFlow.straddleStaggerRouting(
 numberAver,
 lag,
 reachCount)

Returns: A new TimeSeriesMath object.

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-133

7.15.80 Subtract a Constant
subtract(floating-point constant)

Subtract the value constant from all valid values in the current time series or
paired data set. For time series data, missing values are kept as missing.

For paired data, constant is subtracted from y-values only. Use the setCurve
method to first select the paired data curve(s).

See also: subtract(HecMath hecMath); setCurve()

Parameters:
constant - A floating-point value.

Example: newDataSet = dataSet.subtract(5.3)

Returns: A new HecMath object of the same type as the current object.

7.15.81 Subtract a Data Set
subtract(TimeSeriesMath tsData)

Subtract the values in the data set tsData from the values in the current data
set. Both data sets must be time series data set.

When subtracting one time series data set from another, there is no restriction
that times in the two data sets match exactly. However, only values with
coincident times will be subtracted. Times in the current time series data set
that cannot be matched with times in the second data set are set missing.
Values in the current data set that are missing are kept as missing. Either or
both data sets may be regular or irregular interval time series.

See also: subtract(floating-point constant).

Parameters:
tsData - A TimeSeriesMath object.

Example: newDataSet = dataSet.subtract(otherDataSet)

Returns: A new TimeSeriesMath object.

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-134

7.15.82 Successive Differences for Time Series
successiveDifferences()

Derive a new time series from the difference between successive values in the
current regular or irregular interval time series data set. The current data must
be of type “INST-VAL” or “INST-CUM.” A value in the resultant time series
is set to missing if either the current or previous value in the current time
series is missing (need to have two consecutive valid values). If the data type
of the current data set is “INST-CUM” the resultant time series data set is
assigned the type "PER-CUM”, otherwise the data type does not change.

See also: timeDirivative().

Parameters: Takes no parameters
Example: newTsData = tsData.successiveDifferences()

Returns: A new TimeSeriesMath object.

Generated Exceptions: Throws a HecMathException if the current data set
is not of type "INST-VAL" or "INST-CUM.”

7.15.83 Sum Values in Time Series
sum()

Sum the values of the current time series data set. Missing values are ignored.

Parameters: Takes no parameters
Example: total = tsData.sum()

Returns: A floating-point value representing the sum of all valid values of
the current time series.

7.15.84 Tangent Trigonometric Function
tan()

Derive a time series or paired data set computed from the tangent of values of
the current data set. For time series data, missing values are kept as missing.
If the cosine of the current time series value is zero, the value is set missing.

For paired data sets, use the setCurve method to first select the curve(s).

See also: setCurve().
Example: newDataSet = dataSet.tan()

Parameters: Takes no parameters

Returns: A new HecMath object of the same type as the current object.

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-135

7.15.85 Time Derivative (Difference Per Unit Time)
timeDerivative()

Derive a new time series data set from the successive differences per unit time
of the current regular or irregular interval time series data set. For the time
“t”,

TS2(t) = (TS1(t) – TS1(t-1)) / DT

where DT is the time difference between t and t-1. For the current form of the
function, the units of DT are minutes.

A value in the resultant time series is set to missing if either the current or
previous value in the original time series is missing (need to have two
consecutive valid values). By default, the data type of the resultant time series
data set is assigned as "PER-AVER.”

See also: successiveDifferences().

Parameters: Takes no parameters
Example: newTsData = tsData.timeDerivative()

Returns: A new TimeSeriesMath object.

7.15.86 Transform Time Series to Regular Interval
transformTimeSeries(string timeIntervalString,
 string timeOffsetString,
 string functionTypeString)

Generate a new regular interval time series data set from the current regular or
irregular time series. The new time series is computed having the regular time
interval specified by timeIntervalString and time offset set by
timeOffsetString.

Values for the new time series are computed from the original time series data
set using one of seven available functions. The function is selected by setting
functionTypeString to one of the following types:

 "INT" - Interpolate at end of interval

 "MAX" - Maximum over interval

 "MIN" - Minimum over interval

 "AVE" - Average over interval

 "ACC" - Accumulation over interval

 "ITG" - Integration over interval

 "NUM" - Number of valid data over interval

where “interval” is the interval between time points in the new time series.

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-136

The regular interval time of the new time series is specified by
timeIntervalString. timeIntervalString is a valid HEC time increment
string (e.g. “1MIN”, “15MIN”, “1HOUR”, “6HOUR”, “1DAY”,
“1MONTH”).

Times in the resultant time series may be shifted (offset) from the regular
interval time by the increment specified by timeOffsetString. As an
example, the offset could be used to shift times from the top of the hour to 6
minutes past the hour. Typically no offset is used.

The data type of the original time series data governs how values are
interpolated. Data type “INST-VAL” (or “INST-CUM”) considers the value
to change linearly over the interval from the previous data value to the current
data value. Data type “PER-AVER” considers the value to be constant at the
current data value over the interval. Data type “PER-CUM” considers the
value to increase from 0.0 (at the start of the interval) up to the current value
over the interval. Interpolation of the three data types is illustrated in Figure
7.9.

INST-VAL PER-AVER PER-CUM

Interpolated value

Figure 7.9 Interpolation of “INST-VAL”, “PER-AVER” and “PER-CUM” data

How interpolation is performed for a specific data type influences the
computation of new time series values for the selected function. For example,
if the data type is “INST-VAL”, the function “Maximum over interval” is
evaluated by: Finding the maximum value of the data points from the original
time series that are inclusive in the new time interval. Linearly interpolate
values at beginning and ending of the new time interval, and determine if
these values represent the maximum over the interval.

Referring to the plots in Figure 7.9, the “Average over interval” function is
applied to a time series by integrating the area under the curve between
interpolated points and dividing the result by the interval time.

See also: transformTimeSeries(TimeSeriesMath tsData, string
functionTypeString)

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-137

Parameters:
timeIntervalString – A string specifying the regular time interval
for the resultant time series.

timeOffsetString – A string specifying the offset of the new time
points from the regular interval time. This variable may be a blank
string (“ ”).

functionTypeString – A string specifying the method for computing
values for the new time series data set.

Example:

newTsData = tsData.transformTimeSeries(
 “1Day”,
 “0M”,
 “AVE”)

Returns: A new regular interval TimeSeriesMath object.

7.15.87 Transform Time Series to Irregular Interval
transformTimeSeries(TimeSeriesMath tsData,
 string functionTypeString)

Generate a new time series data set from the current regular or irregular time
series. The times for the new data set are defined by the times in tsData,
which may be a regular or irregular time series data set.

Values for the new time series are computed from the original time series data
set using one of seven available functions. The function is selected by setting
functionTypeString to one of the following types:

 "INT" - Interpolate at end of interval

 "MAX" - Maximum over interval

 "MIN" - Minimum over interval

 "AVE" - Average over interval

 "ACC" - Accumulation over interval

 "ITG" - Integration over interval

 "NUM" - Number of valid data over interval

where “interval” is the interval between time points in the new time series.

The data type of the original time series data governs how values are
interpolated. Data type “INST-VAL” (or “INST-CUM”) considers the value
to change linearly over the interval from the previous data value to the current
value. Data type “PER-AVER” considers the value to be constant at the
current value over the interval. Data type “PER-CUM” considers the value to

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-138

increase from 0.0 (at the start of the interval) up to the current value over the
interval. Interpolation of the three data types is illustrated in Figure 7.9.

How interpolation is performed for a specific data type influences the
computation of new time series values for the selected function. For example,
if the data type is “INST-VAL”, the function “Maximum over interval” is
evaluated by: Finding the maximum value of the data points from the original
time series that are inclusive in the new time interval. Linearly interpolate
values at beginning and ending of the new time interval, and determine if
these values represent the maximum over the interval.

Referring to the plots in Figure 7.9, the “Average over interval” function is
applied to a time series by integrating the area under the curve between
interpolated points and dividing the result by the interval time.

See also: transformTimeSeries(string timeIntervalString,

string timeOffsetString, string functionTypeString)

Parameters:
tsMath – A TimeSeriesMath object used to define the times for the
new data set.

functionTypeString – A String specifying the method for computing
values for the new time series data set.

Example:

newTsData = tsValues.transformTimeSeries(
 tsTimeTemplate,
 “MAX”)

Returns: A new TimeSeriesMath object.

7.15.88 Truncate to Whole Numbers
truncate()

Truncates values in a time series or paired data set to the nearest whole
number. For example:

10.99 is truncated to 10.

The x-values in paired data sets are unaffected by the function, only the y-
value data are truncated. Missing values remain missing.

For paired data, use the setCurve method to first select the curve(s).

See also: setCurve().

Parameters: Takes no parameters
Example: newDataSet = dataSet.truncate()

Returns: A new HecMath object of the same type as the current object.

HEC-DSSVue User’s Manual Chapter 7 – Scripting

7-139

7.15.89 Two Variable Rating Table Interpolation
twoVariableRatingTableInterpolation(

TimeSeriesMath tsDataX,
 TimeSeriesMath tsDataZ)

Derive a new time series data set by using the x-y curves in the current paired
data set to perform two-variable rating table interpolation of the time series
tsDataX and tsDataZ. For two-variable rating table interpolation, the current
paired data set should have more than one curve (multiple sets of y-values).

As an example, reservoir release is a function of both the gate opening height
and reservoir elevation (Figure 7.10). For each gate opening height, there is a
reservoir elevation-reservoir release curve, where reservoir elevation is the
independent variable (x-values) and reservoir release the dependent variable
(y-values) of a paired data set. Each paired data curve has a curve label. In
this case, the curve label is assigned the gate opening height. Using the paired
data set shown in Figure 7.10, the function may be employed to interpolate
time series values of reservoir elevation (tsDataX) and gate opening height
(tsDataZ) to develop a time series of reservoir release.

No extrapolation is performed. If time series values from tsDataX or
tsDataZ are outside the range bounded by the paired data, the new time series
value is set to missing. Units and parameter type in the new time series are set
to the y-units label and parameter of the current paired data set. All other
names and labels are copied over from tsDataX.

Times for tsDataX and tsDataZ must match. Curve labels must be set for
curves in the rating table paired data set and must be interpretable as numeric
values.

Chapter 7 – Scripting HEC-DSSVue User’s Manual

7-140

Reservoir Elevation (ft)

0

2

4

6

8

10

12

14

16

18

20

22

24

26
R

es
er

vo
ir

R
el

ea
se

 (c
fs

)

Figure 7.10 Example of two variable rating table paired data, reservoir
release as a function of reservoir elevation and gate opening height (curve
labels).

Parameters:
tsDataX – A regular or irregular interval TimeSeriesMath object,
interpreted as x-ordinate values in the two variable interpolation.

tsDataZ – A regular or irregular interval TimeSeriesMath object,
interpreted as z-ordinate values, (value defined by the paired data
curve labels).

Example: tsOutflow =
gateCurve.twoVariableRatingTableInterpolation(
 tsElevation,
 tsGateOpening)

Returns: A new TimeSeriesMath object.

Generated Exceptions: Throws a HecMathException if times do not match
for tsDataX and tsDataZ; if the paired data curve labels are blank or cannot
be interpreted as number values.

