
HEC-DSSVue User’s Manual Chapter 7 – Scripting
 

7-1 

Chapter 7 
7 Scripting 

Scripting provides a way to control the operation of HEC-DSSVue in a non-
interactive way.  The user can build and save scripts to be executed later – 
possibly on different data sets. 

This chapter provides an introduction to scripting, describing the components 
of  the user interface, scripting language and application program interface 
(API), and offering examples illustrating how to use the API. 

7.1 Executing Scripts 
HEC-DSSVue allows the execution of scripts in interactive and batch modes.  
Scripts are executed interactively by starting the HEC-DSSVue program and 
selecting the desired script from the Toolbar or the Script Selector.  Scripts are 
executed in batch mode by starting the HEC-DSSVue program with a script 
file name as a parameter (e.g. HecDssVue.bat c:\test\myScript.py). 
 
Interactive scripts are not passed any parameters upon script execution.  In a 
script executed interactively the variable sys.argv is a list of length 1, with the 
only element set to the empty string (e.g. sys.argv = [“”]). 
 

Scripts executed in batch mode may take parameters from the command line 
(e.g HecDssVue.bat c:\test\myScript.py a b c).  In a script 
executed in batch mode the variable sys.argv is a list whose length is one 
greater than the number of parameters passed on the command line, with the 
first element set to the file name of the executing script and the remaining 
elements set to the parameters (e.g. sys.argv = 
[“c:\\test\\myScript.py”, “a”, “b”, “c”]). 

7.1.1 Script Selector 
The Script Selector (Figure 7.1) displays buttons for all the available scripts 
which have the “Display Script on Toolbar” box checked (see Section 7.2.2, 
“Editor Panel”).  Buttons are displayed in alphabetical order. 



Chapter 7 – Scripting HEC-DSSVue User’s Manual
 

7-2 

To access the Script 
Selector, select the Script 
Selector command from 
the Utilities menu of 
HEC-DSSVue.  Once the 
Script Selector is open, it 
will remain open until 
you close it. 

When you press a button, 
the Jython script engine 
will execute the 
associated script.  

 

 

 

 

 

 

 

7.2 Script Browser 
The Script Browser, shown in Figure 7.2, allows you to add, delete, and 
modify scripts.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1 Script Selector 

 
Figure 7.2 Script Browser 

 



HEC-DSSVue User’s Manual Chapter 7 – Scripting
 

7-3 

You can access the Script Browser from HEC-DSSVue’s Utilities menu by 
clicking Script Browser.  Alternatively, from the shortcut menu of the Script 
Selector.  In the Script Selector, right click on a button to access the shortcut 
menu, then select Edit.  The Script Browser will open with that script selected 
and ready for editing. 

Components of the Script Browser include the Menu Bar, the Editor Panel, 
and the Tree Hierarchy.  The following sections describe these components. 

7.2.1 Menu Bar 
The Menu Bar (Figure 7.3) contains two primary 
menu items, File and Edit.   

File Menu Commands  
New Creates a new script stored at the currently selected position. 

Only available when a folder node is the selected node in the 
scripts tree. 

Open 
Script 

Edits the currently displayed script.  Double clicking on the 
script also edits the currently displayed script. Only available 
when a script node is the selected node in the scripts tree. 

Import Imports a file into the script browser. If the import is successful 
the browser is placed in edit mode. Only available when a folder 
node is the selected node in the scripts tree. 

Save Saves the current script. Only available when a script is being 
edited. 

Delete Deletes the currently opened script. Prompts user for 
confirmation. Only available when a script node is the selected 
node in the scripts tree. 

Test Executes the currently selected script.  
 

Close Closes the Script Browser Window. 

 

 
Figure 7.3 Menu Bar 



Chapter 7 – Scripting HEC-DSSVue User’s Manual
 

7-4 

Edit Menu Commands  
Cut Cuts the currently selected text in the script window or the 

currently selected tree node to the system clipboard. 

Copy Copies the currently selected text in the script window or the 
currently selected tree node to the system clipboard. 

Paste Pastes the contents of the system clipboard into the script 
window at the current cursor location or if a tree node was 
cut/copied pastes at the currently selected folder node. 

 

 

7.2.2 Editor Panel  
You can select and edit scripts in the Editor Panel of the Script Browser 
(Figure 7.4).  

The Label field allows you to 
specify the label displayed on 
a script’s button in the Script 
Selector. 

Script displays the name of 
the file in which the script is 
stored. 

 is the Select Script button, 
which allows you to select a 
previously-created script file. 

Display Script on Toolbar, 
when checked, enables the 
script to display in the Script 
Selector and the Toolbar. 
When you uncheck this 
option, the script will not 
display on the Script Selector 
or Toolbar. 

The Icon field allows you to choose the Icon to display for the script’s button.  
If you do not select an icon, the script name displays in the script’s button. 

The Description field allows you to add a description of the script.  The first 
line of your description serves as a tooltip for the corresponding button on the 
Script Selector and Toolbar. 

The Script Text field contains the script text itself and serves as an editing 
window for creating new scripts. 

Figure 7.4 Editor Panel 



HEC-DSSVue User’s Manual Chapter 7 – Scripting
 

7-5 

7.2.3 Tree Hierarchy 
The Tree Hierarchy (Figure 7.5) uses a 
Windows Explorer-style tree structure to 
allow you to navigate folders in your 
directory structure and access scripts.  By 
default, the scripts are stored in a 
“scripts” directory under the directory 
where HEC-DSSVue was installed. 

The Tree Hierarchy also has a shortcut 
menu that displays Cut, Copy, and Edit 
commands for script nodes and New, 
Import, and Paste for folder nodes. 

To access the shortcut menu, point to a 
node in the “tree” and right-click with 
your mouse.  

 

 

 

 

 

 

 

7.3 Scripting Basics 
Scripting in HEC-DSSVue is accomplished using Jython, an implementation 
of the Python programming language designed specifically for integration 
with the Java programming language.  More information about Jython can be 
found at the official Jython website – www.jython.org. 

Python (of which Jython is an implementation) is an interpreted language with 
simple syntax and high-level data types.  This section is not a comprehensive 
Python tutorial, but rather a simple primer to allow the creation of simple 
scripts.  This primer does not cover defining classes in Python. 

The official Python website - www.python.org - has links to online Python 
tutorials as well as programming books. 

 
Figure 7.5 Tree Hierarchy 



Chapter 7 – Scripting HEC-DSSVue User’s Manual
 

7-6 

7.3.1 Outputting Text 
Text information can be displayed in the console window using the print 
statement which has the syntax: 

   print [item[, item…]] 

The items are comma-separated and do not need to be of the same type.  The 
print statement will insert a space between every specified item in the output. 

Example 1: Outputting Text 
 
print “Testing myFunction, i =”, i, “, x =”, x 

7.3.2 Data Types 
Python has integer, long integer, floating-point, imaginary number, and 
sequence and dictionary data types.  Sequences are divided into mutable (or 
changeable) sequences called lists, immutable sequences called tuples.  
Strings are special tuples of characters that have their own syntax.  
Dictionaries are like sequences but are indexed by non-numeric values.  In 
addition, Python also has a special type called None, which is used to indicate 
the absence of any value.  
 

Python does not have a specific type for boolean (logical, or “true / false”) 
data.  Tests, such as conditional expressions, which must evaluate to true or 
false are conducted such that the result is false if the expression evaluates to 
None, integer or floating-point zero, or an empty sequence.  Any other result 
is true.  Python statements that generate Boolean information (such as the if 
statement) generate integer 0 for false and integer 1 for true.  This becomes an 
issue in Jython which allows calling Java functions and methods which expect 
a Java boolean for input or generate a Java boolean for output.  Jython maps 
these boolean values to integer 0 or 1.  Documentation for the HEC-DSSVue 
API uses the term Constants.TRUE (1), or Constants.FALSE (0), or 
sometimes the shorthand “0/1”, for arguments (these are constants defined to 
1 and 0, respectively, in hec.script), and “0/1” to specify that the return type is 
a Python integer, but its value is restricted to 0 or1, corresponding to a Java 
boolean.  The hec.script module supplies constants to use in these situations. 

There are also situations regarding the HEC-DSSVue API where it is 
necessary or desirable to set a time-series value to “missing” or to test whether 
a time-series value is missing.  The hec.script module also supplies a constant 
to use in these situations. 



HEC-DSSVue User’s Manual Chapter 7 – Scripting
 

7-7 

The currently-defined constants in the hec.script module are: 

Constant Type Represents 

Constants.TRUE integer true 

Constants.FALSE integer false 

Constants.UNDEFINED floating-point missing data value 

It is recommended that these defined constants be used where applicable for 
portability and clarity. 

 

Example 2: Variable Types  
 
# set some integer values 
i = 0 
j = 1 
k = -10998 
m = Constants.TRUE 
 
# set a long integer 
n = 79228162514264337593543950336L 
 
# set some floating-point values 
x = 9.375 
y = 6.023e23 
z = -7.2e-3 
t = Constants.UNDEFINED 
 
# set some strings 
string_1 = “abc” 
string_2 = ‘xyz’ 
string_3 = “he said \“I won’t!\”” 
string_4 = ‘he said “I will not!”‘ 
string_5 = “””this is a 
              multi-line string””” 
 
# set a tuple – tuples are contained within () 
tuple_1 = (1, 2, “abc”, x, None) 
 
# set a list – lists are contained within [] 
list_1 [1, 2, “abc”, x, tuple_1] 
 
# set a dictionary, using key : value syntax 
# dictionaries are contained within {} 
dict_1 = {“color” : “red”, “size” : 10, “list” : [1, 5, 8]} 

 



Chapter 7 – Scripting HEC-DSSVue User’s Manual
 

7-8 

Indexing into sequence types is done using  [i] where I starts at 0 for the fist 
element .  Subsets of sequence types (called slices) are accessed using [i:j] 
where i is the first element in the subset and j is the element after the last 
element in the subset.  If negative numbers are used to specify and index or 
slice, the index is applied to the end of the sequence, where [-1] specifies the 
last element, [-2] the next-to last and so on.  If i is omitted in slice syntax it 
defaults to 0. If j is omitted in slice syntax it defaults to the length of the 
sequence, so list_1[0:len(list_1)] is the same as list_1[:]. 
Indexing into dictionaries is done using [x] where x is the key. 

The number of elements in a sequence type or dictionary is returned by the 
len() function. 

 

Example 3: Sequence Indexing and Slicing  
 
string_4[3]  # 4th element 
string_4[3:5]  # 4th & 5th elements 
list_1[-1]  # last element 
list_1[2:-1]  # 3rd through next-to-last element 
list_1[2:len(list_1)] # 3rd through last element (also list_1[2:]) 
dict_1[“size”]  # value associated with “size” key 
i = len(list_1)  # length of list_1 

 

7.3.3 Variables 
Python variable names consist of an upper- or lower-case letter or the “_” 
(underscore) character followed by an unlimited number of upper- or lower-
case characters, digits or underscore characters. 

Variables are assigned values by use of the “=” (equals) character.  A 
sequence may be assigned to multiple variables using a single equals 
character.  Variable names are case sensitive, so the name “startdate” is not 
the same name as “startDate”. 

 

Example 4: Assigning Values to Variables 
 
i = 0 
j = 1 
k = -10998 
string_1 = “abc” 
i, j, k, string_1 = 0, 1, -10998, “abc” 



HEC-DSSVue User’s Manual Chapter 7 – Scripting
 

7-9 

7.3.4 Operators 
Each of the following operators can be used in the form a = b operator c.  
Each can also be used as an assignment operator in the form a operator= b 
(e.g. a += 1, x **= 2). 

+ arithmetic addition 
- negation or arithmetic subtraction 
* arithmetic multiplication 
/ arithmetic division 
** arithmetic power 
% arithmetic modulo 
& bit-wise and 
| bit-wise or 
~ bit-wise not 
^ bit-wise xor (exclusive or) 
<< bit-wise left shift 
>> bit-wise right shift 

Each of the following operators returns 0 (false) or 1 (true) and can be used in 
conditional expressions as discussed in Section 7.3.7. 

> greater than 
< less than 
>= greater than or equal to 
<= less than or equal to 
!= not equal to 
== equal to 

7.3.5 Comments 
Python uses the “#” (hash) character to indicate comments.  Everything from 
the “#” character to the end of the line is ignored by the interpreter.  
Comments may not be placed after a program line continuation (“\”) character 
on the same input line. 

 

7.3.6 Program Lines 
Unless otherwise indicated, every input line corresponds to one logical 
program statement.  Two or more statements can be combined on line input 
line by inserting the “;” (semicolon) character between adjacent statements.  A 
single statement may be continued across multiple input lines by ending each 
line with the “\” (back slash) character.  Comments may not be placed after a 
program line continuation (“\”) character on the same input line. 



Chapter 7 – Scripting HEC-DSSVue User’s Manual
 

7-10 

 

Example 5: Input vs. Program Lines  
 
# multiple statements per line 
r = 1; pi = 3.1415927; a = pi * r ** 2 
 
# multiple lines per statement 
a = \ 
  pi * \ 
  r ** 2 

 

Input lines are grouped according to their function.  Input lines forming the 
body of a conditional, loop, exception handler, or function or class definition 
must be grouped together.  Input lines not in any of the construct comprise 
their own group.  In Python, grouping of input lines is indicated by 
indentation.  All lines of a group must be indented the same number of spaces.  
A horizontal tab character counts as 8 spaces on most systems.  In some 
Python documentation, a group of input lines is called a suite. 

 

Example 6: Input Line Grouping  
 
# this is the main script group 
dist = x2 – x1 
if dist > 100.: 
    # this is the “if” conditional group 
    y = dist / 2. 
    z = y ** 2. 
else : 
    # this is the “else” conditional group 
    y = dist. 
    z = y ** 2. / 1.5 
# back to main script group 
q = y * z 

 



HEC-DSSVue User’s Manual Chapter 7 – Scripting
 

7-11 

7.3.7 Conditional Expressions 
Conditional expressions have the form: 

if [not] condition : 
  if-group 
[elif [not] condition : 
  elif-group] 
[else : 
  else-group] 

The “:” (colon) character must be placed after each condition. 

The condition in each test is an expression built from one or more simple 
conditions using the form: 

simple-condition ( and | or ) [not] simple-condition 

Parentheses can be used to group conditions. 

The simple-condition in each expression is either an expression using one of 
the conditional operators mentioned in Section 7.3.4 or is of the form: 

item [not] in sequence 

 

Example 7: Conditional Expressions  
 
if (x < y or y >= z) and string_1.index(“debug”) != -1 : 
    # do something 
    … 
elif z not in value_list or (x < z * 2.5) : 
    # do something different 
    … 
else : 
    # do something else 

 

If the statement group to be processed upon a condition is a single statement, 
that statement may follow the condition on the same line (after the colon 
character). 

 

Example 8: Simple Conditional Expressions  
 
if x1 < x2 : xMax = x2 
else       : xMax = x1 

 

 



Chapter 7 – Scripting HEC-DSSVue User’s Manual
 

7-12 

7.3.8 Looping 
Python supports conditional looping and iterative looping.  For each type, the 
body of the loop (the loop-group) can contain break and/or continue 
statements.   

The break statement immediately halts execution of the loop-group and 
transfers control to the statement immediately following the loop. 

The continue statement skips the remainder of the current iteration of the 
loop-group and continues with the next iteration of the loop-group. 
 

7.3.8.1 Conditional Looping 
Python supports conditional looping with the while statement, which has the 
form: 

while condition : 
    loop-group 
 

Conditional looping executes the body of the loop (the loop-group) as long as 
the condition evaluates to true. 

 

Example 9: Conditional Looping  
 
# print the first 10 characters 
string_1 = “this is a test string” 
i = 0 
while i < 10 :   
    print string_1[i] 
    i += 1 

 

7.3.8.2 Iterative Looping 
Python supports iterative looping with the for statement, which has the form: 

for item in sequence : 
    loop-group 
[else : 
    else-group] 

Iterative looping executes the body of the loop (the loop-group) once for each 
element in sequence, first setting item to be that element.  If the iteration 
proceeds to completion without being interrupted by a break statement the 
else-group will be executed, if specified. 



HEC-DSSVue User’s Manual Chapter 7 – Scripting
 

7-13 

The range([start,] stop[, increment]) helper function generates a sequence of 
numbers from start (default = 0) to stop, incrementing by increment (default = 
1).  Thus range(4) generates the sequence (0, 1, 2, 3). 

 

Example 10: Iterative Looping  
 
# print the first 10 characters 
string_1 = “this is a test string” 
for i in range(10) :   
    print string_1[i] 
 
# print all the characters 
string_1 = “this is a test string” 
for i in range(len(string_1)) :   
    print string_1[i] 
 
# print all the characters (more Python-y) 
string_1 = “this is a test string” 
for c in string_1 :   
    print c 

 

7.3.9 Defining and Using Functions 
In Python, functions are defined with the syntax: 

def functionName([arguments]) : 
    function-body 

Function names follow the same naming convention as variable names 
specified in Section 7.3.2.  The arguments are specified as a comma-delimited 
list of variable names that will be used within the function-body.  These 
variables will be positionally assigned the values used in the function call.  
More complex methods of specifying function arguments are specified in 
Python tutorials and references listed at the official Python website 
(www.python.org). 

A function must be defined in a Python program before it can be called.  
Therefore, function definitions must occur earlier in the program than calls to 
those functions. 

A function may optionally return a value or sequence of values. 
 



Chapter 7 – Scripting HEC-DSSVue User’s Manual
 

7-14 

Example 11: Defining And Using Functions  
 
def printString(stringToPrint) : 
  “Prints a tag plus the supplied string” 
  tag = “function printString : “ 
  print tag + stringToPrint 
 
def addString(string_1, string_2) : 
  “Concatenates 2 strings and returns the result” 
  concatenatedString = string_1 + string_2 
  return concatenatedString 
 
testString = “this is a test” 
printString(testString) 
wholeString = addString(“part1:”, “part2”) 
printString(wholeString) 
printString(addString(“this is “, “another test”)) 

 

7.3.10 Modules, Functions and Object Methods 
A function is a procedure which takes zero or more parameters, performs 
some action, optionally modifies one or more of the parameters and optionally 
returns a value or sequence of values. 

A class is the definition of a type of object.  All objects of that type (class) 
have the same definition and thus have the same attributes and behavior.  
Classes may define functions that apply to individual objects of that type.  
These functions are called methods. 

An object is an instance of a class, which behaves in the way defined by the 
class, and has any methods defined by the class. 

Python provides many functions and classes by default.  In our examples we 
have used functions len() and range() which Python provides by default.  We 
have also used the classes list and string, which Python also provides by 
default.  We didn’t use any object methods of the class list, but we used the 
string method index() in the example in Section 7.3.7 
(string_1.index(“debug”) != -1).  It is important to note that the object 
method index() doesn’t apply to the string class in general, but to the specific 
string object string_1. 

There are other functions and classes which Python does not provide by 
default.  These functions and classes are grouped into modules according to 
their common purpose.  Examples of modules are “os” for operating system 
functions and “socket” for socket-based network functions.  Before any of the 
functions or classes in a module can be accessed, the module must be 
imported with the import statement, which has the syntax: 

from module import * 



HEC-DSSVue User’s Manual Chapter 7 – Scripting
 

7-15 

Other methods of using the import statement are specified in Python tutorials 
and references listed at the official Python website (www.python.org).  In the 
Jython implementation, Java packages can be imported as if they were Python 
modules, and the Java package java.lang is imported by default. 

 

Example 12: Using A Function From An Imported Module  
 
# use the getcwd() function in the os module to get 
# the current working directory 
 
from os import * 
cwd = getcwd() 

 

A module does not have to be imported in order to work with objects of a 
class defined in that module if that object was returned by a function or 
method already accessible.  For example, the Python module “string” does not 
have to be imported to call methods of string objects, but does have to be 
imported to access string functions. 

7.3.11 Handling Exceptions 
Certain errors within a Python program can cause Python to raise an 
exception.  An exception that is not handled by the program will cause the 
program to display error information in the console window and halt the 
program. 

Python provides structured exception handling with the following constructs: 
try : 
  try-group 
except : 
  except-group 
[else : 
  else-group] 
 
 
try : 
  try-group 
finally : 
  finally-group 

In the try-except-else construct, if an exception is raised during execution of 
the try-group control immediately transfers to the first line of the except-
group.  If no exception is raised during execution of the try-group control 
transfers to the first line of the else-group, if present.  If there is no exception 
raised and no else-group is specified, the control transfers to the first line after 
the except-group. 



Chapter 7 – Scripting HEC-DSSVue User’s Manual
 

7-16 

In the try-finally construct, control is transferred to the first line of the finally-
group when either an exception is raised during the execution of the try-group 
or the try-group completes without an exception. 

The two constructs cannot be combined into a try-except-finally construct, but 
the same effect can be obtained by making a try-except-else construct the try-
group of a try-finally construct. 

 

Example 13: Exception Handling  
 
try : 
    try : 
        string_1.find(substring) # may raise an exception 
    except : 
        print substring + “ is not in “ + string_1 
        # do some stuff that might raise another exception 
        … 
    else :  
        print substring + “ is in “ + string_1 
        # do some stuff that might raise another exception 
        … 
finally : 
    print “No matter what, we get here!”  

 

More exception handling information, including filtering on specific types of 
exceptions, exception handler chains, and raising exceptions, is provided in 
Python tutorials and references listed at the official Python website 
(www.python.org). 

 



HEC-DSSVue User’s Manual Chapter 7 – Scripting
 

7-17 

7.4 Displaying Messages 
It is often useful to display messages to inform the user that something has 
occurred, to have the user answer a Yes/No question, or offer debugging 
information to help determine why a script isn’t working as expected.  Text 
information can be displayed in the console window as described in Section 
7.3.1,  “Outputting Text.” 

7.4.1 Displaying a Message Dialog 
MessageBox() 

The MessageBox class in the hec.script module has several functions used to 
display messages in message box dialogs. The message box can be one of four 
different types: Error, Warning, Informational or Plain.  

Note: Do not use the MessageBox functions in a script that is to run 
unattended since these functions cause scripts to pause for user interaction.   

Table 7.1 describes MessageBox functions. 

Table 7.1 - MessageBox Functions 

showError(string message, string title) 

 

None Display an error dialog to 
you with the message 
and title 

showWarning(string message, string title) 
 

None Display a warning dialog 
to you with the message 
and title 

showInformation(string message, string title) None Display a Informational 
dialog to you with the 
message and title 

showPlain(string message, string title) None Display a plain dialog to 
you with the message 
and title 

showYesNo(string message, string title) string Display a Yes/No dialog 
to you with the message 
and title 

showYesNoCancel(string message, string 
title) 

string Display a Yes/No/Cancel 
dialog to you with the 
message and title 

showOKCancel(string message, string title) string Display a Ok/Cancel 
dialog to you with the 
message and title 

 



Chapter 7 – Scripting HEC-DSSVue User’s Manual
 

7-18 

Example 14: Display Error Dialog  
 
from hec.script import * 
# display error dialog to user 
MessageBox.showError("An Error Occurred”, "Error")  

 

Example 15: Display OK/Cancel Dialog  
from hec.script import * 

ok=MessageBox.showOkCancel(“Continue with Operation”, “Confirm”) 

 

 

 

 

 

7.5 Reading and Writing to HEC-DSS Files 
Reading or writing a data set from a DSS file involves using functions and 
methods from 3 classes in the hec.hecmath module: DSS, DSSFile and 
HecMath. The DSS class is used to get a DSSFile object which represents a 
DSS File.  The DSSFile object is then used to get individual data sets out of the 
DSS File by returning a HecMath object. 

7.5.1 DSS Class 
 DSS.open(string filename) 

  DSS.open(string filename, string startTime, string endTime) 

The DSS class is used to gain access to a HEC-DSS File, as illustrated in 
Example 16. 

 

Example 16: Opening a DSS File  

 
theFile = DSS.open(“MyFile.dss”) 
or 
theFile = DSS.open(“MyFile.dss”, “01Jan2002,1300”, “02Jan2002,1300”) 



HEC-DSSVue User’s Manual Chapter 7 – Scripting
 

7-19 

7.5.2 DSSFile Objects 
DSSFile objects are used to read and write data sets in a DSS file.  Table 7.2 
describes DSSFile object methods. 
Table 7.2 - DSSFile Methods  

Function Returns Description 
read(string pathname) HecMath Return an HecMath object that holds the 

data set specified by pathname. 

read(string pathname, string 
startTime, string endTime) 

HecMath Return an HecMath object that holds the 
data set specified by pathname with the 
specified time window. 

setTimeWindow(string 
startTime, string endTime) 

None The default time window for this DSSFile. 

write(HecMath dataset) integer Write the data set to the DSS file. 

close() None Close the DSS file. 

 

Example 17: Reading a DSS Data Set  
 
from hec.hecmath import * 

# open myFile.dss and read a data set 

theFile = DSS.open(“myFile.dss”)   

flowDataSet = theFile.read(“/BASIN/LOC/FLOW/01NOV2002/1HOUR/OBS/") 

theFile.close() 

 

7.6 Display Objects 
HecMath objects – data sets read from DSS files - cannot be added to plots 
and tables directly.  To add data from a HecMath object to a plot or table, a 
DisplayObject must first be created from the HecMath object using the 
createDisplayObject function in the hec.hecmath.DisplayUtilities module. 

 

Example 18: Creating a Display Object 
from hec.hecmath import * 

from hec.hecmath.DisplayUtilities import * 

theFile = DSS.open(“myFile.dss”)   

flowDataSet = theFile.read(“/BASIN/LOC/FLOW/01NOV2002/1HOUR/OBS/") 

theFile.close() 

displayObject = createDisplayObject(flowDataSet) 



Chapter 7 – Scripting HEC-DSSVue User’s Manual
 

7-20 

7.7 Plotting Basics 
Figure 7.6 identifies the title, viewport, axis label, axis tics, and legend of a 
plot, each of which are accessible via scripts. 

 

Figure 7.6 Plot Components 

 

 

7.7.1 Plot Class 
Plot.newPlot() 
Plot.newPlot(string title) 

The Plot class in the hec.script module is used to create a new Plot dialog. It 
contains two methods to create a Plot dialog, each of which returns a 
G2dDialog object. 

Example 19: Creating a Plot  
 
myPlot = Plot.newPlot() 

or  
thePlot = Plot.newPlot(“Elevation vs Flow”) 



HEC-DSSVue User’s Manual Chapter 7 – Scripting
 

7-21 

7.7.2 Changing Plot Component Attributes 
Not all Plot Component attributes are drawn by default.  Just setting the 
attribute may not make that attribute draw on the plot.  Often it is necessary to 
tell that attribute to draw by calling setAttributeOn() method. 

Example 20 illustrates reading a flow data set from a DSS file, plotting the 
data set, setting the minor Y grid color to black and making it display. 
 

Example 20: Plotting DSS Data  
 
from hec.script import * 
from hec.hecmath import * 
from hec.hecmath.DisplayUtilities import * 
 
theFile = DSS.open(“myFile.dss”) # open myFile.dss 
thePath = “/BASIN/LOC/FLOW/01NOV2002/1HOUR/OBS/" 
flowDataSet = theFile.read(thePath) # read a path name 
thePlot = Plot.newPlot() # create the plot 
do = createDisplayObject(flowDataSet)  # create a display object 
thePlot.addDisplayObject(do) # add the flow data set to 

the plot 
thePlot.showPlot() # show the plot 
viewport0=thePlot.getViewport(0) # get the first viewport 
viewport0.setMinorGridYColor(“black”) # set the viewport’s minor Y 

grid to black 
viewport0.setDrawMinorYGridOn()  # tell the minor Y grid to 

display 

 

 



Chapter 7 – Scripting HEC-DSSVue User’s Manual
 

7-22 

7.7.3 G2dDialog Objects 
G2dDialog objects are the dialog that plots display in.  Table 7.3 describes 
G2dDialog object methods. 
 
Table 7.3: G2dDialog Object Methods 

Method Returns Description 

addDisplayObject(DisplayObject dspObj) 

 

None Add the DisplayObject 
specified by dspObj to 
the plot. Must be called 
before showPlot() 

applyTemplate(string templateFile) None Apply the given 
template to this plot 

configurePlotLayout() None Display the configure 
plot layout dialog for 
this plot 

configurePlotTypes() None Display the configure 
plot types dialog 

copyToClipboard() None Copy the plot to the 
system clipboard 

defaultPlotProperties() None Display the default plot 
properties dialog 

exportProperties() None Allows you to save the 
properties of the plot to 
a disk. 

exportProperties(string templateName) None Allows you to save the 
properties of the plot to 
the file specified by 
templateName. 

getCurve(HecMath dataSet) G2dLine Return the G2dLine for 
the DataSet specified 
by dataSet 

getCurve(string dssPath) G2dLine Return the G2dLine for 
the path specified in 
dssPath 

getLocation() Point Return the location of 
the dialog in screen 
coordinates 

getPlotTitle() G2dTitle Return the Title for the 
G2dDialog 

getViewport(HecMath dataSet) 

 
Viewport Return the Viewport 

that contains the curve 
specified by dataSet 

getViewport(int viewportIndex) Viewport Return the viewport at 
index specified by 
viewportIndex 



HEC-DSSVue User’s Manual Chapter 7 – Scripting
 

7-23 

Method Returns Description 

getViewport(string dataSetPath) Viewport Return the Viewport 
that contains the curve 
specified by 
dataSetPath 

Hide() None Hide the dialog 

PlotProperties() None Display the plot 
properties dialog for 
this plot 

print() None Display the print dialog 
for this plot 

printMultiple() None Display the print 
multiple dialog for this 
plot 

printPreview() None Display the print 
preview dialog for this 
plot 

printToDefault() None Prints using the printer 
defaults such as page 
format and printer. This 
method does not 
display the printer 
dialog for user 
interaction. 

saveAs() None Display the saveAs 
dialog for this plot 

saveToJpeg(string fileName) None Save the plot to the 
Jpeg file specified by 
fileName 

saveToMetafile(string filename) None Save the plot to the 
Windows Meta file 
specified by filename 

SaveToPng(string fileName) None Save the plot to the 
Portable Network 
Graphics file specified 
by filename 

saveToPostscript(string fileName) None Save the plot to the 
PostScript file specified 
by filename 

setLocation(int x,int y) None Sets the location of the 
dialog in screen 
coordinates 

showPlot() None Show the dialog 

tabulate() TableFrame Display the table view 
of this plot 

 



Chapter 7 – Scripting HEC-DSSVue User’s Manual
 

7-24 

Example 21 shows how to create a new plot with a flow data set, show the 
plot, and place at location 50,50 on the screen. 

 

Example 21: Plot Dialog  
 
from hec.script import *    # for Plot class 
from hec.hecmath import *   # for DSS class 
from hec.hecmath.DisplayUtilities import * # for display objects 
theFile = DSS.open(“myFile.dss”)  # open myFile.dss 
thePath = “/BASIN/LOC/FLOW/01NOV2002/1HOUR/OBS/" 
flowDataSet = theFile.read(thePath)  # read a path name 

do = createDisplayObject(flowDataSet)  # create flow display obj 
thePlot = Plot.newPlot()    # create a new Plot 
thePlot.addDisplayObject(do)   # add the flow display obj 
thePlot.showPlot()    # show the plot 
thePlot.setLocation(50,50)   # moves plot to 50,50 

7.7.4 Viewport Objects 
Viewport objects hold the data set curves.  Table 7.4 describes Viewport object 
methods. 
Table 7.4: Viewport Object Methods 

Method Returns Description 

addXAxisMarker() None Adds a Marker Line to 
the Xaxis. Displays the 
Marker Line Properties 
for you to edit the 
properties of the marker 

addXAxisMarker(floating-point value) None Add an X Axis marker at 
the location specified by 
value 

addXAxisMarker(string value) None Add a X Axis marker at 
the location specified by 
value 

addYAxisMarker() None Display the Add Y Axis 
marker Dialog 

addYAxisMarker(string value) None Add a Y Axis marker at 
the location specified by 
value 

editProperties() None Display the Edit 
Properties dialog for this 
Viewport 

getAxis(string axisName) Axis return the Axis specified 
by axisName for this 
Viewport 



HEC-DSSVue User’s Manual Chapter 7 – Scripting
 

7-25 

Method Returns Description 

getAxisLabel(string axisName) AxisLabel Return the AxisLabel for 
the axis specified by 
axisName for this 
Viewport 

getAxisTics(string axisName) AxisTics Return the AxisTics for 
the axis specified by 
axisName for this 
Viewport 

GetBackground() Color Return the background 
color for the Viewport 

getBackgroundString() string Return the background 
color name for the 
Viewport as a String 

getBorderWeight() float Return the border weight 
for this Viewport 

getFillPatternString() string Return the fill pattern for 
this Viewport as a String 

getGridYColor() Color Return the Y grid color 
for this Viewport 

getGridXColor() Color Return the X grid color 
for this Viewport 

getGridXColorString() string Return the X grid color 
for this Viewport as a 
String 

getGridYColorString() string Return the Y grid color 
for this Viewport as a 
String 

getMajorGridXColorString() string Return the major grid X 
color for this Viewport as 
a String 

getMajorGridYColorString() string Return the major grid Y 
color for this Viewport as 
a String 

getMajorXGridWidth() integer Return the major X Grid 
width for this Viewport 

getMajorYGridWidth() integer Return the major Y Grid 
width for this Viewport 

getMinorGridXColorString() string Return the minor grid X 
color for this Viewport as 
a String 

getMinorXGridWidth() integer Return the minor X Grid 
width for this Viewport 

getMinorYGridWidth() integer Return the minor Y Grid 
width for this Viewport 



Chapter 7 – Scripting HEC-DSSVue User’s Manual
 

7-26 

Method Returns Description 

isBackgroundDrawn() 0/1 Return whether the 
background is drawn or 
not 

isBorderDrawn() 0/1 Return whether the 
border is drawn for this 
Viewport 

isMajorXGridDrawn() 0/1 Return whether the 
Major X Grid is drawn 

isMajorYGridDrawn() 0/1 Return whether the 
Major Y Grid is drawn 

isMinorXGridDrawn() 0/1 Return whether the 
Minor X Grid is drawn 

isMinorYGridDrawn() 0/1 Return whether the 
Minor Y Grid is drawn 

setBackground(string colorString) None Set the background to 
the color specified by 
colorString 

setBorderColor(string borderColor) None Set the border color for 
this Viewport 

SetBorderWeight(floating-
point borderWeight) 

None Set the border weight for 
this Viewport 

setDrawBackgroundOff() None Set the background not 
to draw for this Viewport 

setDrawBackgroundOn() None Set the background to 
draw for this Viewport 

setDrawBorderOff() None Set the border not to 
draw for this Viewport 

setDrawBorderOn() None Set the border to draw 
for this Viewport 

setDrawMajorXGridOff() None Set the major X grid not 
to draw for this Viewport 

setDrawMajorXGridOn() None Set the major X grid to 
draw for this Viewport 

setDrawMajorYGridOff() None Set the major Y grid not 
to draw for this Viewport 

setDrawMajorYGridOn() None Set the major Y grid to 
draw for this Viewport 

setDrawMinorXGridOff() None Set the minor X grid not 
to draw for this Viewport 

setDrawMinorXGridOn() None Set the minor X grid to 
draw for this Viewport 

setDrawMinorYGridOff() None Set the minor Y grid not 
to draw for this Viewport 



HEC-DSSVue User’s Manual Chapter 7 – Scripting
 

7-27 

Method Returns Description 

setDrawMinorYGridOn() None Set the minor Y grid to 
draw for this Viewport 

setFillPattern(string pattern) None Set the fill pattern for this 
Viewport 

setGridColor(string colorString) None Set the X and Y grid 
colors for this Viewport 

setGridXColor(string colorString) None Set the X grid color to 
the color represented by 
colorString for this 
Viewport 

setGridYColor(string colorString) None Set the Y grid color to 
the color represented by 
colorString for this 
Viewport 

setMajorGridXColor(string majorGridXColor) None Set the major grid X 
color for this Viewport 

setMajorGridYColor(string majorGridYColor) None Set the major Grid Y 
color for this Viewport 

setMajorXGridWidth(floating-
point gridLineWidth) 

None Set the major X Grid 
width for this Viewport 

setMajorYGridWidth(floating-
point gridLineWidth) 

None Set the major Y Grid 
width for this Viewport 

setMinorGridXColor(string minorGridXColor) None Set the minor grid X 
color for this Viewport 

setMinorGridYColor(string minorGridYColor) None Set the minor grid Y 
color for this Viewport 

setMinorXGridWidth(floating-
point gridLineWidth) 

None Set the minor X Grid 
width for this Viewport 

setMinorYGridWidth(floating-
point gridLineWidth) 

None Set the minor Y Grid 
width for this Viewport 

 



Chapter 7 – Scripting HEC-DSSVue User’s Manual
 

7-28 

Example 22 reads a data set from a DSS file, plots that data set, and sets the 
Viewport’s background to light gray. 

 

Example 22: Viewport Objects  
 
from hec.script import * # for Plot class 
from hec.hecmath import * # for DSS class 
from hec.hecmath.DisplayUtilities import * # for display objects 
theFile = DSS.open(“myFile.dss”) # open myFile.dss 
thePath = “/BASIN/LOC/FLOW/01NOV2002/1HOUR/OBS/" 
flowDataSet = theFile.read(thePath) # read a path name 

do = createDisplayObject(flowDataSet) # create a display obj 
thePlot = Plot.newPlot() # create a new Plot 
thePlot.addDisplayObject(do) # add the flow display obj 
viewport0=thePlot.getViewport(0) # get the first Viewport 
viewport0.setBackground(“lightgray”) # set the Viewport’s 

background to lightgray 
viewport0.setDrawBackgroundOn() # tell the Viewport to draw 

its background 

7.7.5 Axis Objects 
Table 7.5 describes Axis Object methods. 
Table 7.5 - Axis Object Methods 

Method Returns Description 

getActMax() floating-
point 

Return the actual 
maximum value for this 
Axis 

getActMin() floating-
point 

Return the actual minimum 
value for this Axis 

getLabel() string Return the Axis label 

getMajorTic() floating-
point 

Return the major tic 
interval for this Axis 

getMax() floating-
point 

Return the maximum limit 
for this Axis 

getMin() floating-
point 

Return the minimum limit 
for this Axis 

getMinorTic() floating-
point 

Return the minor tic 
interval for this Axis 

getNumberOfTicLabelLevels() integer Return the number of tic 
label layers 

getNumTicLabelLevels() integer Return the number of tic 
label levels for this Axis 



HEC-DSSVue User’s Manual Chapter 7 – Scripting
 

7-29 

Method Returns Description 

getReversed() 0/1 Returns if the Axis is 
reversed 

getScaledLabel() String Return the label with 
scientific notation 

getTicColor() Color Return the tic color 

getTicColorString() String Return the Tic color as a 
String 

getTicTextColor() Color Return the tic text color 

getTicTextColorString() String Return the tic text color as 
a String 

isComputingMajorTics() 0/1 Return if major tics are to 
be computed 

isComputingMinorTics() 0/1 Return if minor tics are to 
be computed 

isUsingAutomaticMaximum() 0/1 Return whether the Axis is 
using the automatic 
maximum value 

isUsingAutomaticMinimum() 0/1 Return whether the Axis is 
using the automatic 
minimum value 

isUsingAutomaticViewMaximum() 0/1 Return if view maximum is 
set to automatic 

isUsingAutomaticViewMinimum() 0/1 Return if view minimum is 
set to automatic 

isUsingDefaultLimits() 0/1 Return whether this Axis is 
using it’s defaults limits 

setActualMaximumValue(floating-
point value) 

None Set the actual maximum 
value for this Axis to value 

setActualMinimumValue(floating-
point value) 

None Set the actual minimum 
value for this Axis to value 

setAutomaticMaximumOff() None Set the Axis to use your 
supplied maximum value 

setAutomaticMaximumOn() None Set the Axis to use the 
maximum value from it’s 
DataSets 

setAutomaticMinimumOff() None Set the Axis to use your 
supplied minimum value 

setAutomaticMinimumOn() None Set the Axis to use the 
minimum value from it’s 
DataSets 

setAutomaticViewMaximumOff() None Set automatic view of 
maximum to off 

 



Chapter 7 – Scripting HEC-DSSVue User’s Manual
 

7-30 

Method Returns Description 

setAutomaticViewMaximumOn() None Set automatic view of 
maximum to on 

setAutomaticViewMinimumOff() None Set automatic view of 
minimum to off 

setAutomaticViewMinimumOn() None Set automatic view of 
minimum to on 

setComputeMajorTicsOff() None Set so that major tics are 
not computed 

setComputeMajorTicsOn() None Set so that major tics are 
computed 

setComputeMinorTicsOff() None Set so that minor tics are 
not computed 

setComputeMinorTicsOn() None Set so that minor tics are 
computed 

setLabel(string label) None Set the label of this Axis 

setMajorTicInterval(floating-point interval) None Set the major tic interval 
for this Axis to interval 

setMaximumLimit(floating-point max) None Set the maximum limit for 
this Axis to max 

setMinimumLimit(floating-point min) None Set the minimum limit for 
this Axis to min 

setMinorTicInterval(floating-point interval) None Set the minor tic interval 
for this Axis to interval 

setNumberOfTicLabelLayers(integer layers) None Set the numver of tic label 
layers to layers max 
number of tic label layers. 
-1 is unrestricted. Most 
important for time series 
axis. 

setReversedOff() None Set that the Axis is not to 
be reversed 

setReversedOn() None Set that the Axis is to be 
reversed 

setTicColor(String colorString) None Set the tic color to the 
color represented by 
colorString 

setTicTextColor(String colorString) None Set the tic text color to the 
color represented by 
colorString 

setUseDefaultLimitsOff() None Set this Axis not to use 
defaults limits 

setUseDefaultLimitsOn() None Set this Axis to use 
defaults limits 



HEC-DSSVue User’s Manual Chapter 7 – Scripting
 

7-31 

Method Returns Description 

zoomByFactor(floating-point factor) None Change the zoom scaling 
by the given factor 

zoomIn(floating-point wmin, floating-
point wmax) 

None Zooms based on world 
coordinates 

 

Example 23 reads a data set from a DSS file, adds that data set to a new Plot, 
and zooms in on the Y Axis. 

 

Example 23: Using Axis Objects 
 
from hec.script import *    # for Plot class 
from hec.hecmath import *   # for DSS class 

from hec.hecmath.DisplayUtilities import * # for display objects 
thePlot = Plot.newPlot()    # create a Plot 
dssFile = DSS.open("J:/apps/forecast.dss") # open the DSS file 
flow = dssFile.read("/BASIN/LOC/FLOW/01NOV2002/1HOUR/OBS/") 
      # read a data set 
thePlot.addDisplayObject(createDisplayObject(flow))  

# add the data set 
thePlot.showPlot()    # show the plot 
viewport0 = thePlot.getViewport(0)  # get the first Viewport 
yaxis = viewport0.getAxis("Y1")   # get the Y1 axis 
yaxis.zoomByFactor(.”5”)   # zoom in 
 

 



Chapter 7 – Scripting HEC-DSSVue User’s Manual
 

7-32 

7.7.6 Axis Tics Objects 
Table 7.6 describes Axis Tics object methods.  

 Table 7.6 - Axis Tics Object Methods 

Method Returns Description 

areMajorTicLabelsDrawn() 0/1 Return whether the major tic 
labels are drawn 

areMajorTicsDrawn() 0/1 Return whether the major tics 
are drawn 

areMinorTicLabelsDrawn() 0/1 Return whether the minor tic 
labels are drawn 

areMinorTicsDrawn() 0/1 Return whether the minor tics 
are drawn 

editProperties() None Display the Edit Properties 
Dialog for the AxisTics 

getAxis() Axis Returns a reference to the 
axis that this object draws 

getAxisTicColor() Color Return the tic color 

getAxisTicColorString() String Return the tic color as a 
String 

getFontSizes() tuple of 3 
integers 

Return the regular, tiny, min 
and max font sizes for this 
AxisTics 

getMajorTicLength() integer Return the major tic length 

getMinorTicLength() integer Return the minor tic length 

setAxisTicColor(string colorString) None Set the tic color to the color 
represented by colorString 

setDrawMajorTicLabelsOn() None Set the major tic labels not to 
draw 

setDrawMajorTicsOff() None Set the major tics not to draw 

setDrawMajorTicsOn() None Set the major tics to draw 

setDrawMinorTicLabelsOff() None Set the minor tic labels not to 
draw 

setDrawMinorTicLabelsOn() None Set the minor tic labels to 
draw 

setDrawMinorTicsOff() None Set the minor tics not to draw 

setDrawMinorTicsOn() None Set the minor tics to draw 

SetFontSizes(integer sz,integer tiny, 
integer min, integer max) 

None Set the regular, tiny, min and 
max font sizes for this 
AxisTics 



HEC-DSSVue User’s Manual Chapter 7 – Scripting
 

7-33 

Method Returns Description 

setMajorTicLength(int ticLength) None Set the major tic length 

setMinorTicLength(int ticLength) None Set the minor tic length 

 

 

Example 24 creates a new Plot with a data set read from DSS and tells the 
data set’s axis tics to draw its minor tic marks. 

Example 24: Using Axis Tics Objects  
from hec.script import * # for Plot class 
from hec.hecmath import * # for DSS class 

from hec.hecmath.DisplayUtilities import * # for display objects 
thePlot = Plot.newPlot() # create the Plot 
dssFile = DSS.open("J:/apps/forecast.dss") # open the DSS file 
flow = dssFile.read("/BASIN/LOC/FLOW/01NOV2002/1HOUR/OBS/") 
 # read the data set 
thePlot.addDisplayObject(createDisplayObject(flow)) 

 # add the data set 
thePlot.showPlot() # show the plot 
viewport0 = thePlot.getViewport(flow) # get the viewport for the 

flow data set 
yaxistics = viewport0.getAxisTics("Y1") # get the axis tics for the 

Viewport 
yaxistics.setDrawMinorTicsOn()   # tell axis tics to draw tics 

 

7.7.7 G2dLine Objects 
Table 7.7 describes G2dLine object methods. 
 
Table 7.7 - G2dLine Object Methods 

Method Returns Description 

AreSymbolsDrawn() 0/1 Return whether this line 
draws its symbols 

editLineProperties() None Method that allows the 
editing of line properties. 
This method displays a 
visible dialog for line 
editing. 

getAutoSkipSymbols() 0/1 Return whether the line 
auto skips its symbols 

getFillColor() Color Return the fill color for 
this line 



Chapter 7 – Scripting HEC-DSSVue User’s Manual
 

7-34 

Method Returns Description 

getFillColorString() string Return the fill color for 
this line as a String 

getFillPattern() integer Return the fill pattern for 
this line 

GetFillPatternString() string Return the fill pattern for 
this line as a String 

getFillType() integer Return the Fill type for 
this line. 

getFillTypeString() string Return the Fill type for 
this line as a String. 

getLineColor() Color Return the line color for 
this line 

getLineColorString() string Return the line color for 
this line as a String 

getLineStepStyle() integer Return the line step style 
for this line 

getLineStepStyleString() string Return the line step style 
for this line as a String 

getLineStyleString() string Return the line style for 
this line as a string 

getLineWidth() floating-
point 

Return the Line Width of 
the line  

getNumPoints() integer Returns the Number of 
Points that this line has 

getSymbolFillColor() Color Return the symbol fill 
color for this line’s 
symbols 

getSymbolFillColorString() string Return the symbol fill 
color for this line’s 
symbols as a String 

getSymbolLineColor() Color Return the symbol line 
color for this line’s 
symbols 

getSymbolLineColorString() string Return the symbol line 
color for this line’s 
symbols as a String 

getSymbolOffset() integer Return the symbol offset 
for this line 

getSymbolSize() floating-
point 

Return the symbol size 
for this line 

getSymbolsSkipInterval() integer Return the symbol skip 
interval for this line 

 



HEC-DSSVue User’s Manual Chapter 7 – Scripting
 

7-35 

Method Returns Description 

getSymbolType() integer Return the symbol type 
for this line 

isLineDrawn() 0/1 Return this line is drawn 

setAutoSkipSymbolsOff() None Set the line to not auto 
skip its symbols 

setAutoSkipSymbolsOn() None Set the line to auto skip 
its symbols 

setDrawLineOff() None Set this line not to draw 

setDrawLineOn() None Set this line to draw 

setDrawSymbolsOff() None Set this line not to draw 
its symbols 

setDrawSymbolsOn() None Set this line to draw its 
symbols 

setFillColor(string fillColor) None Set the fill color for this 
line 

setFillPattern(string fillPattern) None Set the fill pattern for this 
line 

setFillType(string fillType) None Set the Fill type for this 
line 

setLineColor(string lineColor) None Set the line color for this 
line 

setLineStepStyle(string stepStyle) None Set the line step style for 
this line 

setLineStyle(string style) None Set the line style for this 
line 

setLineWidth(floating-point width) None Set the width for this line 

setSymbolFillColor(string symbolFillColor) None Set the symbol fill color 
for this line’s symbols 

setSymbolLineColor(string symbolLineColor) None Set the symbol line color 
for this line’s symbols 

setSymbolOffset(integer offset) None Set the symbol offset for 
this line 

setSymbolSize(floating-point size) None Set the symbol size for 
this line 

setSymbolsSkipInterval(integer skipInterval) None Set the symbol skip 
interval for this line 

setSymbolType(integer type) None Set the symbol type for 
this line 

 



Chapter 7 – Scripting HEC-DSSVue User’s Manual
 

7-36 

Example 25 creates a plot with a data set read from DSS, then tells that data 
set’s curve to draw its symbols auto skipped. 

 

Example 25: Using G2dLine Objects   
from hec.script import * # for Plot class 
from hec.hecmath import * # for DSS class 
from hec.hecmath.DisplayUtilities import * # for display objects 
thePlot = Plot.newPlot() # create the Plot 
file = "j:/apps/forecast.dss";  
dssfile = DSS.open(file) # open the file 
stage = dssfile.read("/BASIN/LOC/STAGE/01NOV2002/1HOUR/OBS/"); 
 # read the data set 
thePlot.addDisplayObject(createDisplayObject(stage)) 

 # add the data set to the 
plot 

thePlot.showPlot() # show the plot 
stageCurve = thePlot.getCurve(stage) # get the stage curve 
stageCurve.setAutoSkipSymbolsOn()  # turn on symbols auto skip 

 

7.7.8 G2dLabel and AxisLabel Objects 
Table 7.8 describes G2dLabel and AxisLable object methods. 

 Table 7.8 - Label Object Methods 

Method Returns Description 

editProperties() None Display the Edit Properties Dialog 
for the label 

getAlignment() integer Return the text alignment for this 
label 

getAlignmentString() string Return the text alignment for this 
label as a String 

getBackground() 
 

Color Return the background color for 
the label 

getBackgroundString() string Return the background color for 
the label as a String 

getBorderStyleString() 
 

string Return the border style for this 
label as a String 

getBorderWeight() floating-
point 

Return the border weight for this 
label 

getFillPattern() integer Return the background fill pattern 
for this label 

getFillPatternString() string Return the background fill pattern 
for this label as a String 



HEC-DSSVue User’s Manual Chapter 7 – Scripting
 

7-37 

Method Returns Description 

getFontFamily() string Return the font family for the label 

getFontSize() integer Return the font size for the label 

getFontSizes() integer[] Return the regular, tiny, min and 
max font sizes for this label 

getFontStyle() integer Return the font style for the label 

getFontStyleString() string Return the font style for the label 
as a String 

getForeground() Color Return the foreground color for 
the label 

getForegroundString() string Return the foreground color for 
the label as a String 

getIcon() Icon Return the Icon to display for this 
label 

getIconPath() string Return the Icon path to display for 
this label 

getRotation() integer Return the text rotation for this 
label 

getSpacing() integer Return the spacing around this 
label 

getText(String txt) string Return the text for the label 

isBackgroundDrawn() 0/1 Return whether the background is 
drawn 

isBorderDrawn() 0/1 Return whether the border is 
drawn 

setAlignment(string alignment) None Set the text alignment for this 
label 

setBackground(string colorString) None Set the background color for the 
label 

setBorderColor(string colorString) None Set the border color for this label 

setBorderStyle(string style) None Set the border style for this label 

setBorderWeight(floating-
point weight) 

None Set the border weight for this label

setDrawBackgroundOff() None Set the background not to draw 

setDrawBackgroundOn() None Set the background to draw 

setDrawBorderOff() None Set the border not to draw 

setDrawBorderOn() None Set the border to draw 

setFillPattern(string pattern) None Set the background fill pattern for 
this label 

setFontFamily(string fam) None Set the font family for the label 

setFontSize(integer sz) None Set the font size for the label 



Chapter 7 – Scripting HEC-DSSVue User’s Manual
 

7-38 

Method Returns Description 

setFontSizes(integer sz, integer tiny, 
integer min, integer max) 

None Set the regular, tiny, min and max 
font sizes for this label 

setFontStyle(integer style) None Set the font style for the label 

setFontStyle(string style) None Set the font style for the label 

setForeground(string colorString) None Set the foreground color for the 
label 

setIcon(Icon icon) None Set the Icon to display for this 
label 

setIcon(string iconPath) None Set the Icon to display for this 
label 

setRotation(integer rotation) None Set the text rotation for this label 

setSpacing(integer space) None Set the spacing around this label 

setText(string text) None Set the text for the label 

 
 

Example 26 creates a plot from a DSS data set and sets the Y1 axis label text 
to blue. 

Example 26: Using Axis Label Objects   
from hec.script import * # for Plot class 
from hec.hecmath import * # for DSS class 
from hec.hecmath.DisplayUtilities import * # for display objects 
thePlot = Plot.newPlot() # create the plot 
dssFile = DSS.open("J:/apps/forecast.dss") # open the DSS file 
flow = dssFile.read("/BASIN/LOC/FLOW/01NOV2002/1HOUR/OBS/") 
 # read the data set 
thePlot.addDisplayObject(createDisplayObject(flow)) 

 # add the data set to the 
plot 

thePlot.showPlot() # show the plot 
viewport0 = thePlot.getViewport(0) # get the first viewport 
yaxislabel = viewport0.getAxisLabel("Y1") # get the Y1 axis label 
yaxislabel.setForeground(“blue”) # set the Y1 axis label text 

to blue 

 



HEC-DSSVue User’s Manual Chapter 7 – Scripting
 

7-39 

7.7.9 G2dTitle Objects 
G2dTitle objects represent the text on the Plot above the first Viewport.  
They have all the methods of G2dLabels plus a few more.   

Table 7.9  describes G2dTitle object methods. 

Table 7.9 - G2dTitle Object Methods 

Method Returns Description 

isTitleDrawn() 0/1 Return whether the title is drawn 

setDrawTitleOff() None Set the title not to draw 

setDrawTitleOn() None Set the title to draw 

 

Example 27 creates a plot from a DSS data set, sets the Plot’s title to “Axema 
Stage”, and has it draw. 

Example 27: Using G2dTitle Objects   
from hec.script import * # for Plot class 
from hec.hecmath import * # for DSS class 
from hec.hecmath.DisplayUtilities import * # for display objects 

thePlot = Plot.newPlot() # create a new Plot 
file = "j:/apps/forecast.dss" #define the DSS file 
dssfile = DSS.open(file) # open the DSS file 
stage = dssfile.read("//AXEMA/STAGE/01OCT2001/1HOUR/OBS/"); 
 # read the data set 
thePlot.addDisplayObject(createDisplayObject(stage)) 

 # add the data set to the 
plot 

thePlot.showPlot() # show the plot 
title=thePlot.getPlotTitle() # get the plots title 
title.setText(“Axema Stage”) # set the plot’s title’s text to 

“Axema Stage” 
title.setDrawTitleOn() # tell the title to draw 



Chapter 7 – Scripting HEC-DSSVue User’s Manual
 

7-40 

7.7.10 Templates 
Template files saved interactively from HEC-DSSVue may be applied to plots 
via scripting.  When saving a template interactively from the plot window via 
the “Save Template…” entry on the “File” menu, HEC-DSSVue: 

1. Chooses the “My Documents” subdirectory of the directory specified in 
the USERPROFILE environment variable as the default location for the 
template file. 

2. Appends “.template” to the end of the specified file name. 

 

The applyTemplate(string filename) G2dDialog method requires the actual 
file name for the template file.  To apply a template saved in the default 
directory, the complete template file name must be re-created as demonstrated 
in Example 28. 
 

Example 28: Applying Template Saved in Default Directory 
import os # for getenv() & sep 

from hec.script import * # for Plot class 

from hec.hecmath import * # for DSS class 

from hec.hecmath.DisplayUtilities import * # for display objects 

thePlot = Plot.newPlot() # create a new Plot 

file = "j:/apps/forecast.dss";  
dssfile = DSS.open(file) # open the DSS file 

stage = dssfile.read("//AXEMA/STAGE/01OCT2001/1HOUR/OBS/"); 

 # read the data set 

thePlot.addDisplayObject(createDisplayObject(stage)) 

 # add the data set  

thePlot.showPlot() # show the plot 

templateName = “myTemplate” # template base name 

templateFileName = \ # re-create the file name 

  os.getenv(“userprofile”)  \ 

  + os.sep                  \ 

  + “My Documents”          \ 

  + os.sep                  \ 

  + templateName            \ 

  + “.template” 

thePlot.applyTemplate(templateFileName) # apply the template 



HEC-DSSVue User’s Manual Chapter 7 – Scripting
 

7-41 

7.8 Plot Component Properties  
The following tables are the valid values to be used when calling plot related 
functions that take a color (setBackground(string color), etc…), an alignment 
(setAlignment()), a rotation (setRotation()), a fill pattern (setFillPattern()), a 
fill type (setFillType()), a line style (setLineStyle()) or a step 
style(setLineStepStyle()). 

7.8.1 Colors 
Colors can be specified either by a String or by a java.awt.Color object.  If 
setting a color through the use of a String object the String can either be a 
standard color name (i.e. darkred) or an RGB string (i.e. 255,20,20).  Table 
7.10 lists standard color names. 

Table 7.10 Standard Color Names 

black 

blue 

cyan 

darkblue 

darkcyan 

darkgray 

darkgreen 

darkmagenta 

darkorange 

darkpink 

darkpurple 

darkred 

darkyellow 

gray 

green 

lightblue 

lightcyan 

lightgray 

lightgreen 

lightmagenta 

lightorange 

lightpink 

lightpurple 

lightred 

lightyellow 

magenta 

orange 

pink 

purple 

red 

white 

yellow 

7.8.2 Alignment 
Table 7.11 lists supported alignments. 

Table 7.11 Alignment Values 

Left Center Right 

7.8.3 Rotation 
Table 7.12 lists supported rotation values. 

Table 7.12 Rotation Values 

0 90 180 270 

 



Chapter 7 – Scripting HEC-DSSVue User’s Manual
 

7-42 

7.8.4 Fill Patterns 
Table 7.13 lists supported fill patterns. 

Table 7.13 Fill Patterns 

Solid Horizontal Vertical  

Cross FDiagonal 
(Forward) 

BDiagonal 
(Back) 

Diagonal Cross   

7.8.5 Fill Style 
Table 7.14 lists supported fill values. 

Table 7.14 Fill Values 

None above below 

7.8.6 Line Styles 
Table 7.15 lists supported step style values. 

Table 7.15 Line Style Values 

Solid Dash Dot 

Dash Dot Dash Dot-Dot  

 

7.8.7 Step Style 
Table 7.16 lists supported step style values. 

Table 7.16 Step Style Values 

Normal step cubic 

 



HEC-DSSVue User’s Manual Chapter 7 – Scripting
 

7-43 

7.9 Tables 
Tables allow you to view data in a vertical scrolling window that shows the 
ordinates, the dates and times and the values for the selected data sets. 

7.9.1 Tabulate Class 
Tabulate.newTable()  
Tabulate.newTable(string title) 

The Tabulate class in the hec.script module is used to create a new Table 
dialog. It contains two functions to create a Table dialog, each of which 
returns as a TableFrame object. 

Example 29 illustrates creation of a table. 
 

Example 29: Creating a Table   
from hec.script import * 
myTable = Tabulate.newTable() 

or  
from hec.script import * 
myTable = Tabulate.newTable(“Elevation vs Flow”) 

7.9.2 TableFrame Objects 
Table 7.17 describes TableFrame object methods. 
Table 7.17 - TableFrame Object Methods 

Method Returns Description 

addDisplayObject(DisplayObject dspObj) integer Adds Data Set to the table. 

getCommaState() 0/1 Get whether the commas are 
shown 

getDateTimeAsTwoColumnsState() 0/1 Get whether date/time 
columns are shown as 1 or 2 
columns in the table 

hide() None Hide the table 

print() None Display the print dialog 

setCommaState(0/1 showCommas) None Set state to show commas or 
not 

setDateTimeAsTwoColumnsState 
(Integer showDateTimeAs2Column) 

None Set whether date/time 
columns should show as 1 or 
2 columns in the table 

ShowTable() None Show the table 

 



Chapter 7 – Scripting HEC-DSSVue User’s Manual
 

7-44 

Example 30 creates a table from two DSS data sets and display the print 
dialog. 

 

Example 30: Filling and Displaying a Table  
from hec.hecmath import *  # for DSS 
from hec.script import *  # for Tabulate 
from hec.hecmath.DisplayUtilities import * # for display objects 

file = "j:/apps/forecast.dss"  # specify the DSS file 
dssfile = DSS.open(file)   # open the file 
# read 2 paths 
stage = dssfile.read("//AXEMA/STAGE/01OCT2001/1HOUR/OBS/") 
flow = dssfile.read("//AXEMA/FLOW/01OCT2001/1HOUR/OBS/") 
theTable = Tabulate.newTable()  # create the table 
theTable.setTitle("Test Table")  # set the table title 
theTable.setLocation(50,50)  # set the location of the table on 
     the screen 
flowObj = createDisplayObject(flow) # create display objects 
stageObj = createDisplayObject(stage) 
theTable.addDisplayObject(flowObj) # add the display objects 
theTable.addDisplayObject(stageObj) 
theTable.showTable()   # show the table 
theTable.print()   # print the table 
theTable.hide() # hide the table 
 

 



HEC-DSSVue User’s Manual Chapter 7 – Scripting
 

7-45 

7.10  Math Functions 
Math functions are accessible through the general class called HecMath.  
HecMath objects hold data sets and allow you to perform mathematical 
operations on them. They can also be passed to plots and tables to display the 
data.  A HecMath object is either a TimeSeriesMath object or a 
PairedDataMath object, which handle time series and paired data sets, 
respectively.  

Before using PairedDataMath methods, be sure to read the description for the 
setCurve Method.  Paired data sets may contain multiple curves.  The 
setCurve method provides user control over which paired data curve is 
operated upon by subsequent function calls. 

7.10.1 Absolute Value  
abs() 

Derive a new time series or paired data set from the absolute value of values 
of the current data set.  For time series data, missing values are kept as 
missing.  For paired data sets, use the setCurve method to first select the 
paired data curve(s).   

See also:  setCurve(). 

Parameters:  Takes no parameters. 
Example:  NewDataSet = dataSet.abs() 

Returns:  A new HecMath object of the same type as the current object. 

7.10.2 Accumulation (Running) 
accumulation() 

Derive a new time series by computing a running accumulation of the current 
time series.   

For time points in which the current time series value are missing, the value in 
the accumulation time series remains constant (same as the accumulated value 
at the last valid point location).  

Parameters:  Takes no parameters. 
Example:  NewTimeSeries = timeSeries.accumulation() 

Returns:  A new TimeSeriesMath object. 



Chapter 7 – Scripting HEC-DSSVue User’s Manual
 

7-46 

7.10.3 Add a Constant 
add(floating-point constant) 

Add the value constant to all valid values in the current time series or paired 
data set.  For time series data, missing values are kept as missing.   

For paired data, constant is added to y-values only.  Use the setCurve method 
to first select the paired data curve(s). 

See also:  add(HecMath dataSet)  

setCurve(). 

Parameters:  constant  - A floating-point value. 

Example:  newDataSet = dataSet.add(2.5) 

Returns:  A new HecMath object of the same type as the current object. 

7.10.4 Add a Data Set 
add(TimeSeriesMath tsData) 

Add the values in the data set tsData to the values in the current data set.  The 
function only applies to time series data sets. 

When adding one time series data set to another, there is no restriction that 
times in the two data sets match exactly.  However, only values with 
coincident times will be added.  Times in the current time series data set that 
cannot be matched with times in the second data set are set to missing.  Values 
in the current data set that are missing are kept as missing.  Either or both data 
sets may be regular or irregular interval time series.   

This function will not merge data sets.  Use the mergeTimeSeries (for time 
series data sets) or the mergePairedData (for paired data sets) functions for 
this purpose. 

See also:  add(floating-point constant) 

 mergeTimeSeries(TimeSeriesMath) 

 mergePairedData(PairedDataMath) 

Parameters:  tsData  - A TimeSeriesMath object. 

Example:  newTsData = tsData.add(otherTsData) 

Returns:  A new TimeSeriesMath object. 



HEC-DSSVue User’s Manual Chapter 7 – Scripting
 

7-47 

7.10.5 Apply Multiple Linear Regression Equation 
applyMultipleLinearRegression(string startTimeString, 

 string endTimeString, 
 sequence tsDataSetSequence, 
 floating-point minimumLimit, 
 floating-point maximumLimit) 

Apply the regression coefficients contained in the current paired data set to the 
array of time series data sets in tsDataSetSequence to develop a new time 
series data set.  The applyMultipleLinearRegression function applies the 
multiple linear regression coefficients computed with the 
multipleLinearRegression function (see section 7.10.45). 

For the general linear regression equation, a dependent variable, Y, may be 
computed from a set independent variables, Xn: 

Y  =  B0 + B1*X1 + B2*X2 + B3*X3 

where Bn are linear regression coefficients. 

For time series data sets, an estimate of the original time series data set values 
may be computed from a set of independent time series data sets using 
regression coefficients such that: 

TsEstimate(t)  =  B0 + B1*TS1(t) + B2*TS2(t) + … +  Bn*TSn(t) 

where Bn are the set of regression coefficients and TSn are the time series 
data sets contained in tsDataSetSequence.  

The number of regression coefficients in the current PairedDataMath object 
must be one more than the number of independent time series data sets in 
tsDataSetSequence.  The collection of selected time series data sets must be 
in the same order as when the regression coefficients were computed with the 
multipleLinearRegression method.   

All the time series data sets must be regular interval and have the same time 
interval.  The function filters the data to determine the time period common to 
all time series data sets and uses only those points in the regression analysis.  
For any given time, if a value is missing in any time series, the value in 
resultant time series is set to missing.   

The parameters minimumLimit and maximumLimit can be used to specify 
the range of valid values for the resultant data set.  Values which fall outside 
the specified range are set to missing.  minimumLimit or maximumLimit 
may be entered as Constants.UNDEFINED to ignore the minimum or 
maximum value check. 

If startTimeString or endTimeString are blank strings, the start and end 
time of the resultant time series will be defined by the time period common to 
all time series data sets in tsDataSetSequence.  Otherwise the time series start 



Chapter 7 – Scripting HEC-DSSVue User’s Manual
 

7-48 

and end may be defined using startTimeString and endTimeString which 
have the usual HEC time window format (e.g. “01JAN2001 1400”).   

Names, parameter type and unit labels for the new time series data set are 
copied over from the first time series data set in tsDataSetSequence. The F 
part in the new data set is set to “COMPUTED.”  

Parameters:  

startTimeString – A string containing an HEC time (e.g. 
“01JAN2001 1400”) specifying the start time of the resultant time 
series data set.  May be blank (“ “). 

endTimeString – A string containing an HEC time (e.g. 
“01JAN2001 1400”) specifying the ending time of the resultant time 
series data set.  May be blank (“ “). 

tsDataSetSequence – Sequence of TimeSeriesMath objects.  Must all 
be regular interval and have the same time interval. 

minimumLimit – A floating-point value specifying the minimum valid 
value in the resultant time series data set.  Set to 
Constants.UNDEFINED to ignore this option. 

maximumLimit – A floating-point value specifying the maximum valid 
value in the resultant time series data set. Set to 
Constants.UNDEFINED to ignore this option. 

Example:  
newTsData =  
pairedData.applyMultipleLinearRegression(  

“01Jan2000 0000”,  
“31Dec2000 2300”,  
(tsData1, tsData2, tsData3),  
Constants.UNDEFINED,  
Constants.UNDEFINED) 

Returns:  A new regular interval TimeSeriesMath object. 

Generated Exceptions:  Throws an hec.hecmath.HecMathException if the 
number of data sets in tsDataSetSequence is not equal to the number of 
regression coefficients -1, or if the data sets in tsDataSetSequence are not 
regular interval time series data sets with the same interval time. 



HEC-DSSVue User’s Manual Chapter 7 – Scripting
 

7-49 

7.10.6 Centered Moving Average Smoothing 
centeredMovingAverage(integer numberToAverageOver, 
 boolean onlyValidValues, 
 boolean useReduced) 

Derive a new time series from the centered moving average of 
numberToAverageOver values in the current time series. 
numberToAverageOver must be an odd integer greater than 2. 

If onlyValidValues is set to true, then if any points in the averaging interval 
are missing, the point in the new time series is set to missing.  If 
onlyValidValues is set to false and missing values are contained in the 
averaging interval, a smoothed point is still computed using the remaining 
valid values in the interval.  If there are no valid values in the averaging 
interval, the point is set to missing. 

If useReduced is set to true, then centered moving average points can still be 
computed at the beginning and end of the time series, even if there are less 
than numberToAverageOver values in the averaging interval.  If 
useReduced is set to false, then the first and last numberToAverageOver/2 
points of the resultant time series are set to missing. 

Parameters:  

numberToAverageOver – An integer containing the number of values 
to average over for computing the centered moving average. Must be 
odd and greater than 2. 

onlyValidValues – Either Constants.TRUE, or Constants.FALSE, 
specifying whether all values in the averaging interval must be valid 
for the computed point in the new time series to be valid. 

useReduced – Either Constants.TRUE, or Constants.FALSE, 
specifying whether  to allow points at the beginning and end of the 
resultant time series to be computed from a reduced ( less than 
numberToAverageOver ) set of points. 

Example:  
avgData = tsData.centeredMovingAverage(  
 5,  

Constants.TRUE,  
Constants.TRUE) 

Returns: A new TimeSeriesMath object. 

Generated Exceptions: Throws an hec.hecmath.HecMathException if the 
numberToAverageOver is less than 3 or not odd. 



Chapter 7 – Scripting HEC-DSSVue User’s Manual
 

7-50 

7.10.7 Conic Interpolation from Elevation/Area Table 
conicInterpolation(  TimeSeriesMath tsData, 
 string inputType, 
 string outputType, 
 floating-point storageScaleFactor ) 

Use the conic interpolation table in the current paired data set to develop a 
new time series data set from the interpolation of tsData.  

The current paired data should be an Elevation-Area table.  However, the first 
data pair are the initial conic depth, and the storage value at the first elevation 
in the table.  If the initial conic depth is undefined, the function will calculate 
a value.  Elevation-Area values in the table must be in ascending order.  

tsData is either a time series of reservoir elevation or storage.  The type is 
specified by setting inputType as "S(TORAGE)" or "E(LEVATION).”  The 
desired output time series type is similarly set using outputType.  The valid 
settings for outputType are "S(TORAGE)”, "E(LEVATION)" or "A(REA).”  
inputType and outputType must not be the same.  

storageScaleFactor is an optional parameter used to scale input (by 
multiplying) and output (by dividing) storage values.  For example, if the area 
in the conic interpolation table is expressed in sq.ft., storageScaleFactor 
could be set to 43560. to convert the storage output to acre-ft.  

Parameter type in the new time series is set according to outputType.  If the 
output time series values are elevation, the time series units are set to the 
paired data x-units label.  If the output time series values are area, the time 
series units are set to the paired data y-units label.  If the output is storage, the 
units are not set and should be set by the user with the setUnits function. 

See also:  setUnits(). 

Parameters:  

tsData – A TimeSeriesMath object representing elevation or storage. 

inputType – A string specifying the parameter type for the input time 
series, either "S(TORAGE)" or "E(LEVATION).”  Only the first 
character of the string is interpreted by the function. 

outputType – A string specifying the parameter type for the output 
time series, either "S(TORAGE)”, "E(LEVATION)" or “A(REA).”  
Only the first character of the string is interpreted by the function. 

storageScaleFactor – A floating-point number used to scale input 
(by multiplying) and output (by dividing) storage values. 



HEC-DSSVue User’s Manual Chapter 7 – Scripting
 

7-51 

Examples:  
 tsStorage =  

conicElevAreaCurve.conicInterpolation(  
tsElev,  
“Elevation”,  
“Storage”,  
1.0) 

 

 tsArea =  
conicElevAreaCurve.conicInterpolation(  
tsElev,  
“Elevation”,  
“Area”,  
1.0) 

Returns: A new TimeSeriesMath object. 

Generated Exceptions:  Throws an hec.hecmath.HecMathException if 
inputType or outputType cannot be interpreted as one of the allowed values; 
if inputType and outputType are the same parameters; if values in the conic 
interpolation table are not in ascending order. 

7.10.8 Convert Values to English Units 
convertToEnglishUnits() 

Perform unit conversion of data values and unit labels in the current time 
series or paired data set from Metric (SI) units to English units.  
Determination of the unit system will be based upon the current units labels 
and parameter types.  If the data units are already in English units or the unit 
system cannot be determined, no conversion occurs. 

For paired data, both x and y values are converted.  For time series data, 
missing values remain missing. 

See also:  convertToMetricUnits(), isEnglish(), isMetric(). 

Parameters:  Takes no parameters 

Example:  englishDataSet = siDataSet.convertToEnglishUnits() 

Returns:  A HecMath object of the same type as the current object. 



Chapter 7 – Scripting HEC-DSSVue User’s Manual
 

7-52 

7.10.9 Convert Values to Metric (SI) Units 
convertToMetricUnits() 

Perform unit conversion of data values and unit labels in the current time 
series or paired data set from English units to Metric (SI) units.  
Determination of the unit system will be based upon the current units labels 
and parameter types.  If the units are already in Metric units or the unit system 
cannot be determined, no conversion occurs. 

For paired data, both x and y values are converted.  For time series data, 
missing values remain missing. 

See also:  convertToEnglishUnits(), isEnglish(), isMetric(). 

Parameters:  Takes no parameters 

Example:  siDataSet = englishDataSet.convertToMetricUnits() 

Returns:  An HecMath object of the same type as the current object. 

7.10.10 Correlation Coefficients 
correlationCoefficients(TimeSeriesMath tsData) 

Computes the linear regression and other correlation coefficients between data 
in the current time series and tsData.  Values in the current time series and 
tsData are matched by time to form data pairs for the correlation analysis.   
The data sets may be either regular or irregular time interval data. 

 The correlations statistics computed by the function are: 

Number of valid values 

Regression constant 

Regression coefficient 

Determination coefficient 

Standard error of regression 

Determination coefficient adjusted for degrees of freedom 

Standard error adjusted for degrees of freedom 

These values are contained in a LinearRegressionStatistics object. 

The current TimeSeriesMath object forms the values of the independent 
variable (x-values), while values of the second time series comprise the 
dependent variable (y-values).  The linear regression coefficients thus express 
how values in the second data set can be derived from values in the primary 
data set: 

 



HEC-DSSVue User’s Manual Chapter 7 – Scripting
 

7-53 

TS2(t) = a + b * TS1(t) 

where  “a” is the regression constant and “b” the regression coefficient. 

See also:  LinearRegressionStatistics. 

Parameters: tsData  - A TimeSeriesMath object that forms the dependent 
variable for the regression analysis. 

Example: 
linearRegressionData =  

tsData.correlationCoefficients(otherTsData) 

Returns:A LinearRegressionStatistics object holding the correlation data. 

Generated Exceptions:  Throws an hec.hecmath.HecMathException if the 
times in the current time series do not exactly match times in tsData. 

7.10.11 Cosine Trigonometric Function 
cos() 

Derive a new time series or paired data set from the cosine of values of the 
current data set.  The resultant data set values are in radians.  For time series 
data, missing values are kept as missing.   

For paired data sets, use the setCurve (see sections 7.10.61 and 7.10.62) 
function to first select the paired data curve (or all curves) to apply the 
function.  By default the function is applied to all paired data curves. 

See also: setCurve(). 

Parameters: Takes no parameters 

Returns: A HecMath object of the same type as the current object. 

 



Chapter 7 – Scripting HEC-DSSVue User’s Manual
 

7-54 

7.10.12 Cyclic Analysis (Time Series) 
cyclicAnalysis() 

Derive a set of cyclic statistics from the current regular interval time series 
data set.  The time series data set must have a time interval of “1HOUR”, 
“1DAY” or “1MONTH.”  The function sorts the time series values into 
statistical "bins" relevant to the time interval.  Values for the 1HOUR interval 
data are sorted into 24 bins representing the hours of the day, 0100 to 2400.  
The 1DAY interval data is apportioned to 365 bins for the days of the year.  
The 1MONTH interval data is sorted into 12 bins for the months of the year. 

The format of the resultant data sets is as a “pseudo” time series for the year 
3000.  For example, the cyclic analysis of one month of hourly interval data 
will produce pseudo time series data sets having 24 hourly values for the day 
January 1, 3000.  If the statistical parameter is the “maximum” value, then the 
24 values represent the maximum value occurring at that hour of the day in 
the current time series.  The cyclic analysis of daily interval data will produce 
pseudo time series data sets having 365 daily values for the year 3000.  The 
cyclic analysis of monthly interval data will result in pseudo time series data 
sets having 12 monthly values for the year 3000.     

Fourteen pseudo time series data sets are derived by the cyclic analysis 
function for the following statistical parameters: 

� Number of values processed for each time interval 
� Maximum value 
� Time of maximum value 
� Minimum value 
� Time of minimum value 
� Average value 
� Probability exceedence percentiles for 5%, 10%, 25%, 50% 

(median value), 75%, 90%, and 95% 
� Standard deviation 

The 14 pseudo time series of cyclic statistics are returned by the function as an 
array of time series data sets.  The parameter part of the record path for each 
time series is modified to indicate the type of the statistical parameter.  For a 
flow record, the parameter "FLOW" would become "FLOW-MAX" for the 
maximum values statistics, "FLOW-P5" for the 5% percentile statistics, 
etc.Parameters: Takes no parameters 

Example: cyclicData = tsData.cyclicAnalysis() 

Returns: A sequence of 14 TimeSeriesMath objects, each of which is a 
pseudo time series data sets representing a statistical parameter. 

Generated Exceptions: Throws an hec.hecmath.HecMathException if the 
time series is not regular interval or does not have a time interval of 
"1HOUR”, "1DAY", or "1MONTH”. 



HEC-DSSVue User’s Manual Chapter 7 – Scripting
 

7-55 

7.10.13 Decaying Basin Wetness Parameter 
decayingBasinWetnessParameter( TimeSeriesMath tsPrecip, 
 floating-point decayRate ) 

Compute a time series of decaying basin wetness parameters from the regular 
interval time series data set of incremental precipitation, tsPrecip, by: 

TSResult(t)  =  Rate * TSResult(t-1)  +  TSPrecip(t) 

where Rate is decayRate, and 0 < Rate < 1. 

The first value of the resultant time series data set, TSResult(1), is set to the 
first value in the current time series data set.  The current time series data set 
can be the same time series data set as tsPrecip.  Missing values in the 
precipitation time series are taken as zero when applying the above equation.   

Parameters:  

tsPrecip – A regular interval TimeSeriesMath object representing 
precipitation. 

decayRate – a floating-point number in the range 0 < decayRate < 1. 

Example:  
tsWetness =  

tsPrecip.decayingBasinWetnessParameter(  

tsPrecip,  

0.87) 

Returns: A new TimeSeriesMath object. 

 

7.10.14 Divide by a Constant 
divide(floating-point constant) 

Divide all valid values in the current time series or paired data set by the value 
constant.  For time series data, missing values are kept as missing.   

For paired data, constant divides the y-values only.  Use the setCurve  
method to select the paired data curve(s). 

See also:  divide(TimeSeriesMath tsData); setCurve(). 

Parameters:  
constant  - A floating-point value to divide the values in the current 
data set (cannot be zero). 

Example: newDataSet = dataSet.divide(1.1) 

Returns: A new HecMath object of the same type as the current object. 



Chapter 7 – Scripting HEC-DSSVue User’s Manual
 

7-56 

7.10.15 Divide by a Data Set 
divide(TimeSeriesMath tsData) 

Divide valid values in the current data set by the corresponding values in the 
data set tsData.  Both data sets must be time series data sets.   

When dividing one time series data set by another, there is no restriction that 
times in the two data sets match exactly.  However, only values with 
coincident times will be divided.  Times in the current time series data set that 
cannot be matched with times in the second data set are set to missing.  Values 
in the current data set that are missing are kept as missing.  If a value in the 
second data set is zero or missing, the value in the resultant data set is set to 
missing (divide by zero not allowed).  Either or both data sets may be regular 
or irregular interval time series. 

See also:  divide(floating-point constant). 

Parameters:  

tsData  - A time series data set. 

Example: newTsData = tsData.divide(otherTsData) 

Returns: A new TimeSeriesMath object. 

 

7.10.16 Estimate Values for Missing Precipitation Data 
estimateForMissingPrecipValues(integer maxMissingAllowed) 

Linearly interpolate estimates for missing values in the current regular or 
irregular interval time series data set.  The current data set is expected to be 
cumulative precipitation and the data must be of type “INST-CUM”.  Use the 
estimateForMissingValues method for filling missing values in other types of 
time series data. 

The rules used for interpolation of missing cumulative precipitation data are: 

� If the values bracketing the missing period are increasing with time, only 
interpolate if the number of successive missing values does not exceed the 
value of maxMissingAllowed. 

� If the values bracketing the missing period are decreasing with time, do 
not estimate for any missing values. 

� If the values bracketing the missing period are equal, then estimate any 
number of missing values. 

See also:  estimateForMissingValues(). 

 

 



HEC-DSSVue User’s Manual Chapter 7 – Scripting
 

7-57 

Parameters:  

maxMissingAllowed - An integer value for the maximum number of 
consecutive missing values between valid values. 

Example:  
newPrecip =  

tsPrecip.estimateForMissingPrecipValues(5) 

Returns:  A new TimeSeriesMath object. 

7.10.17 Estimate Values for Missing Data 
estimateForMissingValues(integer maxMissingAllowed) 

Linearly interpolate estimates for missing values in the current regular or 
irregular interval time series data set.  Do not interpolate if the number of 
successive missing values exceeds maxMissingAllowed. 

See also:  estimateForMissingPrecipValues(). 

Parameters:  

maxMissingAllowed  - An integer value for the maximum number of 
consecutive missing values allowed for interpolation. 

Example: newTsData = tsData.estimateForMissingValues(5) 

Returns: A new TimeSeriesMath object. 

7.10.18 Exponentiation Function 
exponentiation(floating-point constant) 

Derive a new time series or paired data set from the exponentiation of values 
in the current data set by constant, by:  

T2 (i) = T1(i)constant 

For time series data, values that are missing in the current time series remain 
missing in the new time series. 

For paired data sets, use the setCurve method to first select the paired data 
curve(s). 

See also:  setCurve(). 

Parameters:  

constant – a floating-point value representing the exponent. 

Example: squaredDataSet = dataSet.exponentiation(2.) 

Returns: A new HecMath object of the same type as the current object. 
 



Chapter 7 – Scripting HEC-DSSVue User’s Manual
 

7-58 

7.10.19 Extract Time Series Data at Unique Time 
Specification 

extractTimeSeriesDataForTimeSpecification( 
 string timeLevelString, 
 string rangeString, 
 boolean isInclusive, 
 integer intervalWindow, 
 boolean setAsIrregular ) 

Select/extract data points from the current regular or irregular interval time 
series data set based upon user defined time specifications.  For example, the 
function may be used to extract from hourly interval data, the values observed 
every day at noon. 

timeLevelString defines the time level/interval for extraction (year, month, 
day of the month, day of the week, or 24-hour time).  rangeString defines 
the interval range for data extraction applicable to the time level.  For 
example, if timeLevelString is "MONTH”, a valid range would be "JAN-
MAR".  The rangeString variable can define a single interval value (e.g. 
"JAN" - select data from January only) or a beginning and ending range (e.g. 
"JAN-MAR" - select data for January through March).  Table 7.18 shows the 
valid timeLevelString and rangeString values.  
 

Table 7.18 -  Valid timeLevelString and rangeString Values 

timeLevelString rangeString Example rangeString 

"YEAR” Four-digit year value "1938" or "1938-1945" 

"MONTH” Standard three-character 
abbreviation for month 

"JAN" or "JAN-MAR"  
or 
“OCT-FEB” 

"DAYMON(TH)" Day of the month or 
"LASTDAY" string 

"15" or "1-15 or “27-5”  
or 
“16-LASTDAY" 

"DAYWEE(K)" Standard three-character 
abbreviation for day of the week 

"MON" or "SUN-TUE"  
or  
“FRI-WED” 

"TIME" Four digit 24-hour military-style 
clock time 

"2400" or "0300-0600" 
or 
“2200-0130” 

 



HEC-DSSVue User’s Manual Chapter 7 – Scripting
 

7-59 

If desired, you may use one of the enumerated string constants to specify 
timeLevelString: 

    Year              TimeSeriesMath.LEVEL_YEAR_STRING 

    Month           TimeSeriesMath. LEVEL_MONTH_STRING  

    Day of Month     TimeSeriesMath. LEVEL_DAYMONTH_STRING 

    Day of Week      TimeSeriesMath.LEVEL_DAYWEEK_STRING 

    24-hour time     TimeSeriesMath.LEVEL_TIME_STRING 

The parameter isInclusive determines whether the data extraction 
operation is either inclusive or exclusive of the specified range.  For example, 
if isInclusive is “true” and the range is set to "JAN-MAR" for the 
"MONTH" time level, the extracted data will include all data in the months 
January through March for all the years of time series data.  If isInclusive is 
“false” for this example, the extracted data covers the time April through 
December (is exclusive of the period January through March).  

intervalWindow is only used when the timeLevelString is "TIME.”  
intervalWindow is the minutes before and after the time of day within which 
the data will be extracted. intervalWindow effectively increases the time 
range at the beginning and end intervalWindow minutes.  For example, with 
a rangeString of “0300” and an intervalWindow of “10 minutes”, data will 
be extracted from the selected time series if times falls within in the period 
0250 to 0310. 

setAsIrregular defines whether the extracted data is saved as regular 
interval or irregular interval data.  Most often the time series data formed by 
the extraction process will no longer be regular interval, and setAsIrregular 
should be set to “true.” Setting setAsIrregular to “false” will force an 
attempt to save the data as regular interval time data. 

Parameters:  

timeLevelString – A string specifying the time level selection. 

rangeString – A string specifying time or time range for selection.  
Must be consistent with timeLevelString. 

isInclusive – Either Constants.TRUE, or Constants.FALSE, value.  
If  true, data is extracted inclusive of the range specified by 
rangeString.  If false, data is extracted exclusive of the range specified 
by rangeString. 

intervalWindow – An integer value representing the minutes before 
and after the time of day within which the data will be extracted.  Only 
applied when the timeLevelString is “TIME.” 



Chapter 7 – Scripting HEC-DSSVue User’s Manual
 

7-60 

setAsIrregular – Either Constants.TRUE, or Constants.FALSE, 
value.  If true, data is automatically set as irregular time interval data.  
If false, the function will attempt to classify the data as regular time 
interval data. 

Example: 
 SelectedData =  
  tsData.extractTimeSeriesDataForTimeSpecification(  
  “DAYMONTH”,  
  “16-LASTDAY”,  
  Constants.TRUE,  
  0,  
  Constants.TRUE) 

Returns: A new TimeSeriesMath object. 

Generated Exceptions: Throws an hec.hecmath.HecMathException if the 
function could not successfully interpret timeLevelString or rangeString. 

7.10.20 Flow Accumulator Gage (Compute Period Average 
Flows) 

flowAccumulatorGageProcessor(TimeSeriesMath tsCounts) 

Derive a new time series of period-average flows from a flow accumulator 
type gage.  The current time series is assumed to containe the accumulated 
flow data, while the parameter time series, tsCounts, is assumed to have the 
corresponding time series of counts.  The two time series data sets must match 
times exactly.  The two time series are combined to compute a new time series 
of period average flow:  

 TsNew(t)  =  (  TsAccFlow(t) - TsAccFlow(t-1)  )  /  

(  TsCount(t) -  TsCount(t-1)  ) 

where TsAccFlow is the gage accumulated flow time series and TsCount is 
the gage time series of counts.   

In the above equation, if TsAccFlow(t), TsAccFlow(t-1), TsCount(t) or 
TsCount(t-1) are missing, TsNew(t) is set to missing. The new time series is 
assigned the data type "PER-AVER". 

Parameters:  

tsCounts – A TimeSeriesMath object containing the counts for the 
flow accumulator gage.  

Example:  
tsPerAvgFlow =  

tsAccumFlow.flowAccumulatorGageProcessor(tsCounts) 

Returns: A new TimeSeriesMath object. 



HEC-DSSVue User’s Manual Chapter 7 – Scripting
 

7-61 

Generated Exceptions:  Throws an hec.hecmath.HecMathException if times 
in the current object do not exactly match the times in tsCounts. 

7.10.21 Forward Moving Average Smoothing 
forwardMovingAverage(integer numberToAverageOver) 

Derive a new time series from the forward moving average of 
numberToAverageOver values in the current time series.  
numberToAverageOver must be an integer greater than 2. 

If the averaging interval contains a missing value, the smoothed value is 
computed from the remaining valid values in the interval.  However, if there 
are less than 2 valid values in the interval, the value in the resultant data set is 
set to missing. 

Parameters:  

numberToAverageOver – An integer containing the number of values 
to average over for computing the forward moving average.  

Example: tsAveraged = tsData.forwardMovingAverage(4) 

Returns: A new TimeSeriesMath object. 

Generated Exceptions:  Throws an hec.hecmath.HecMathException if the 
numberToAverageOver is less than 2. 

 

7.10.22 Generate Data Pairs from Two Time Series 
generateDataPairs(TimeSeriesMath tsData, 
 boolean sort) 

Generate a paired data set by pairing values (by time) from the current time 
series data set and the time series data set tsData.  The values of the current 
time series form the x-ordinates, while values from tsData form the y-
ordinates of the resulting paired data set.  The times in the two time series data 
sets must match exactly.  If a value for a time is missing in either time series, 
no data value pair is formed or added to the paired data set.  If sort is “true”, 
data pairs in the paired data set are sorted by ascending x-value.   

The units and parameter type from the current time series data set are assigned 
to the paired data set x-units and x-parameter type.  The units and parameter 
type from tsData are assigned to the paired data set y-units and y-parameter 
type.   

An example application of the function would be to mate a time series record 
of stage to one of flow to generate a stage-flow paired data set.   

 



Chapter 7 – Scripting HEC-DSSVue User’s Manual
 

7-62 

Parameters:  

tsData – A TimeSeriesMath object that forms the y-ordinates of the 
resulting paired data set. 

sort – Either Constants.TRUE, or Constants.FALSE, value.  If true, 
sort data pairs in ascending x-value.  If false, leave unsorted. 

Example: ratingCurve = tsStage.generateDataPairs(tsFlow) 

Returns: A PairedDataMath object with x-ordinates from the current time 
series, and y-ordinates from tsData. 

Generated Exceptions:  Throws an hec.hecmath.HecMathException if times 
from the current time series and tsData do not match exactly. 

7.10.23 Generate a Regular Interval Time Series 
generateRegularIntervalTimeSeries(string startTimeString, 

 string endTimeString, 
 string timeIntervalString, 
 string timeOffsetString, 
 floating-point initialValue ) 

Generate a new regular interval time series data set from scratch with times 
and values specified by the parameters.  This is a function provided by the 
TimeSeriesMath module, and not an object method. 

The parameters startTimeString and endTimeString are strings used to 
specify the beginning and ending time of the generated data set.  These two 
parameters have the form of the standard HEC time string (e.g. "01JAN2001 
0100").   

The regular time interval is specified by timeIntervalString, and is a valid 
HEC time increment string (e.g. “1MIN”, “15MIN”, “1HOUR”, “6HOUR”, 
“1DAY”, “1MONTH”).   

timeOffsetString is used to shift times in the resultant time series from the 
standard interval time.  As an example, the offset could be used to shift times 
in regular hourly interval data from the top of the hour to 6 minutes past the 
hour.  The parameter has the form "nT”, where "n" is an integer number and 
"T" is one of the time increments: "M(INUTES)”, "D(AYS)”, "H(OUR)”, 
"W(EEKS)”, "MON(THS)" or "Y(EARS)" ( characters in the parenthesis are 
optional ).  For example, a time offset of 9 minutes would be expressed as 
"9M" or "9MIN.”  

Values in the time series data set are initialized to initialValue.Parameters:  

startTimeString - a string specifying a standard HEC time defining 
the time series data start date/time.  

endTimeString - a string specifying a standard HEC time defining the 
time series data end date/time.  



HEC-DSSVue User’s Manual Chapter 7 – Scripting
 

7-63 

timeIntervalString - a string specifying a valid DSS regular time 
interval which defines the time interval of the new time series.  

timeOffsetString – a string specifying the offset of the new time 
points from the regular interval time. This string may be an empty 
string or None.  

initialValue –a floating-point number set to the initial value for all 
time series points. Set to HecMath.UNDEFINED to set all values to 
missing.  

Example:  
newTsData =  

TimeSeriesMath.generateRegularIntervalTimeSeries(  
 “01FEB2002 0100”,  
 “28FEB2002 2400”,  
 “1HOUR”,  
 “0M”,  
 100.) 

Returns: A new regular interval TimeSeriesMath object initialized to 
initialValue.  Data units and type are unset.  

Generated Exceptions:  Throws an hec.hecmath.HecMathException if time 
parameters cannot be successfully interpreted. 

7.10.24 Get Data Container 
getData() 

Returns a copy of the hec.io.DataContainer for the current data set.  For time 
series data sets, returns a hec.io.TimeSeriesContainer.  For paired data sets, 
returns a hec.io.PairedDataContainer. 

The hec.io.TimeSeriesContainer contains the time series values for a time 
series data set.  The hec.io.PairedDataContainer contains the paired data 
values for a paired data set. 

Parameters:  Takes no parameters 

Example:  container = dataset.getData() 

Returns:  A hec.io.DataContainer. 



Chapter 7 – Scripting HEC-DSSVue User’s Manual
 

7-64 

7.10.25 Get Data Type for Time Series Data Set 
getType() 

Get the data type for a time series data set. 

Parameters:  Takes no parameters 

Example:  dataSet.getType() 

Returns:  A string - “INST-CUM”, “INST-VAL”, “PER-AVER” or “PER-
CUM”. 

7.10.26 Get Units Label for Data Set 
getUnits() 

Get the units label of the current data set.  For a paired data set, returns the y-
units label. 

Parameters:  Takes no parameters 

Example:  dataSet.getUnits() 

Returns:  A string. 

7.10.27 Interpolate Time Series Data at Regular Intervals 
interpolateDataAtRegularInterval(string timeIntervalString, 

 string timeOffsetString) 

Derive a regular interval time series data set by interpolation of the current 
regular or irregular interval time series data set.   

The new time interval is set by timeIntervalString which must be a valid 
HEC time interval string (e.g. “1MIN”, “15MIN”, “1HOUR”, “6HOUR”,  
“1DAY”, “1MONTH”).   

Times in the resultant time series may be shifted (offset) from the regular 
interval time by the increment specified by timeOffsetString.  As an 
example, the offset could be used to shift times from the top of the hour to 6 
minutes past the hour.  If no offset is used timeOffsetString should be an 
blank or empty string. 

Whether the time series data type is “INST-VAL”, “INST-CUM”, “PER-
AVE”, or “PER-CUM” controls how the interpolation is performed.  
Interpolated values are derived from “INST-VAL” or “INST-CUM” data 
using linear interpolation.  Values are derived from “PER-AVE” data by 
computing the period average value over the time interval.  Values are derived 
from “PER-CUM” data by computing the period cumulative value over the 
new time interval   



HEC-DSSVue User’s Manual Chapter 7 – Scripting
 

7-65 

For example, if the original data set is hourly data and the new regular interval 
data set is to have a six hour time interval: 

� The value for “INST-VAL” or “INST-CUM” type data is computed from 
the linear interpolation of the hourly points bracketing the new six hour 
time point. 

� The value for “PER-AVE” type data is computed from the period average 
value over the six hour interval. 

� The value for “PER-CUM” type data is computed from the accumulated 
value over the six hour interval. 

The treatment of missing value data is also dependent upon data type.  
Interpolated “INST-VAL” or “INST-CUM” points must be bracketed or 
coincident with valid (not missing) values in the original time series; 
otherwise the interpolated values are set as missing.  Interpolated “PER-AVE” 
or “PER-CUM” data must contain all valid values over the interpolation 
interval; otherwise the interpolated value is set as missing. 

Parameters:  

timeIntervalString – A string specifying the regular time interval 
for the resultant time series. 

timeOffsetString – A string specifying the offset of the new time 
points from the regular interval time. This variable may be an empty 
string (“  ”). 

Example:  
newTsData =  

tsData.interpolateDataAtRegularInterval(  
 “15MIN”,  
 “  ”) 

Returns: A new regular interval TimeSeriesMath object. 



Chapter 7 – Scripting HEC-DSSVue User’s Manual
 

7-66 

7.10.28 Inverse ( 1/X ) Function 
inverse() 

Derive a new time series or paired data set from the inverse (1/x) of values of 
the current data set.  The inverse value is computed by 1.0 divided by the 
value of the current data set.  If a data value is equal to 0.0, the value in the 
resultant data set is set to missing.  For time series data, if the original value is 
missing, the value remains missing in the resultant data set. 

For paired data sets, use the setCurve method to first select the paired data 
curve(s). 

See also:  setCurve(). 

Parameters:  Takes no parameters 

Example:  newDataSet = dataSet.inverse() 

Returns:  A HecMath object of the same type as the current object. 

7.10.29 Determine if Data Is in English Units 
isEnglish() 

Determine if the current time series or paired data set is in English units.  The 
function examines the data set parameter type and units label to establish the 
unit system. 

See also:  isMetric(); convertToEnglishUnits(). 

Parameters:  No parameters. 

Example:  if dataSet.isEnglish() : print “English Units” 

Returns:  Constants.TRUE if the data set units are English, otherwise 
Constants.FALSE. 

Generated Exceptions:  Throws an hec.hecmath.HecMathException if the 
unit system cannot be determined (parameter type and units label undefined). 

7.10.30 Determine if Data is in Metric Units 
isMetric() 

Determine if the current time series or paired data set is in Metric (SI) units.  
The function examines the data set parameter type and units label to establish 
the unit system. 

See also:  isEnglish(); 

 convertToMetricUnits(). 

Parameters: No parameters. 



HEC-DSSVue User’s Manual Chapter 7 – Scripting
 

7-67 

Example:  if dataSet.isMetric() : print “SI Units” 

Returns:  Constants.TRUE if the data set units are Metric, otherwise 
Constants.FALSE. 

Generated Exceptions: Throws an hec.hecmath.HecMathException if the 
unit system cannot be determined (parameter type and units label undefined). 

7.10.31 Determine if Computation Stable for Given 
Muskingum Routing Parameters 

isMuskingumRoutingStable(integer numberSubreaches, 
 floating-point muskingumK, 
 floating-point muskingumX) 

Check for possible instability for the given Muskingum Routing parameters. 

Test if the input parameters satisfy the stability criteria: 

1/(2(1-x)) <= K/deltaT <= 1/2x 

 where deltaT = (time series time interval)/numberSubreaches 

Parameters: 

numberSubreaches – integer specifying the number of routing 
subreaches. 

muskingumK –floating-point number specifying the Muskingum "K" 
parameter, in hours. 

muskingumX - floating-point number specifying the Muskingum "x" 
parameter, between 0.0 and 0.5 (inclusive). 

Example:  
warning = tsDataSet.isMuskingumRoutingStable(  

reachCount,  
kVal,  
xVal) 

 if warning : 
  print warning 
  return 

Returns: A string if the stability criteria is not met.  The string contains a 
warning message detailing the specific instability problem.  Otherwise returns 
None. 

Generated Exceptions: Throws an hec.hecmath.HecMathException if the 
current time series is not a regular interval time series, or if values for 
numberSubreaches or muskingumX are invalid. 



Chapter 7 – Scripting HEC-DSSVue User’s Manual
 

7-68 

7.10.32 Last Valid Value’s Date and Time 
lastValidDate() 

Find and return the date and time of the last valid (non-missing) value in a 
time series data set. 

Parameters: Takes no parameters 

Example: tsData.lastValidDate() 

Returns: An integer value translatable by HecTime representing the date and 
time of the last valid time series value. 

7.10.33 Last Valid Value in a Time Series 
lastValidValue() 

Find and return the last valid (non-missing) value in a time series data set. 

Parameters: Takes no parameters 

Example: tsData.lastValidValue() 

Returns: A floating-point value representing the last valid time series value. 

7.10.34 Linear Regression Statistics 
LinearRegressionStatistics is a class used to contain the linear regression 
and other correlation coefficients computed by the “correlationCoefficients” 
function. 

The data members of LinearRegressionStatistics are: 

    integer  numberValidValues  
    floating-point regressionConstant           - intercept of regression line 
    floating-point regressionCoefficient       - slope of regression line 
    floating-point  determinationCoefficient       
    floating-point  standardErrorOfRegression  
    floating-point  adjustedDeterminationCoefficient       
    floating-point  adjustedStandardErrorOfRegression  

The “toString()” method will produce a multi-line character string that can be 
used to printout the correlation values and description.   

Example:   
linRegData =  

tsData.correlationCoefficients(otherTsData) 
regCoef = linRegData.regressionCoefficient 

 print linRegData 
See also:  correlationCoefficients(). 



HEC-DSSVue User’s Manual Chapter 7 – Scripting
 

7-69 

7.10.35 Natural Log, Base “e” Function 
log() 

Derive a new time series or paired data set from the natural log (log base “e”) 
of values of the current data set.  Missing values in the original data set remain 
missing. Values less than or equal to 0.0 will be set to missing. 

For paired data sets, use the setCurve method to first select the paired data 
curve(s). 

See also: log10(), setCurve(). 

Parameters: Takes no parameters 

Example: newDataSet = dataSet.log() 

Returns: A new HecMath object of the same type as the current object. 

7.10.36 Log Base 10 Function 
log10() 

Derive a new time series or paired data set from the log base 10 of values of 
the current data set.  Missing values in the original data set remain missing.  
Values less than or equal to 0.0 will be set to missing. 

For paired data sets, use the setCurve method to first select the paired data 
curve(s). 

See also: log(), setCurve(). 

Parameters: Takes no parameters 

Example: newDataSet = dataSet.log10() 

Returns: A new HecMath object of the same type as the current object. 

7.10.37 Maximum Value in a Time Series 
max() 

Find and return the maximum value of the current time series data set.  
Missing values are ignored. 

Parameters: Takes no parameters 

Example: maxVal = tsData.max() 

Returns: A floating-point value representing the maximum value of the 
current time series. 



Chapter 7 – Scripting HEC-DSSVue User’s Manual
 

7-70 

7.10.38  Maximum Value’s Date and Time 
maxDate() 

Find and return the date and time of the maximum value for the current time 
series data set.  Missing values are ignored. 

Parameters: Takes no parameters 

Example: maxDateTime = tsData.maxDate() 

Returns: An integer value translatable by HecTime representing the date and 
time of the maximum time series value. 

7.10.39 Mean Time Series Value 
mean() 

Compute the mean value of the current time series data set.  Missing values 
are ignored. 

Parameters: Takes no parameters 

Example: meanVal = tsData.mean() 

Returns: A floating-point value representing the mean value of the current 
time series. 

7.10.40 Merge Paired Data Sets 
mergePairedData(PairedDataMath pdData) 

Merge the current paired data set with the paired data set pdData.  The 
resultant paired data set includes all the paired data curves from the current 
data set.  Depending upon a previous use of the setCurveMethod on pdData, a 
single selected paired data curve or all curves from pdData are appended to 
the merged data set.  The x-values for the two paired data sets must match 
exactly. 

See also: setCurve(). 

Parameters:  

pdData – A paired data set with x-ordinates matching those of the 
current data set. 

Example: mergedCurve = curve.mergePairedData(anotherCurve) 

Returns: A new PairedDataMath object. 



HEC-DSSVue User’s Manual Chapter 7 – Scripting
 

7-71 

7.10.41 Merge Two Time Series Data Sets 
mergeTimeSeries(TimeSeriesMath tsData) 

Merge data from the current time series data set with the time series data set 
tsData.  The resultant time series data set includes all the data points in the 
two time series, except where the data points occur at the same time.  When 
data points from the two data sets are coincident in time, valid values in the 
current time series take precedence over valid values from tsData.  However, 
if a coincident point is set to missing in the current time series data set, a valid 
value from tsData will be used for time in the resultant data set.  If the values 
are missing for both data sets, the value is missing in the resultant data set. 

The data sets for merging may have either regular or irregular time interval 
time series data.  The data sets are tested to determine if they both have the 
same regular time interval.  If not, the resultant data set is typed as an irregular 
interval data set. 

Parameters:  

tsData – A time series data set for merging with the current time 
series data set. 

Example: tsMerged = tsData.merge(otherTsData) 

Returns: A new TimeSeriesMath object. 

7.10.42 Minimum Value in a Time Series 
min() 

Find and return the minimum value of the current a time series data set.  
Missing values are ignored. 

Parameters: Takes no parameters 

Example: minVal = tsData.min() 

Returns: A floating-point value representing the minimum value of the 
current time series. 

7.10.43 Minimum Value’s Date and Time 
minDate() 

Find and return the date and time of the minimum value for the current time 
series data set.  Missing values are ignored. 

Parameters: Takes no parameters 

Example: minDateTime = tsData.minDate() 

Returns: An integer value translatable by HecTime representing the date and 
time of the minimum time series value. 



Chapter 7 – Scripting HEC-DSSVue User’s Manual
 

7-72 

7.10.44 Modified Puls or Working R&D Routing Function 
modifiedPulsRouting(TimeSeriesMath tsFlow, 
 integer numberSubreaches, 
 floating-point muskingumX ) 

The current data set is a paired data set containing the storage-discharge table 
for Puls routing, where the x-values are storage and the y-values are 
discharge.  The function derives a new time series data set from the Modified 
Puls or Working R&D routing of the time series data set tsFlow.  
numberSubreaches is the number of routing subreaches. 

The Working R&D method provides a means of including the effects of 
inflow on reach storage by use of the Muskingum “x” wedge coefficient.  The 
Working R&D method is activated in the computation if muskingumX is 
greater than 0.0.  However, muskingumX cannot be greater that 0.5. 

Parameters:  

tsFlow – A regular interval time series data set for routing. 

numberSubreaches – Number of routing subreaches. 

muskingumX - Muskingum "X" parameter, between 0.0 and 0.5 
(inclusive).  Enter 0.0 to route by the Modified Puls method, or a value 
greater than 0.0 to apply the Working R&D. 

Example:  
routedFlow =  

storDichareCurve.modifiedPulsRouting(  
 tsFlow,  
 reachCount, 
 coefficient) 

Returns:  A new TimeSeriesMath object. 

Generated Exceptions: Throws an hec.hecmath.HecMathException if the 
tsMath is not a regular interval time series; if muskingumX is less than 0.0 or 
greater than 0.5; if the current paired data set does not have both ascending x 
and y values. 

7.10.45 Multiple Linear Regression Coefficients 
multipleLinearRegression( sequence tsDataSequence, 
 floating-point minimumLimit, 
 floating-point maximumLimit ) 

Compute the multiple linear regression coefficients between the current time 
series data set and the array of independent time series data sets in 
tsDataSequence.  The function stores the regression coefficients in a new 
paired data set.  This paired data set may be used with the 
multipleLinearRegression function to derive a new estimated time series data 
set. 



HEC-DSSVue User’s Manual Chapter 7 – Scripting
 

7-73 

For the general linear regression equation, a dependent variable, Y, may be 
computed from a set independent variables, Xn: 

Y  =  B0 + B1*X1 + B2*X2 + B3*X3 

where Bn are linear regression coefficients. 

For time series data sets, an estimate of the original time series data set values 
may be computed from a set of independent time series data sets using 
regression coefficients such that: 

TsEstimate(t)  =  B0 + B1*TS1(t) + B2*TS2(t) + … +  Bn*TSn(t) 

where Bn are the set of regression coefficients and TSn are the time series 
data sets contained in tsDataSequence.  

The parameters minimumLimit and maximumLimit may be used to exclude 
out of range values in the current time series data set from the regression 
determination.  minimumLimit or maximumLimit may be entered as 
“Constants.UNDEFINED” to ignore the minimum or maximum value check. 

 

See also:  applyMultipleLinearRegression(). 

Parameters:  

tsDataSequence – sequence of TimeSeriesMath objects, which form 
the independent variables in the regression equation.  Must all be 
regular interval and have the same time interval. 

minimumLimit – A floating-point value.  Values in the current time 
series exceeding minimumLimit are excluded from the regression 
analysis.  Set to Constants.UNDEFINED to ignore this option. 

maximumLimit – A floating-point value.  Values in the current time 
series exceeding maximumLimit are excluded from the regression 
analysis.  Set to Constants.UNDEFINED to ignore this option. 

Example:  
regression = tsFlow.multipleLinearRegression (  
 [tsUpstrFlow1, tsUpstrFlow2, tsUpstrFlow3],  
 0.,  
 100000.) 

Returns: A new PairedDataMath object containing the computed regression 
coefficients. 

Generated Exceptions:  Throws an hec.hecmath.HecMathException if the 
current data set and the data sets in tsDataSequence are not regular interval 
time series data sets with the same interval time. 



Chapter 7 – Scripting HEC-DSSVue User’s Manual
 

7-74 

7.10.46 Multiply by a Constant 
multiply(floating-point constant) 

Multiply the value constant to all valid values in the current time series or 
paired data set.  For time series data, missing values are kept as missing.   

For paired data, constant multiplies the y-values only.  Use the 
setCurveMethod to first select the paired data curve(s). 

See also:  multiply(TimeSeriesMath tsData); setCurve(). 

Parameters:  

constant  - A floating-point precision value. 

Example: newDataSet = dataSet.multiply(1.5) 

Returns: A new HecMath object of the same type as the current object. 

7.10.47 Multiply by a Data Set 
multiply(TimeSeriesMath tsData) 

Multiply valid values in the current data set by the corresponding values in the 
data set tsData.  Both data sets must be time series data set.   

When multiplying one time series data set to another, there is no restriction 
that times in the two data sets match exactly.  However, only values with 
coincident times will be multiplied.  Times in the current time series data set 
that cannot be matched with times in the second data set are set to missing.  
Values in the current data set that are missing are kept as missing.  Either or 
both data sets may be regular or irregular interval time series.   

See also:  multiply(floating-point constant). 

Parameters:  

tsData  - A time series data set. 

Example:  newTsData = tsData.multiply(otherTsData) 

Returns:  A new TimeSeriesMath object. 

7.10.48 Muskingum Hydrologic Routing Function 
muskingumRouting( integer numberSubreaches, 
 floating-point muskingumK, 
 floating-point muskingumX) 

Route the current regular interval time series data set by the Muskingum 
Routing method.  The current data set must be a regular interval time series 
data set.  muskingumK is the Muskingum “K” parameter, in hours, and 
muskingumX is the Muskingum “x” parameter.  muskingumX cannot be 
less than 0.0 or greater than 0.5.   



HEC-DSSVue User’s Manual Chapter 7 – Scripting
 

7-75 

The set of Muskingum routing parameters may potentially produce numerical 
instabilities in the routed time series.  Use the function 
isMuskingumRoutingStable() to test if the Muskingum routing parameters 
may potentially have instabilities. 

See also:  isMuskingumRoutingStable(). 

Parameters:  

numberSubreaches – An integer specifying the number of routing 
subreaches. 

muskingumK – A floating-point number specifying the Muskingum 
"K" parameter in hours.  

muskingumX – A floating-point number specifying the Muskingum "x" 
parameter, between 0.0 and 0.5 

Example:  
routedFlows = tsFlows.muskingumRouting(reachCount, K, x) 

Returns: A new TimeSeriesMath object. 

Generated Exceptions:  Throws an hec.hecmath.HecMathException if the 
current time series is not a regular interval time series; if muskingumX is less 
than 0.0 or greater than 0.5. 

7.10.49 Number of Missing Values in a Time Series 
numberMissingValues() 

Count and return the number of missing values in the current time series data 
set. 

Parameters: Takes no parameters 

Example: missingCount = tsData.numberMissingValues() 

Returns: An integer of the count of missing time series values. 

7.10.50 Number of Valid Values in a Time Series 
numberValidValues() 

Count and return the number of valid values in the current time series data set. 

Parameters: Takes no parameters 

Example: validCount = tsData.numberValidValues() 

Returns: An integer of the count of valid (non-missing) time series values. 



Chapter 7 – Scripting HEC-DSSVue User’s Manual
 

7-76 

7.10.51 Olympic Smoothing 
olympicSmoothing( integer numberToAverageOver, 
 boolean onlyValidValues, 
 boolean useReduced) 

Derive a new time series from the Olympic smoothing of 
numberToAverageOver values in the current time series.  
numberToAverageOver must be and odd integer and greater than.  Similar 
to centered moving average smoothing, except that the minimum and 
maximum values over the averaging interval are excluded from the 
computation.   

If onlyValidValues is set to true, then if any values in the averaging interval 
are missing, the point in the resultant time series is set to missing.  If 
onlyValidValues is set to false and there are missing values in the averaging 
interval, a smoothed point is still computed using the remaining valid values 
in the interval.  If there are no valid values in the averaging interval, the point 
in the resultant time series is set to missing. 

If useReduced is set to true, then moving average values can be still be 
computed at the beginning and end of the time series even if there are less 
than numberToAverageOver values in the interval.  If useReduced is set to 
false, then the first and last numberToAverageOver/2 points of the resultant 
time series are set to missing. 

Parameters:  

numberToAverageOver – An integer specifying the number of values 
to average over for computing the smoothed time series. Must be an 
odd integer greater than 2. 

onlyValidValues – Either Constants.TRUE, or Constants.FALSE, 
specifying whether all values in the averaging interval must be valid 
for the computed point in the resultant time series to be valid. 

useReduced - Either Constants.TRUE, or Constants.FALSE, 
specifying whether to allow points at the beginning and end of the 
smoothed time series to be computed from a reduced ( less than 
numberToAverageOver ) number of values. Otherwise, set the first 
and last numberToAverageOver/2 points of the new time series to 
missing. 

Example:  
avgData = tsData.olympicSmoothing(  
 5,  

1) 

Returns: A new TimeSeriesMath object. 

Generated Exceptions:  Throws an hec.hecmath.HecMathException if the 
numberToAverageOver is less than 3 or not odd. 



HEC-DSSVue User’s Manual Chapter 7 – Scripting
 

7-77 

7.10.52 Period Constants Generation 
periodConstants(TimeSeriesMath tsData) 

Derive a new time series data set by applying values in the current time series 
data set to the times defined by the time series data set tsData.  Both time 
series data sets may be regular or irregular interval.  Values in a new time 
series are set according to: 

ts1(j)  ≤  tsnew(i)  <  ts1(j+1) ,      TSNEW(i)  =  TS1(j) 

where ts1 is the time in the current time series, TS1 is the value in the current 
time series, tsnew is the time in the new time series, TSNEW is the value in 
the new time series. 

If times in the new time series precede the first data point in the current time 
series, the value for these times is set to missing.  If times in the new time 
series occur after the last data point in the current time series, the value for 
these times is set to the value of the last point in the current time series.   
Figure 7.7 shows interpolation of values with the periodConstants function. 

Interpolated value 

Original TS data 

Missing Values 

Figure 7.7 Interpolation of Time Series Values Using Period 
Constants function 

Parameters:  

tsData – A regular  or irregular interval time series data set. 

Example:  
tsConstants = tsValues.periodConstants(tsData) 

Returns: A new TimeSeriesMath object. 

 



Chapter 7 – Scripting HEC-DSSVue User’s Manual
 

7-78 

7.10.53 Polynomial Transformation 
polynomialTransformation(TimeSeriesMath tsData) 

Compute a polynomial transformation of a regular or irregular interval time 
series data set, tsData, using the polynomial coefficients stored in the current 
paired data set.  Missing values in tsData remain missing in the resultant data 
set. 

A new time series can be computed from an existing time series with the 
polynomial expression: 

TS2 (t) =  B1* TS1(t) + B2* TS1(t) 2 + ... + Bn* TS1(t) n 

where Bn are the polynomial coefficients for term “n.” 

 Values for the polynomial coefficients are stored in the x-values of the 
current paired data set.  Before the above equation is applied, values in the 
input time series are adjusted by subtracting off the paired data “datum” value 
if defined.  The units label and parameter type for the resultant time series are 
copied from the current paired data set x-units and parameter type. 

See also:  polynomialTransformationWithIntegral(). 

Parameters:  

tsData – A regular or irregular interval time series data set. 

Example: tsXform = pdCoef.polynomialTransformation(tsData) 

Returns: A new TimeSeriesMath object. 

7.10.54 Polynomial Transformation with Integral 
polynomialTransformationWithIntegral(TimeSeriesMath tsData) 

Compute a polynomial transformation with integral of a regular or irregular 
interval time series data set, tsData, using the polynomial coefficients stored 
in the current paired data set.  Missing values in tsData remain missing in the 
resultant data set. 

This function is similar to the polynomialTranformation method, and the same 
set of polynomial coefficients are used.  The equation for the polynomial 
transform is modified so that the transform of tsData is computed from the 
integral of the polynomial coefficients: 

TS2 (t) = B1* TS1(t) 2/2   + B2*TS1(t)3/3+ ... + Bn* TS1(t) n+1/(n+1) 

where Bn are the polynomial coefficients for term “n.” 

 Values for the polynomial coefficients are stored in the x-values of the 
current paired data set.  Before the above equation is applied, values in the 
input time series are adjusted by subtracting off the paired data “datum” value 



HEC-DSSVue User’s Manual Chapter 7 – Scripting
 

7-79 

if defined.  The units label and parameter type for the resultant time series are 
copied from the current paired data set x-units and parameter type. 

See also:  polynomialTransformation(). 

Parameters:  

tsData – A regular or irregular interval time series data set. 

Example:  
tsXform =  
    pdCoef.polynomialTransformationWithIntegral(tsData) 

Returns: A new TimeSeriesMath object. 

7.10.55 Rating Table Interpolation 
ratingTableInterpolation(TimeSeriesMath tsData) 

Transform/interpolate values in the time series data set tsData using the rating 
table x-y values stored in the current paired data set.  For example, you can 
use the function to transform a time series of stage to a time series of flow 
using a stage-flow rating table.  tsData may be a regular or irregular time 
interval data set.  Missing values in tsData are kept missing in the resultant 
data set. 

Create the paired data set with the rating table option to set values for 
“datum”, “shift”, and “offset.”  By default these values are 0.0.  The 
shift is added to and the datum subtracted from all input time series values.  If 
the rating table is Log-Log, the table x-values are adjusted by subtracting the 
offset.  

Units and parameter type in resultant time series data set are defined by the y-
units label and parameter type of the current paired data set.  All other names 
and labels are copied over from tsData. 

See also:  reverseRatingTableInterpolation(). 

Parameters:  

tsData – A regular or irregular interval TimeSeriesMath object. 

Example:  
tsFlow =  
    stageFlowCurve.ratingTableInterpolation(tsStage) 

Returns: A new TimeSeriesMath object. 



Chapter 7 – Scripting HEC-DSSVue User’s Manual
 

7-80 

7.10.56 Reverse Rating Table Interpolation 
reverseRatingTableInterpolation(TimeSeriesMath tsData) 

Transform/interpolate values in the time series data set tsData using the 
reverse of the rating table stored in the current paired data set.  For example, 
the function may be used to transform a time series of flow to a time series of 
stage using a stage-flow rating table.  tsData may be a regular or irregular 
time interval data set.  Missing values in tsData are kept missing in the 
resultant data set. 

The paired data set should be created with the rating table option to set values 
for “datum”, “shift”, and “offset.”  By default, these values are 0.0.  
The shift is subtracted from, and the datum added to all input time series 
values.  If the rating table is Log-Log, the table x-values are adjusted by 
subtracting the offset.  Refer to the ratingTableInterpolation() description for 
comparison to this function. 

Units and parameter type in resultant time series data set are defined by the x-
units label and parameter type of the current paired data set.  All other names 
and labels are copied over from the tsData.  

 

See also:  ratingTableInterpolation. 

Parameters:  

tsData – A regular or irregular interval TimeSeriesMath object. 

Example:  
tsStage =  
    stageFlowCurve.reverseRatingTableInterpolation(  

tsFlow) 

Returns:  A new TimeSeriesMath object. 

7.10.57 Round to Nearest Whole Number 
round() 

Rounds values in a time series or paired data set to the nearest whole number. 

The function rounds up the decimal portion of a number if equal to or greater 
than .5 and rounds down decimal values less than .5.  For example: 

10.5  is rounded to 11. 

10.499  is rounded to 10. 

The x-values in paired data sets are unaffected by the function, only the y-
value data are rounded.  For time series data sets, missing values are kept 
missing. 



HEC-DSSVue User’s Manual Chapter 7 – Scripting
 

7-81 

For paired data sets, use the setCurve() method to first select the paired data 
curve(s). 

See also: roundOff(); 

 truncate(); 

 setCurve(). 

Parameters:  Takes no parameters 

Example:  roundedData = dataSet.round() 

Returns:  A new HecMath object of the same type as the current object. 

7.10.58 Round Off to Specified Precision 
roundOff(integer significantDigits, integer powerOfTensPlace) 

Round values in a time series or paired data set to a specified number of 
significant digits and/or power of tens place.  For the power of tens place, -1 
specifies rounding to one-tenth (0.1), while +2 rounds to the hundreds (100).  
For example: 

1234.123456 will round to: 

1230.0   for number of significant digits = 3,   power of tens place = -1 

1234.1    for number of significant digits = 6,  power of tens place = -1 
1234       for number of significant digits = 6,  power of tens place =  0 
1230       for number of significant digits = 6,  power of tens place =  1  

The x-values in paired data sets are unaffected by the function, only the y-
value data are rounded.  For time series data sets, missing values are kept 
missing. 

For paired data sets, use the setCurve() method to first select the paired data 
curve(s). 

See also:  round(); 

 truncate(); 

 setCurve(). 

Parameters:  

significantDigits – An integer specifying the number of 
significant digits to use in the rounding. 

powerOfTensPlace – An integer specifying the power of tens place to 
use in the rounding. 

Example:  roundedData = dataSet.roundOff(5, -2) 

Returns:  A new HecMath object of the same type as the current object. 



Chapter 7 – Scripting HEC-DSSVue User’s Manual
 

7-82 

7.10.59 Screen for Erroneous Values Based on Forward 
Moving Average 

screenWithForwardMovingAverage(integer numberToAverageOver, 
 floating-point changeLimit, 
 boolean setInvalidToMissingValue, 
 string qualityFlagForInvalidValue) 

Screen the current time series data set for possible erroneous values based on 
the deviation from the forward moving average over numberToAverageOver 
values computed at the previous point.  If the deviation from the moving 
average is greater than changeLimit, the value fails the screening test.  Data 
values failing the screening test are assigned a quality flag and/or are set to 
missing.   

Missing values and values failing the screening test are not counted in the 
moving average and the divisor of the average is less one for each such value.  
At least 2 values must be defined in the moving average else the moving 
average is undefined and value being examined is screened acceptable.   

If setInvalidToMissingValue is true, values failing the screening test are set 
to missing. 

If qualityFlagForInvalidValue is set to a character or string recognized as a 
valid quality flag, the quality flag will be set for tested values.  If there is no 
previously existing quality available for the time series, the quality flag array 
will be created for the time series. Values failing the quality test are set to the 
user specified quality flag for invalid values.  If there is existing quality data 
and the time series value passes the quality test, the existing quality flag for 
the points is unchanged.  If there was no previously existing quality and the 
time series value passes the quality test, the quality flag for the point is set to 
"Okay.” 

The acceptable values for qualityFlagForInvalidValue strings are: "M" or 
"Missing”, "R" or "Rejected”, "Q" or "Questionable.” A blank string (" ") is 
entered to disable the setting of the quality flag. 

For the example, 

resultantDataSet = dataSet.screenWithForwardMovingAverage (   
16, 100., Constants.TRUE,  “R” ) 

the forward moving average will be computed over 16 values, values 
deviating from the moving average by more than 100.0 will be set to missing 
and flagged as rejected. 



HEC-DSSVue User’s Manual Chapter 7 – Scripting
 

7-83 

Parameters:  

numberToAverageOver – An integer specifying the number of 
averaging values.  Must be at least 2. 

changeLimit – A floating-point number specifying the maximum 
change allowed in the tested value from the forward moving average 
value.  

setInvalidToMissingValue – Either Constants.TRUE, or 
Constants.FALSE, specifying whether time series values failing the 
screening test are set to the "Missing" value.  

qualityFlagForInvalidValue - A string representing the quality 
flag setting for values failing the screening test.  The accepted 
character strings are: "M" or "Missing”, "R" or "Rejected”, "Q" or 
"Questionable.”  An empty string (“ ”) is entered to disable the setting 
of the quality flag.  

Example:  
screenedData = tsData.screenWithForwardMovingAverage(  
 16,  
 100.,  
 Constants.TRUE,  
 “R”) 

Returns: A new TimeSeriesMath object.  

Generated Exceptions: Throws a HecMathException if 
numberToAverageOver is less than 2; if an unrecognized quality flag is 
entered for qualityFlagForInvalidValue or if 
setInvalidToMissingValue is false and qualityFlagForInvalidValue is 
blank (no action would occur). 

 

7.10.60 Screen for Erroneous Values Based on 
Maximum/Minimum Range 

screenWithMaxMin(floating-point minValueLimit, 
 floating-point maxValueLimit, 
 floating-point changeLimit, 
 boolean setInvalidToMissingValue, 
 string qualityFlagForInvalidValue) 

Flag values in a time series data set exceeding minimum and maximum limit 
values or maximum change limit. 

Values in the time series are screened for quality. Values below 
minValueLimit or above maxValueLimit or with a change from the previous 
time series value greater than changeLimit fail the screening test.  The 
maximum change comparison is done only when consecutive values are not 
flagged.  



Chapter 7 – Scripting HEC-DSSVue User’s Manual
 

7-84 

If setInvalidToMissingValue is set to true, values failing the screening test 
are set to the "Missing" value.  

If qualityFlagForInvalidValue is set to a character or string recognized as a 
valid quality flag, the quality flag will be set for tested values.  If there is no 
previously existing quality available for the time series, the quality flag array 
will be created for the time series. Values failing the quality test are set to the 
user specified quality flag for invalid values.  If there is existing quality data 
and the time series value passes the quality test, the existing quality flag for 
the points is unchanged.  If there was no previously existing quality and the 
time series value passes the quality test, the quality flag for the point is set to 
"Okay.” 

For example, 

resultantDataSet = dataSet.screenWithMaxMin ( 0.0, 1000., 100., 
Constants.FALSE,  “R” ) 

time series values less than 0.0, or greater than 1000., or with a change from a 
previous point greater than 100 will be flagged as “Rejected.”  Flagged points 
however will not be set to the “Missing” value. 

Parameters:  

minValueLimit – A floating-point number specifying the minimum 
valid value limit.  

maxValueLimit - A floating-point number specifying the maximum 
valid value limit.  

changeLimit - A floating-point number specifying the maximum 
change allowed in the tested value from the previous time series value.  

setInvalidToMissingValue – Either Constants.TRUE, or 
Constants.FALSE, specifying whether time series values failing the 
screening test are set to the "Missing" value.  

qualityFlagForInvalidValue - A string representing the quality 
flag setting for values failing the screening test. The accepted character 
strings are: "M" or "Missing”, "R" or "Rejected”, "Q" or 
"Questionable.” An empty string (“ ”) is entered to disable the setting 
of the quality flag.  

Example:  
screenedData = tsData.screenWithMaxMin(  
 0.,  
 1000.,  
 100.,  
 Constants.FALSE,  
 “R”) 

Returns: A new TimeSeriesMath object.  



HEC-DSSVue User’s Manual Chapter 7 – Scripting
 

7-85 

Generated Exceptions: Throws a HecMathException if an unrecognized 
quality flag is entered for qualityFlagForInvalidValue or if 
setInvalidToMissingValue is false and qualityFlagForInvalidValue is 
blank (no action would occur). 

7.10.61 Select a Paired Data Curve by Curve Label 
setCurve(string curveName) 

Select, by curve label, the paired data curve for performing subsequent 
arithmetic operations or math functions.  By default, a paired data set loaded 
from file has all curves selected. 

A paired data set may contain more than one set of y-values.  However, a user 
may wish to modify only one curve of the data set.  For example, using the 
function ".add( 2.0 )" would by default add 2.0 to all y-values for all 
curves.  The setCurve() call may be used to limit the operation to just one 
selected set of y-values.   

The function searches the paired data set list of curve labels for a match to 
curveName.  If a match is found, that curve is set as the selected curve. 

See also:  setCurve( integer curveNumber ). 

Example: damageCurve.setCurve(“RESIDENTIAL”) 

Parameters:  

curveName – The curve label (a string) to set as the selected curve. 

Returns: Nothing. 

Generated Exceptions: Throws a HecMathException – if curveName is not 
found in the paired data set curve labels. 

7.10.62 Select a Paired Data Curve by Curve Number 
setCurve(integer curveNumber) 

Select, by curve number, the paired data curve for performing subsequent 
arithmetic operations or math functions.  By default, a paired data set loaded 
from file has all curves selected. 

A paired data set may contain more than one set of y-values.  However, a user 
may wish to modify only one curve of the data set.  For example, using the 
function ".add( 2.0 )" would by default add 2.0 to all y-values for all 
curves.  The setCurve() call can be used to limit the operation to just one 
selected set of y-values.  The function sets a curve index internal to the paired 
data set.  The option is to select one curve or all curves. 



Chapter 7 – Scripting HEC-DSSVue User’s Manual
 

7-86 

Curve numbering begins with “0.”  If a paired data set has two curves, the first 
curve is selected by, “setCurve(0).”  To select the second curve, use 
“setCurve(1).” 

All curves in a paired data set are selected by setting curveNumber to -1. 

See also:  setCurve( String curveName). 

Parameters:  

curveNumber – An integer specifying the curve to set as the selected 
curve.  Curve numbering begins with 0.  Set to –1 to select all curves. 

Example:  ruleCurve.setCurve(-1) 

Returns:  Nothing. 

7.10.63 Set Data 
setData(hec.io.DataContainer container) 

Sets the data container for the current data set.  For time series data sets, this is 
a hec.io.TimeSeriesContainer.  For paired data sets, container should be a 
hec.io.PairedDataContainer.  Containers are generated by some of the other 
functions. 

The hec.io.DataContainer class and the hec.io.TimeSeriesContainer and 
the hec.io.PairedDataContainer subclasses contain the time series and paired 
data values. 

Parameters:  

container – A hec.io.TimeSeriesContainer for time series data sets, 
or a hec.io.PairedDataContainer for paired data sets. 

Example:  dataSet.setContainer(TSContainer) 

Returns:  Nothing. 

Generated Exceptions: Throws a HecMathException if container is not of 
type hec.io.TimeSeriesContainer for time series data sets or not of type 
hec.io.PairedDataContainer for paired data sets. 



HEC-DSSVue User’s Manual Chapter 7 – Scripting
 

7-87 

7.10.64 Set Location Name for Data Set 
setLocation(String locationName) 

Set the location name for a data set, which changes the B-Part of the HEC-
DSS pathname.  The new pathname will be used in plots, tables, and in the 
write() method of DSSFile objects. 

Parameters:  

locationName – A string specifying the new location name for the 
data set. 

Example:  dataSet.setLocation(“OAKVILLE”) 

Returns:  Nothing. 

7.10.65 Set Parameter for Data Set 
setParameterPart(String parameterName) 

Set the parameter name for a data set, which changes the C-Part of the HEC-
DSS pathname.  The new pathname will be used in plots, tables, and in the 
write() method of DSSFile objects. 

Parameters:  

parameterName – A string specifying the new parameter name for the 
data set. 

Example: dataSet.setParameterPart(“ELEV”) 

Returns: Nothing. 

7.10.66 Set Pathname for Data Set 
setPathname(String pathname) 

Set the pathname for a data set.  The new pathname will be used in plots, 
tables, and in the write() method of DSSFile objects. 

Parameters:  

pathname – A string specifying the new pathname for the data set. 

Example:  dataSet.setPathname(“//OAKVILLE/STAGE//1HOUR/OBS/”) 

Returns:  Nothing. 



Chapter 7 – Scripting HEC-DSSVue User’s Manual
 

7-88 

7.10.67 Set Time Interval for Data Set 
setTimeInterval(String interval) 

Set the time interval for a data set, which changes the E-Part of the pathname.  
The new pathname will be used in plots, tables, and in the write() method of 
DSSFile objects. 

Parameters:  

interval – A string specifying the new interval for the data set. 

Example: dataSet.setTimeInterval(“1HOUR”) 

Returns: Nothing. 

7.10.68 Set Data Type for Time Series Data Set 
setType(string typeString) 

Set the data for a time series data set. 

 Parameters:  

typeString – A string specifying the data type for the data set.  This 
should be “INST-CUM”, “INST-VAL”, “PER-AVER” or “PER-
CUM”  

Example:  dataSet.setType(“PER-AVER”) 

Returns:  Nothing. 
 

7.10.69 Set Units Label for Data Set 
setUnits(String unitsString) 

Set the units label for a data set.  For a paired data set, the call sets the y-units 
label.Parameters:  

unitsString – A string specifying the units label for the data set. 

Example:  dataSet.setUnits(“CFS”) 

Returns:  Nothing. 



HEC-DSSVue User’s Manual Chapter 7 – Scripting
 

7-89 

7.10.70 Set Version Name for Data Set 
setVersion(String versionName) 

Set the version name for a data set, which changes the F-Part of the pathname.  
The new pathname will be used in plots, tables, and in the write() method of 
DSSFile objects. 

Parameters:  

version – A string specifying the new location for the data set. 

Example: dataSet.setVersion(“OBSERVED”) 

Returns:  Nothing. 

7.10.71 Set Watershed Name for Data Set 
setWatershed(String watershedName) 

Set the watershed (or river) name for a data set, which changes the A-Part of 
the pathname.  The new pathname will be used in plots, tables, and in the 
write() method of DSSFile objects. 

Parameters:  

watershedName – A string specifying the new watershed name for the 
data set. 

Example: dataSet.setWatershed(“OAK RIVER”) 

Returns: Nothing. 

7.10.72 Shift Adjustment of Time Series Data 
shiftAdjustment(TimeSeriesMath tsData) 

Derive a new time series data set by linear interpolation of values in the 
current time series data set at the times defined by the time series data set 
tsData.  If times in the new time series precede the first data point in the 
current time series, the value for these times is set to 0.0.  If times in the new 
time series occur after the last data point in the current time series, the value 
for these times is set to the value of the last point in the current time series.  
Interpolation of values with the shiftAdjustment function is shown in Figure 
7.8. 



Chapter 7 – Scripting HEC-DSSVue User’s Manual
 

7-90 

Interpolated value 

Original TS data 

Figure 7.8 Interpolation of time series values using Shift 
Adjustment function 

Both time series data sets may be regular or irregular interval.  Interpolated 
points must be bracketed or coincident with valid (not missing) values in the 
original time series, otherwise the values are set as missing.   

Parameters:  

tsData – A regular  or irregular interval time series data set. 

Example:  
tsInterp = tsValues.shiftAdjustment(tsData) 

Returns: A new TimeSeriesMath object. 

7.10.73 Shift Time Series in Time 
shiftInTime(string timeShiftString) 

Shift the times in the current time series data set by the amount specified with 
timeShiftString.  The data set may be regular or irregular interval time series 
data.  Data set values are unchanged. 

timeShiftString has the form “nT”, where “n” is an integer number and “T” is 
“M”(inute), “H”(our), or “D”(ay).  Only the first character is significant for 
“T”. 

Parameters:  
timeShiftString – A string specifying the time increment to shift times 
in the current time series data set. 

Example: TsShifted = tsData.shiftInTime(“3H”) 

Returns: A new TimeSeriesMath object. 



HEC-DSSVue User’s Manual Chapter 7 – Scripting
 

7-91 

7.10.74 Sine Trigonometric Function 
sin() 

Derive a new time series or paired data set from the sine of values of the 
current data set.  The resultant data set values are in radians.  For time series 
data, missing values are kept as missing.   

For paired data sets, use the setCurveMethod to first select the paired data 
curve(s). 

See also: setCurve(). 

Parameters: Takes no parameters 

Example: newDataSet = dataSet.sin() 

Returns: A new HecMath object of the same type as the current object. 

 

7.10.75 Skew Coefficient 
skewCoefficient() 

Compute the skew coefficient of the current time series data set.  Missing 
values are ignored. 

Parameters: Takes no parameters 

Example: skewCoefficient = dataSet.skewCoefficient() 

Returns:  A floating-point value representing the skew coefficient of the 
current time series. 

7.10.76 Snap Irregular Times to Nearest Regular Period 
snapToRegularInterval(string timeIntervalString, 

 string timeOffsetString, 
 string timeBackwardString, 
 string timeForwardString ) 

"Snap" data from the current irregular or regular interval time series to form a 
new regular interval time series of the specified interval and offset.   For 
example, a time series record from a gauge recorder collects readings 6 
minutes past the hour.  The function may be used to “snap” or shift the time 
points to the top of the hour. 

The regular interval time of the resultant time series is specified by 
timeIntervalString.  timeIntervalString is a valid HEC time increment 
string (e.g. “1MIN”, “15MIN”, “1HOUR”, “6HOUR”,  “1DAY”, 
“1MONTH”).   



Chapter 7 – Scripting HEC-DSSVue User’s Manual
 

7-92 

Times in the resultant time series may be shifted (offset) from the regular 
interval time by the increment specified by timeOffsetString.  As an 
example, the offset could be used to shift times from the top of the hour to 
instead 6 minutes past the hour. Data from the original time series is 
"snapped" to the regular interval if the time of the data falls within the time 
window set by the timeBackwardString and the timeForwardString.  That 
is, if the new regular interval is at the top of the hour and the time window 
extends to 9 minutes before the hour and 15 minutes after the hour, an original 
data point at 0852 would be snapped to the time 0900 while a point at 0916 
would be ignored.  

timeOffsetString, timeBackwardString and timeForwardString are time 
increment strings expressed as "nT”, where "n" is an integer number and "T" 
is one of the time increments: "M(INUTES)”, "D(AYS)" or "H(OUR) 
(characters in the parenthesis are optional).  For the example of the previous 
paragraph, timeIntervalString would be "1HOUR”, timeOffsetString 
would be "0M”, timeBackwardString would be "9M" (or "9min") and 
timeForwardString would be "15M.”   A blank string (“  ”) is equivalent to 
“0M.” 

By default values in the resultant regular interval time series data set are set to 
missing unless matched to times in the current time series data set within the 
time window tolerance set by timeBackwardString and 
timeForwardString. 

Parameters:  

timeIntervalString – A string specifying the regular time interval 
for the resultant time series. 

timeOffsetString – A string specifying the offset of the new time 
points from the regular interval time. This variable may be an empty 
string (“  ”) or None. 

timeBackwardString – A string specifying the time to look 
backwards from the regular time interval for valid time points. 

timeForwardString – A string specifying the time to look forward 
from the regular time interval for valid time points. 

Example:  

rtsData = itsData.snapToRegularInterval(  
 “1HOUR”,  
 None,  
 “5Min”,  
 “5Min”) 

Returns: A new regular interval TimeSeriesMath object. 

 



HEC-DSSVue User’s Manual Chapter 7 – Scripting
 

7-93 

7.10.77 Square Root 
sqrt() 

Derive a new time series or paired data set computed from the square root of 
values of the current data set.  For time series data, missing values are kept as 
missing.  Values less than zero are set to missing. 

For paired data sets, use setCurve to first select the paired data curve(s). 

See also:  setCurve(). 

Parameters:  Takes no parameters 

Example:  newDataSet = dataSet.sqrt() 

Returns:  A new HecMath object of the same type as the current object. 

7.10.78 Standard Deviation of Time Series 
standardDeviation() 

Compute the standard deviation value of the current time series data set.  
Missing values are ignored. 

Parameters:  Takes no parameters 

Example:  stdDev = tsData.standardDeviation() 

Returns:  A floating-point value representing the standard deviation of the 
current time series. 

7.10.79 Straddle Stagger Hydrologic Routing 
straddleStaggerRouting(integer numberToAverage, 
 integer numberToLag, 
 integer numberSubreaches ) 

Route the current regular interval time series data set using the Straddle-
Stagger hydrologic routing method.  numberToAverage specifies the number 
of ordinates to average over (Straddle).  numberToLag specifies the number 
ordinates to lag (Stagger).  The number of routing subreaches is set by 
numberSubreaches. 

Parameters:  

numberToAverage – An integer specifying the number of ordinates to 
average over (Straddle). 

numberToLag – An integer specifying the number of ordinates to lag 
(Stagger). 

numberSubreaches – An integer specifying the number of routing 
subreaches. 



Chapter 7 – Scripting HEC-DSSVue User’s Manual
 

7-94 

Example:  
tsRouted = tsFlow.straddleStaggerRouting(  
 numberAver,  
 lag,  
 reachCount) 

Returns:  A new TimeSeriesMath object. 

7.10.80 Subtract a Constant 
subtract(floating-point constant) 

Subtract the value constant from all valid values in the current time series or 
paired data set.  For time series data, missing values are kept as missing.   

For paired data, constant is subtracted from y-values only.  Use the setCurve 
method to first select the paired data curve(s). 

See also:  add(HecMath hecMath); 

 setCurve() 

Parameters:  

constant  - A floating-point value. 

Example:  newDataSet = dataSet.subtract(5.3) 

Returns:  A new HecMath object of the same type as the current object. 

7.10.81 Subtract a Data Set 
subtract(TimeSeriesMath tsData) 

Subtract the values in the data set tsData from the values in the current data 
set.  Both data sets must be time series data set.   

When subtracting one time series data set from another, there is no restriction 
that times in the two data sets match exactly.  However, only values with 
coincident times will be subtracted.  Times in the current time series data set 
that cannot be matched with times in the second data set are set missing.  
Values in the current data set that are missing are kept as missing.  Either or 
both data sets may be regular or irregular interval time series.   

See also:  subtract(floating-point constant). 

Parameters:  

tsData  - A TimeSeriesMath object. 

Example: newDataSet = dataSet.subtract(otherDataSet) 

Returns:  A new TimeSeriesMath object. 



HEC-DSSVue User’s Manual Chapter 7 – Scripting
 

7-95 

7.10.82 Successive Differences for Time Series 
successiveDifferences() 

Derive a new time series from the difference between successive values in the 
current regular or irregular interval time series data set.  The current data must 
be of type “INST-VAL” or “INST-CUM.”  A value in the resultant time series 
is set to missing if either the current or previous value in the current time 
series is missing (need to have two consecutive valid values).  If the data type 
of the current data set is “INST-CUM” the resultant time series data set is 
assigned the type "PER-CUM”, otherwise the data type does not change. 

Parameters:  Takes no parameters 

Example:  newTsData = tsData.successiveDifferences() 

Returns:  A new TimeSeriesMath object. 

Generated Exceptions:  Throws a HecMathException if the current data set 
is not of type "INST-VAL" or "INST-CUM.” 

7.10.83 Sum Values in Time Series 
sum() 

Sum all the values of the current time series data set.  Missing values are 
ignored. 

Parameters:  Takes no parameters 

Example:  total = tsData.sum() 

Returns:  A floating-point value representing the sum of all valid values of 
the current time series. 

7.10.84 Tangent Trigonometric Function 
tan() 

Derive a new time series or paired data set computed from the tangent of 
values of the current data set.  For time series data, missing values are kept as 
missing.  If the cosine of the current time series value is zero, the value is set 
missing. 

For paired data sets, use the setCurve method to first select the paired data 
curve(s). 

See also:  setCurve(). 

Example:  newDataSet = dataSet.tan() 

Parameters:  Takes no parameters 

Returns:  A new HecMath object of the same type as the current object. 



Chapter 7 – Scripting HEC-DSSVue User’s Manual
 

7-96 

7.10.85 Time Derivative (Difference Per Unit Time) 
timeDerivative() 

Derive a new time series data set from the successive differences per unit time 
of the current regular or irregular interval time series data set.  For the time 
“t”, 

TS2(t)  =  ( TS1(t) – TS1(t-1) ) / DT 

where DT is the time difference between t and t-1.  For the current form of the 
function, the units of DT are minutes. 

A value in the resultant time series is set to missing if either the current or 
previous value in the original time series is missing (need to have two 
consecutive valid values).  By default, the data type of the resultant time series 
data set is assigned as "PER-AVER.” 

Parameters:  Takes no parameters 

Example:  newTsData = tsData.timeDerivative() 

Returns:  A new TimeSeriesMath object. 

7.10.86 Transform Time Series to Regular Interval 
transformTimeSeries(string timeIntervalString, 
 string timeOffsetString, 
 string functionTypeString ) 

Generate a new regular interval time series data set from the current regular or 
irregular time series.  The new time series is computed having the regular time 
interval specified by timeIntervalString and time offset set by 
timeOffsetString.  

Values for the new time series are computed from the original time series data 
set using one of seven available functions.  The function is selected by setting 
functionTypeString to one of the following types: 

      "INT" -   Interpolate at end of interval 

      "MAX" -   Maximum over interval 

      "MIN" -   Minimum over interval 

      "AVE" -   Average over interval 

      "ACC" -   Accumulation over interval 

      "ITG" -   Integration over interval 

      "NUM" -   Number of valid data over interval 

where “interval” is the interval between time points in the new time series. 

The regular interval time of the new time series is specified by 
timeIntervalString.  timeIntervalString is a valid HEC time increment 



HEC-DSSVue User’s Manual Chapter 7 – Scripting
 

7-97 

string (e.g. “1MIN”, “15MIN”, “1HOUR”, “6HOUR”,  “1DAY”, 
“1MONTH”).   

Times in the resultant time series may be shifted (offset) from the regular 
interval time by the increment specified by timeOffsetString.  As an 
example, the offset could be used to shift times from the top of the hour to 6 
minutes past the hour.  Typically no offset is used. 

The data type of the original time series data governs how values are 
interpolated.  Data type “INST-VAL”  (or “INST-CUM”) considers the value 
to change linearly over the interval from the previous data value to the current 
data value.  Data type “PER-AVER” considers the value to be constant at the 
current data value over the interval.  Data type “PER-CUM” considers the 
value to increase from 0.0 (at the start of the interval) up to the current value 
over the interval.  Interpolation of the three data types is illustrated in Figure 
7.9. 

INST-VAL PER-AVER PER-CUM 

Interpolated value 

Figure 7.9 Interpolation of “INST-VAL”, “PER-AVER” and “PER-CUM” data 

How interpolation is performed for a specific data type influences the 
computation of new time series values for the selected function.  For example, 
if the data type is “INST-VAL”, the function “Maximum over interval” is 
evaluated by:  Finding the maximum value of the data points from the original 
time series that are inclusive in the new time interval.  Linearly interpolate 
values at beginning and ending of the new time interval, and determine if 
these values represent the maximum over the interval. 

Referring to the plots in Figure 7.9, the “Average over interval” function is 
applied to a time series by integrating the area under the curve between 
interpolated points and dividing the result by the interval time.  

See also: transformTimeSeries( TimeSeriesMath tsData, string 
functionTypeString ) 



Chapter 7 – Scripting HEC-DSSVue User’s Manual
 

7-98 

Parameters:  

timeIntervalString – A string specifying the regular time interval 
for the resultant time series. 

timeOffsetString – A string specifying the offset of the new time 
points from the regular interval time. This variable may be a blank 
string (“ ”). 

functionTypeString – A string specifying the method for computing 
values for the new time series data set. 

Example:  
newTsData = tsData.transformTimeSeries(  
 “1Day”,   
 “0M”,  
 “AVE”) 

Returns: A new regular interval TimeSeriesMath object. 

7.10.87 Transform Time Series to Irregular Interval 
transformTimeSeries(TimeSeriesMath tsData, 
 string functionTypeString ) 

Generate a new time series data set from the current regular or irregular time 
series.  The times for the new data set are defined by the times in tsData, 
which may be a regular or irregular time series data set. 

Values for the new time series are computed from the original time series data 
set using one of seven available functions.  The function is selected by setting 
functionTypeString to one of the following types: 

      "INT" -   Interpolate at end of interval 

      "MAX" -   Maximum over interval 

      "MIN" -   Minimum over interval 

      "AVE" -   Average over interval 

      "ACC" -   Accumulation over interval 

      "ITG" -   Integration over interval 

      "NUM" -   Number of valid data over interval 

where “interval” is the interval between time points in the new time series. 

The data type of the original time series data governs how values are 
interpolated.  Data type “INST-VAL”  (or “INST-CUM”) considers the value 
to change linearly over the interval from the previous data value to the current 
data value.  Data type “PER-AVER” considers the value to be constant at the 
current data value over the interval.  Data type “PER-CUM” considers the 
value to increase from 0.0 (at the start of the interval) up to the current value 



HEC-DSSVue User’s Manual Chapter 7 – Scripting
 

7-99 

over the interval.  Interpolation of the three data types is illustrated in Figure 
7.9. 

How interpolation is performed for a specific data type influences the 
computation of new time series values for the selected function.  For example, 
if the data type is “INST-VAL”, the function “Maximum over interval” is 
evaluated by:  Finding the maximum value of the data points from the original 
time series that are inclusive in the new time interval.  Linearly interpolate 
values at beginning and ending of the new time interval, and determine if 
these values represent the maximum over the interval. 

Referring to the plots in Figure 7.9, the “Average over interval” function is 
applied to a time series by integrating the area under the curve between 
interpolated points and dividing the result by the interval time.  

See also: transformTimeSeries( string timeIntervalString,  

string timeOffsetString, string functionTypeString ) 

Parameters:  

tsMath – A TimeSeriesMath object used to define the times for the 
new data set. 

functionTypeString – A String specifying the method for computing 
values for the new time series data set. 

Example:  
newTsData = tsValues.transformTimeSeries(  
 tsTimeTemplate,   
 “MAX”) 

Returns:  A new TimeSeriesMath object. 

7.10.88 Truncate to Whole Numbers 
truncate() 

Truncates values in a time series or paired data set to the nearest whole 
number.  For example: 

10.99  is truncated to 10. 

10.499  is truncated to 10. 

The x-values in paired data sets are unaffected by the function, only the y-
value data are truncated.  For time series data sets, missing values are kept 
missing. 

For paired data sets, use the setCurve method to first select the paired data 
curve(s). 

See also:  setCurve(). 

Parameters:  Takes no parameters 



Chapter 7 – Scripting HEC-DSSVue User’s Manual
 

7-100 

Example:  newDataSet = dataSet.truncate() 

Returns:  A new HecMath object of the same type as the current object. 

7.10.89 Two Variable Rating Table Interpolation 
twoVariableRatingTableInterpolation( 

TimeSeriesMath tsDataX, 
 TimeSeriesMath tsDataZ) 

Derive a new time series data set by using the x-y curves in the current paired 
data set to perform two-variable rating table interpolation of the time series 
tsDataX and tsDataZ.  For two-variable rating table interpolation, the current 
paired data set should have more than one curve (multiple sets of y-values). 

As an example, reservoir release is a function of both the gate opening height 
and reservoir elevation (Figure 7.10).  For each gate opening height, there is a 
reservoir elevation-reservoir release curve, where reservoir elevation is the 
independent variable (x-values) and reservoir release the dependent variable 
(y-values) of a paired data set.  Each paired data curve has a curve label.  In 
this case, the curve label is assigned the gate opening height.  Using the paired 
data set shown in Figure 7.10, the function may be employed to interpolate 
time series values of reservoir elevation (tsDataX) and gate opening height 
(tsDataZ) to develop a time series of reservoir release. 

No extrapolation is performed.  If time series values from tsDataX or 
tsDataZ are outside the range bounded by the paired data, the new time series 
value is set to missing.  Units and parameter type in the new time series are set 
to the y-units label and parameter of the current paired data set.  All other 
names and labels are copied over from tsDataX. 

Times for tsDataX and tsDataZ must match.  Curve labels must be set for 
curves in the rating table paired data set and must be interpretable as numeric 
values.   

 



HEC-DSSVue User’s Manual Chapter 7 – Scripting
 

7-101 

Reservoir Elevation (ft) 

0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

20 

22 

24 

26 

R
es

er
vo

ir 
R

el
ea

se
 (c

fs
) 

 
Figure 7.10 Example of two variable rating table paired data, reservoir release as a 
function of reservoir elevation and gate opening height (curve labels). 

Parameters:  

tsDataX – A regular or irregular interval TimeSeriesMath object, 
interpreted as x-ordinate values in the two variable interpolation. 

tsDataZ – A regular  or irregular interval TimeSeriesMath object, 
interpreted as z-ordinate values, (value defined by the paired data 
curve labels). 

Example: tsOutflow =  
gateCurve.twoVariableRatingTableInterpolation(  
 tsElevation,  
 tsGateOpening) 

Returns: A new TimeSeriesMath object. 

Generated Exceptions: Throws a HecMathException if times do not match 
for tsDataX and tsDataZ; if the paired data curve labels are blank or cannot 
be interpreted as number values. 


