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Introduction

This appendix describes the computations used by the HEC-FDA package to obtain the
following analysis variables: 1) exceedance probability curves; 2) project reliability; 3)
expected annual damage, 4) flood damage reduction benefits, and 5) probable flood
stages conditional on the occurrence of a particular exceedance probability event. 
These variables are computed from various relationships that represent watershed
runoff and economic factors important to estimating flood damage (e.g., discharge-
exceedance probability, stage-discharge and stage-damage curves) .  The contributing
relationships are characterized by both a best estimate and the uncertainty in this
estimate.

Contents

## Monte Carlo Simulation

# Sampling Algorithm for Numerical Integration

# Uncertainty Distributions

# Levee Analysis

# Project Reliability and Flood Risk

# Computation of Equivalent Annual Damage
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Monte Carlo Simulation

Overview

Monte Carlo simulation (Davis and Rabinowitz 1967) is used in HEC-FDA to
derive the expected annual damage corresponding to a particular plan/analysis
year for a damage reach.  The expected annual damage (EAD) is the mean
damage obtained by integrating the damage exceedance probability curve for
the damage reach. The damage-exceedance probability function is obtained
from the discharge-exceedance probability, stage-discharge, and damage-stage
functions derived at a damage reach index location.  The inclusion of
uncertainty for these variables requires a numerical integration approach be
applied.  Without uncertainty, the damage-exceedance probability curve can be
obtained directly without resorting to numerical simulation approaches.

Monte Carlo simulation is the numerical integration approach.  It relies on an
exceedance probability analysis of samples of the contributing random
variables obtained from the generation of random numbers.  Although
inelegant, the technique is computationally efficient in comparison with other
techniques as the number of contributing variables exceeds about five. 

Numerical Integration with Monte Carlo Simulation

Expected annual damage is the probability weighted average of all possible
peak annual damages.  It is also termed the mean or expected annual damage. 
As a simple example of computing a probability weighted average, consider
the rolling of a die.  The probability of obtaining any outcome of any roll of a
die is 1/6, since the probability of obtaining any face of the die is considered
equally likely (at least if the die is fair).  The probability weighted average is
then computed as:

where di is the possible outcome of rolling a die, and pi is the probability of the
outcome.  The probability weighted average or expected outcome of 3.5
obtained in equation (1) could be obtained by performing a die rolling
experiment.  The experiment would just involve many trials of rolling the die
and averaging the outcome.  As the number of trials becomes large the average
obtained will equal 3.5.
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Performing trials with the die is an application of a Monte Carlo simulation to
obtain an average.  In rolling the die, random integers are obtained in the
inclusive interval 1 to 6, and a statistical analysis of the outcome is performed
to obtain an average.  Consequently,  Monte Carlo simulation or application of
equation (1) are equivalent procedures for obtaining the mean or expected
value.

Other statistical characteristics of rolling a die could be obtained, such as by
performing a class category analysis on the outcomes to determined the
probability of obtaining any outcome.  If this were done, the probability of
obtaining any die face in a single trial would be found to be 1/6.

This same type of sampling experiment can be performed to obtain EAD. 
Computation of EAD is somewhat more difficult in that damage is a
continuous random variable, unlike the outcome of rolling a die, which has
discrete outcomes.  Consequently, damage probability is either stated for an
interval, or more typically as, the probability of exceeding a particular value. 
These probabilities are defined by the damage exceedance probability function
or equivalently, the cumulative distribution function as defined by:

where D is the annual damage, F(D) is a function defining the damage
exceedance probability curve, f(D) is the probability density function (units of
probability per increment of damage), and P[D>d] is read as “the probability
that D exceeds d.”

The probability density function can be used to calculate the EAD or
equivalently the probability weighted average damage by performing the
following numerical integration:

where the integral in equation (3) is approximated by a sum as in equation (1),
)p is the probability of damage being in an interval, Di is the midpoint damage
of this interval, and N is the number of intervals (see Figure F.1).  The
approximation turns the integration of a continuous random variable into that of
a discrete variable much as in the computation of the average outcome for
rolling a die shown in equation (1).  The difference between the equations is
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that equation (1) is exact and the probability is for a discrete outcome; whereas, 
equation (3) is approximate and )p is an interval probability.

Figure F.1  Numerical Integration of Probability Density Function to Obtain EAD

The numerical integration is necessary because the damage-exceedance
probability function is not defined by a continuous analytic function making an
analytic integration impossible.  Given that an exact analytic value cannot be
obtained, how good is the approximation provided in equation (3)?  The
approximation can be made as accurate as possible by decreasing the interval
)p, or equivalently, increasing the number of intervals shown in Figure F.1.

Recognizing that equal probability increments implies that )p=1/N, where N is
the number of increments in Figure F.1, Equation (3) can be rewritten as:

which is the same as taking the average of a sample of N occurrences of annual
damage.  Monte Carlo simulation produces as a large a sample as desired to
obtain a sufficiently accurate numerical integration to obtain EAD or other
statistical characteristics of a probability distribution. The key aspect of the
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Motel Carlo simulation is to obtain a random sample from a particular
distribution.  The algorithms used to generate samples from a probability
distribution are discussed later.

Computing Expected Annual Damage, Exceedance
Probability, and Event Probabilities

The inclusion of uncertainty in estimates of the variable contributing to damage
makes it possible to obtain both a best estimate of expected annual damage and
a distribution of possible values about this best estimate.  Additionally, an
expected set of exceedance probability functions and event conditional stages
can be computed as a consequence of providing these estimates of uncertainty.

The relationship between estimation uncertainty and the distribution of EAD
can be understood  by considering a sensitivity analysis application to
computing EAD with a flow-exceedance probability curve, rating curve and
stage-damage relationship as shown in Figure F.2.  The figure shows that high-
bound, low-bound and best estimates of each relationship are combined to
obtain a corresponding range in estimates of EAD.  This range in estimates
could be thought of as defining a rough distribution of possible EAD estimates. 
The difficulty with this sensitivity analysis approach is that the relative
likelihood of the range in estimates is not known.

Monte Carlo simulation is used to improve on the sensitivity analysis by
integrating all possible random occurrences of the contributing relationships as
shown in Figure F.3.  This differs from the basic Monte Carlo  application
described in the previous section by obtaining a random sample of relationships
or random functions instead of obtaining a random sample of individual values. 
The algorithm used to obtain random samples of each relationship is described
later.

The Monte Carlo algorithm used to obtain the distribution and best estimate of
EAD, expected exceedance probability curves and event related conditional
stage exceedance probability proceeds as follows:

1. Obtain a random sample of the contributing relationships

Each relationship is sampled to obtain a single realization of the discharge-
exceedance probability, the stage-discharge (rating) and the stage-damage
functions.
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Figure F.2  EAD Computation Sensitivity Analysis
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Figure F.3  Monte Carlo Simulation Algorithm for Estimating EAD
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2. Compute exceedance probability curves

Compute the stage-exceedance probability function by using the rating curve to
transform the sample discharge-exceedance probability function into a stage-
exceedance probability curve; and, compute the damage exceedance
probability function by using the sample stage-damage function  to transform
the stage-exceedance probability curve into a damage-exceedance probability
function.

3.  Save intermediary results for computing expected exceedance probability 
curves

Intermediary results are saved for the computation of expected exceedance
probability functions by adding discharges, stages and damages for specified
probabilities to values summed for previous simulation.

4. Save intermediary results for computing event conditional stage 
probabilities

Event conditional stages are saved for later estimation of conditional stage
exceedance probabilities.  The stages are conditional on specified exceedance
probabilities (e.g., conditional on the 0.1, 0.02, 0.01 stage being exceeded). 
The stage for each of the events of interest is saved in a stage class interval. 
For example, consider that a stage of 21.56 corresponds to the 0.01 exceedance
probability for the sample stage exceedance probability curve obtained in step
2.  This value is saved in a predetermined class interval that may have
minimum and maximum limits of respectively, 21.0 and 22.0.

5. Save intermediary results for computation of EAD

The EAD for the sample contributing relationships is computed by integrating
the damage exceedance probability curve.  This value is both added to a sum of
EAD values from previous iterations and saved in a damage class interval.

6. Repeat sampling steps 1 through 5

Additional samples of exceedance probability curves and EAD are obtained by
repeating steps 1 through 5. Sampling ceases when an accuracy criterion is
met.

7. Compute expected exceedance probability curves

Divide the summed values obtained in step 3 for discharge, stage and damage
for each exceedance probability by the number of samples.
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8. Compute conditional event stage distributions

The process in step 4 of placing stages in class intervals results in a exceedance
probability histogram of stages for each exceedance probability event of
interest.  Table F.1 provides an example of some possible results for the 0.01
exceedance probability event.  As shown in the table, the exceedance
probability histogram is converted into an event conditional exceedance
probability function.

9. Compute best estimate of EAD and Distribution of EAD

The best estimate of EAD is computed as the average of the samples summed
in step 5.  The class interval exceedance probabilities for EAD are converted to
a exceedance probability distribution using the same procedure for event
conditional stages (see Table F.1).

In performing this simulation, only the stage vs total damage relationship is
used to obtain the damage exceedance probabilities function and corresponding
EAD.  Damage-exceedance probability functions and EAD for damage
categories are proportioned in the same ratio as the traditional (no uncertainty)
category damage is to the tradition total damage values.

Table F.1
Calculating Event Conditional Stage Exceedance Probability 

from Monte Carlo Simulation Frequencies

Lower Limit
Stage

Upper Limit
Stage

Frequency Cumulative
Frequency

Cumulative
Probability

Exceedance
Probability

<21.0 21.0 200 200 0.01 0.99

21.0 22.0 5000 5200 0.26 0.74

22.0 23.0 10000 15200 0.75 0.25

23.0 24.0 5000 20200 0.99 0.01

24.0 25.0 100 20300 1.0 0.0

25.0 25.0> 0 20300 1.0 0.0



Appendix F Computation Procedures

F-12

Monte Carlo Simulation Options for Calculating EAD

The Monte Carlo simulation can be expanded to include other contributing
relationships in the calculation of EAD.  Table F.2 describes the options for
including other relationships.  Notice that some relationships involve
uncertainty calculations and others (levee effects and interior stage versus
exterior stage relationships) are specified without uncertainty.  The inclusion of
additional relationships does not require any new aspect of performing the
simulation except to require the creation of additional random samples of
another relationship.  For example, Figure F.4 displays the additional step of
using the flow transform to convert a reservoir inflow-exceedance probability
curve to a regulated exceedance probability curve.

Table F.2
Contributing Relationships Used in EAD Calculation

Contributing Relationship Uncertainty Distribution

Flow/stage frequency curve yes

Flow transform yes

Rating curve yes

Wave overtopping of flood wall or levee yes

Levee impact on damage no

1Exterior versus interior stage no

Stage versus damage yes

1Used to directly convert exterior river stage , interior levee failure stage, or with wave overtopping
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Figure F.4  Adding Computation of Regulated Outflow to 
Monte Carlo Algorithm for Computing EAD
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Sampling Algorithm for Numeric Intergration

Overview

Application of Monte Carlo simulation requires a method for producing
random samples and criteria for determining the number of samples needed to
obtain a numerical integration with pre-specified accuracy.  The algorithms
(previously described) produce random samples of the contributing
relationships that are combined to obtain samples of EAD, exceedance
probability functions and event conditional stage probabilities.  This sampling
depends on the algorithm for generating random numbers.  The generation of
random numbers and the random sampling of contributing relationships is the
means by which Monte Carlo simulation performs a numerical integration.  As
previously discussed,  the numerical integration accuracy increases with the
number of simulations.  The criteria used to determine the number of
simulations for a desired level of accuracy is described in the next section.  The
related problem of obtaining a numerically accurate integration of the damage-
exceedance probability function is also discussed later.

Sampling from the Log-Pearson III Distribution

Random samples of a log-Pearson III (LPIII) exceedance probability curve are
obtained from random samples of the mean and standard deviation of the
logarithm of the flow, computing a log-normal relationship and adjusting for
the skew of the distribution.  This scheme produces the same sampling
variability inherent in the calculation of confidence limits and expected
probability as described in Bulletin 17B (IACWD, 1982), the federal
guidelines for performing flood-flow exceedance probability analysis.

The random sampling is based on a Bayesian statistical approach for assessing
uncertainty (see Stedinger, 1983).  A goal of Bayesian estimation is to develop
the distribution of possible population parameters (the posterior distribution) by
combining statistics of the observed sample (e.g., observed stream flows), and
other information on the probable range of population parameters (the prior
distribution).  In this instance, the prior distribution is based on the assumption
that an equally likely set of parent populations could have produced the
estimated sample mean, standard deviation and resulting log-normal
distribution.  The resulting posterior distribution of the population mean and
standard deviation is given by:
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where &X and S are respectively the sample mean and standard deviation  of the
logarithm of flow values obtained from a record length of N years, µ is the
population mean, M( ) is the normal distribution defined by the parameters
shown, F is the population standard deviation, and P2

(N-1) is the chi-square
distribution with N-1 degrees of freedom.  Random estimates of the log-normal
distribution are obtained by generating random estimates of normal and chi-
square numbers, applying equations (5) and (6) to obtain µ and F and
computing the distribution (see Figure F.5).

This scheme for computing uncertainty does not account for the effect of shape
or skew that is a characteristic of the LPIII distribution.  This omission of the
sampling uncertainty in skew is in keeping with the approach taken  in the
Bulletin 17B guidelines where sampling error is only estimated for a log-
normally distributed variate.  Consequently, the sampling scheme used for the
LPIII distribution follows the Bulletin 17B method of computing uncertainty
for a log-normally distributed variate and applying this uncertainty to an LPIII
distribution with the same mean and standard deviation as the log-normal
distribution.  Given this estimation of uncertainty, the sampling of the LPIII
distribution (see Figure F.6) proceeds as follows:

1. Compute log-normal and LPIII distributions from sample statistics

The log-normal and LPIII distributions are calculate using the following
frequency factor equations:

where Qs and QG
s are respectively the flows for the log-normal and LPIII

distribution, Zp is the standard normal deviate and KG,P is the LPIII deviate for a
sample skew G, and exceedance probability P.



Appendix F Computation Procedures

F-16

log10Q
r'µ%ZPF (9)

Pr'M
&1 (

log10Q
s

P&µ

F
) (10)

2. Randomly select a sample normal distribution

Utilize equations (5) and (6) to obtain a sample of the population mean and
standard deviation.  Compute the log-normal distribution from the population
values as:

3. Calculate the random probabilities resulting from the randomly selected
normal distribution

Compute the random probability associated with the randomly selected normal
distribution for a discharge with exceedance probability computed from
equation (7) as:

where Qp
s = Qr is the flow value computed by equation (7) for exceedance

probability P and M-1 is the inverse normal distribution (i.e., given a flow value,
the inverse provides the exceedance probability).

4. Utilize the random probabilities to obtain a random sample of the LPIII
frequency curve

Assign the random probability Pr to a flow value QG
r = QG

s, where QG
s was

obtained from equation (8).  Compute as many pairs of Pr, QG
r values as

needed to adequately define the sample LPIII exceedance probability curve.



Appendix F Computation Procedures

F-17

Figure F.5  Random Samples of Normal Populations from Population Parameters µ, FF
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Figure F.6  Random Selection of LPIII Distribution from Random Log-Normal Distribution
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Random Sampling of Graphical or Non-Analytic
Relationships

The sampling of non-analytic or graphical relationships is necessarily ad hoc
because a statistical sampling theory is not available.  The algorithm used in
this instance applies to any of the other contributing relationships used in the
computation of EAD: 1) non-analytic stage or graphical exceedance probability
curves; 2) discharge transforms; 3) rating curves; 4) wind waves and 5) stage
damage relationships.

Random sampling of any of the graphical relationships is done by calculating
the values for a particular confidence limit (see Figure F.7).  The algorithm is
simply employed by: 1) generating a uniform random number between 0 and 1;
and 2) calculating the confidence limit values for the particular relationship of
interest.  For example, if 0.95 is the value resulting from the randomly selected
value, then the 95% chance confidence level confidence limit is calculated as
the randomly selected relationship for the algorithm described previously. 
Note, that the confidence limit for a contributing relationship is randomly
selected independently of other confidence limits randomly selected for other
contributing relationship used in the Monte Carlo simulation.

Classical statistical theory cannot be used to justify sampling possible
population values from confidence limits as is done with this algorithm. 
Instead, justification for this algorithm must be sought from the sampling of the
log-Normal distribution described in the previous section, which relies on a
Bayesian approach.  As was pointed out, the Bayesian approach results in the
same uncertainty distribution for population values as is obtained with a
classical statistical approach to obtain the uncertainty distribution used in the
17B guidelines.  In the case of the approach for graphical exceedance
probability curves, the sampling from confidence limits obtained from an
uncertainty distribution might be justified in analogy with this Bayesian
approach.

The difficulty with this algorithm is that the sampling based on confidence limit
values is very restrictive on the possible shapes of the graphical relationship. 
This restriction on shape results in some overestimation in the variance of the
derived distribution of EAD.  However, generalizing the shapes used in the
sampling algorithm depends on some parametric representation of the graphical
relationships.  The representation is not available, leaving the current algorithm
as the best available at this time.
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           Figure F.7  Sampling of Non-Analytic or Graphical Relationships
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Random Sampling of Uncertainty Relationships Using
a Random Number Generator

The sampling of uncertainty distributions depends on the generation of uniform
random numbers in the range 0.0 to 1.0 by the linear congruential method
(Davis and Rabinowitz, 1967) and the transformation of the uniform numbers
to the distribution desired.  The linear congruential method takes the form:

where Xn is the previous number selected, Xn+1 is the current number to be
generated, a and b are constants, m is a constant known as the modulus, and
“mod” is the modulus or remainder function.  The sequence is started for n=1
by a seed value that is set to a default value within the software.  The selection
of the constants and seed value are critical for an effective generations scheme.
This generation scheme, as well as any other using a computer algorithm, is
considered to produce pseudo-random numbers because the sequence repeats
with period depending on the selection of the constants in equation (11).  The
constants are selected as shown in Table F.3 to obtain a long period of random
numbers that is approximately equal to the size of the modulus, m.  The
resulting sequence of numbers has characteristics that are effective for
performing numerical integration with Monte Carlo simulation.

The uniform random numbers can be used to randomly sample the graphical
relationship directly.  As described in the previous section, a number selected
at random between 0.0 and 1.0 can be used to select the confidence level for
selecting a graphical curve.

The application to the LPIII distribution requires that deviates from both a
normal distribution and a chi-square distribution be obtained from a
transformation of the numbers randomly sampled from a uniform distribution. 
The normal deviates can be obtained from the following transform due to Box
and Muller (1958) (also see, Press et al., 1989):
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where ui and ui+1 are numbers randomly selected from a uniform distribution
defined between -1.0 and 1.0,  ni and ni+1 are numbers that will be normally
distributed, and s is computed as:

The application of this transform is accomplished by converting the uniform
numbers generated over the range 0.0 to 1.0 in equation (11) by letting ui =
2(Xi) - 1.0.  When the resulting uniformly distributed numbers result in s < 1.0,
the current pairing is discarded and a new pair is generated.  On the average,
about 1.27 uniform random variates are needed to generate a single normally
distributed variate.

Chi-square deviates are obtained by applying the inverse theorem (see Mood et
al., 1969, theorem 12, Chapter 5).  This theorem is applied by interpolating a
chi-square variate from a table of the  chi-square cumulative distribution
function given a random probability equal to a number generated from the
uniform distribution using equation (11).  The algorithm used to compute the
chi-square distribution was obtained from Press et al. 1989, pg 160.  The
algorithm utilizes the following relationship between the chi-square and
incomplete gamma function:

where N is the period of record used to compute the sample standard deviation
of the LPIII distribution, a = (N-1)/2, x = (y/2), and G( ) is the incomplete
gamma function.



Appendix F Computation Procedures

F-23

P[&z1&"#
MEAD&µEAD

S

n

#z1&"]-1.0&"
(16)

z1&"S

MEAD n
'

MEAD&µEAD

MEAD

#, (17)

Table F.3
               Constants for Linear Congruential Method1

seed 1331124727

a 65539

b 0

m 2147483647

                              1Constants appropriate for 32-bit machine.  Used in Equation 11.

Numerical Error Tolerance for Simulations

The numerical integration accuracy of the Monte Carlo simulation improves
with the number of simulations.  The accuracy criteria developed for the
simulation relies on the central limit theorem for the mean and the asymptotic
normality of uncertainty distributions about exceedance probability curves. 
The central limit theorem (see Mood et al., 1969) states that the sample mean
of any random variable is asymptotically normally distributed about the
population value.  In the case of this application of Monte Carlo simulation, the
sample EAD results from a finite number of simulations, and the population
value is the value that would be obtained from an infinite number of
simulations (i.e., the no numerical error solution).

The following confidence limit results from asymptotic normality of the sample
EAD:

where MEAD is the average EAD obtained from n simulations, µEAD is the
numerical error EAD, S is the standard deviation of the damage exceedance
probability curve estimated after n simulations, and z1-" is the standard normal
deviate for confidence level ".  This confidence limit can be rearranged to
produce an error bound of the numerical integration error:
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EADi' *
4

0
Dfi(D)dD- E

j'h

j'1
Dj fi,j)Dj- E

j'h&1

j'2
Dj(pj&pj%1)%D1p1%Dh ph (18)

where , is a tolerance for the confidence level ".  The error bound is set in the
software such that "=0.95, ,=0.01 and n#200,000.  If the limiting number of
simulations is reached the computation of EAD terminates with a warning.

A similar error bound is computed for exceedance probability function.  In this
case, the computed quantile (e.g., flow, stage or damage) is the mean value
derived for the exceedance probability of interest.  The error bound focuses on
the exceedance probability where the corresponding quantile has the largest
estimation standard error.  This estimation standard error is set to S in equation
(17) and computed as part of the simulation.  The confidence limit and
tolerance are set equal to that used for the error bound of EAD.  The
simulations will terminate only when the error tolerance for both estimating
exceedance probability function and EAD is met or when the maximum
number of simulations is reached.

The error bounds constrain the numerical integration error of the simulation but
does not reduce the uncertainty in estimates of EAD or exceedance probability
curves.  The uncertainty in estimate is a function of the error in models and
estimates of parameters as indicated by the uncertainty distributions provided. 
The uncertainty shown by the sensitivity analysis depicted in Figure F.2 is not
altered by the number of simulations performed.  Rather, the number of
simulations reduces the numerical error involved in combining the relationships
via the algorithm depicted in Figure F.3.

Integrating the Damage-Exceedance Probability
Function to Obtain EAD

The final computation in an individual Monte Carlo simulation is to integrate
the damage-exceedance probability function to obtain a sample value of EADi

as shown in Figure F.3.  The damage-exceedance probability function is not
analytic being derived from  rating curves, stage-damage relationships, etc.,
that are not analytic.  Consequently the following trapezoidal integration
scheme is used to obtain an estimate of EADi:

where fi(D) is the probability density function (PDF) obtained from the ith
simulation, for annual  damage, D; h is the number of incremental intervals of
size )D used to approximate the differential dD; &Dj and &f i,j are the average
values of D and fi(D) over this interval, and the difference of exceedance
probabilities over this interval (pj - pj+1) = &f i,j )D; and, D1p1 and Dhph are end
point approximations to the end intervals of integration, zero and infinity.  The
assumption is made in the software that D1 = 0 , resulting in D1p1 = 0.
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The trapezoidal rule approximation accuracy improves with increasing number
of intervals, h.  The number of intervals is determined by computing EAD for
damage exceedance probability curves determined by a sensitivity analysis
such as shown in Figure F.2 prior to performing the Monte Carlo simulation. 
The sensitivity analysis is performed by obtaining damage exceedance
probability curves by combining confidence limit estimates of the contributing
relationships at the same confidence level.  The confidence limits investigated
are obtained for confidence levels, 0.5, 0.75, 0.25, 0.9, 0.1, 0.99, 0.01, 0.999,
0.001.

The number of intervals, h, is obtained by performing a recursive integration
for each confidence limit investigated in the sensitivity analysis.  The recursive
procedure involves: 1) selecting an interval size; 2) computing EAD; 3)
dividing the interval size in half, where appropriate, and re-computing EAD; 4)
computing the relative difference between EAD values obtained in steps (2)
and (3); and 5) determining if the relative difference in step (4) is less than 1%;
if this tolerance is met; then the interval used in step (2) is selected; otherwise
steps, 2-4 are repeated with the interval size used in step (3) used in step (2). 
The division of interval sizes in step (3) is only performed when the interval
size reduction will make a significant difference to the computation of EAD. 
This limits the number of intervals used which is important to the
computational efficiency of Monte Carlo simulation.  The more intervals used,
the more computational time required to perform a simulation.  Intervals are
divided until the error tolerance is met or the maximum number of 200 are
obtained.  Experience has shown that 200 intervals provides sufficient accuracy
given the data typically available.

Uncertainty Distributions

General

The estimation of uncertainty distributions for the contributing relationships
will involve a certain amount of judgment, except for the case of a flow or
stage exceedance probability curve where the uncertainty is determined from
the length of record.  The judgment used in estimating uncertainty for other
contributing variables should correspond to the same factors contributing to
uncertainty in the exceedance probability curves.  The uncertainty in the
exceedance probability functions is due to the estimation uncertainty in the
parameters, which are the mean and standard deviation for the LPIII (the skew
being ignored).

This focus on parameter uncertainty effectively examines the uncertainty in the
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mean relationship given a set of scattered observations.  In other words, the
focus is on the uncertainty in fitting a exceedance probability function to an
observed set of plotting positions and does not reflect the scatter of the plotting
positions about the best estimates.

To understand the difference between uncertainty in fitted relationships and the
uncertainty due to scatter, consider a split sample exceedance probability
analysis of a gage having 100 years of record.  Estimate both pairs of frequency
curves and determine the top ranked event from separate 50-year records.  In
general, the difference between the 1% chance flow estimated by the frequency
curves will be considerably less than the difference between the top ranked
events.  The smaller variation in the fitted relationships, as compared to the
plotting positions, represents the difference between uncertainty for best fit
relationships and that for scatter about these relationships.  If uncertainty in the
contributing relationships such as rating and stage-damage curves is based on
scatter, then the specified uncertainty will be too great.  This in turn will
probably increase the magnitude of the EAD best estimate and certainly
increase the variance of the EAD distribution.

Therefore, the principle focus of estimating uncertainty should be on the
potential variation in the best estimate of the contributing relationship. 
Consequently, if a sensitivity analysis is performed to determine the uncertainty
in a contributing relationship, such as in varying Manning n to determine errors
in rating curves, then the parameters varied should be reasonably likely to
occur together.  Combining extreme parameter values probably reflects scatter
rather than the reasonable variation in a fitted relationship.

The error distribution about exceedance probability curves is determined by the
effective record length and the type of exceedance probability curve specified. 
In the case of the LPIII distribution, the uncertainty is computed as described
previously.  Also, refer to ETL 1110-2-537 (Corps of Engineers, 1995) for the
method used to calculate the uncertainty distribution for non-analytic (graphical
exceedance probability curves).  Normal, log-normal and triangular error
distributions are available for specifying uncertainty about other contributing
relationships, as is described in the next two sections.

Triangular Error Distribution

The triangular distribution is the simplest available for use with contributing
relationships that are not exceedance probability functions (see Figure F.8). 
This triangular distribution is specified for either: 1) each paired value
describing the contributing relationship (e.g., discharge-stage function); or 2)
for a specified value in the paired relationship (e.g., for 1000 cfs corresponding
to a stage of 10.0 feet).  In the case of the specified value, the bounds on the
error distribution are linearly interpolated to zero for values less than this
specified value and remains unchanged for values greater than this value.
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The parameters of the distribution are the mode and the range.  The mode is the
most frequently occurring value, or the peak of the probability density function
for the triangular distribution.  The range is simply defined by the minimum
and maximum possible values for the dependent variable in the paired
relationship. 

Inspection of Figure F.8 shows that the triangular distribution need not be
symmetric.  The effect of the asymmetry is to cause the mean or expected
value associated with the triangular distribution to be different than that for the
mode.  Consequently, Monte Carlo simulation will produce on the average a
contribution relationship that is different than might be assumed to occur when
specifying the mode as a no uncertainty estimate of the relationship.
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                Figure F.8  Triangular Distribution Application
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Normal and Log-normal Distributions

The specification of the normal and log-normal distributions is analogous to
that of the triangular distribution. These distributions are specified to represent
uncertainty for contributing relationships that are not exceedance probability
curves and can be specified for each paired value or for a single specified
value.

The normal distribution is specified by a mean and standard deviation of the
errors (see Figure F.9).  The log-normal distribution also is specified by a mean
and standard deviation of the logarithms (base 10) of interest.  Consequently,
estimation of the errors needs to be performed in log space for this distribution. 
For example, the paired values of discharge and stage should be plotted on
log10-log10 scale; and the best fit relationship and the errors should be
determined from this scale.  The relationship is then specified by the
untransformed best fit values (i.e. by taking anti-logs of the best fit) together
with the standard errors of the logarithms.

The normal distribution is symmetric with respect to the mean.  Consequently,
the mean or expected relationship obtained from the Monte Carlo simulation
will be the same as the specified relationship.  This differs from the average
result obtained with an asymmetric triangular uncertainty distribution as
explained in the previous section and shown in Figure F.8.  The estimation of
the log-normal distribution is most conveniently performed in log-space, thus
reducing the problem in estimating a normally distributed log variate. 
However, the log-normal uncertainty distribution is asymmetric when plotted
on a linear scale, and, like an asymmetric triangular distribution, will result in
an average relationship that differs from the specified relationship when
performing a Monte Carlo simulation.

Application to Stage Versus Damage Relationships

The Monte Carlo simulation algorithm reduces the computational effort
required by only computing total damage.  However, stage versus damage is
specified for each damage category with a corresponding uncertainty in the
estimates. The total damage is easily obtained by aggregating the specified (no
uncertainty) estimates in the case of triangular and normally distributed
uncertainty distributions.  Logarithms of the specified estimates are added in
the case of log-normally distributed uncertainty distributions.

The uncertainty distributions are not so easily aggregated.  The assumption is
made that the uncertainty estimates are uncorrelated.  Consequently, the
standard errors of the normal distribution and the log standard errors for the
log-normal distribution can be added by summing these standard errors
squared and taking the square root (variances added).  The triangular 
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distribution is handled in the same manner in that the maximum and minimum
ranges are added to obtain the range of an equivalent triangular distribution.

Although normal and log-normal distributions can be added to obtain the same
distributions, the same is not true of triangular distributions.  If enough
triangular distributions were involved in obtaining the total, then the resulting
distribution would be normal according to the central limit theorem.  

                      
  Figure F.9  Normal Distribution of Errors

However, since the number of categories involved is not large, the resulting
distribution is not likely to be normal.  Consequently, the assumption is made
that the distribution of uncertainty for the total damage in the stage versus
damage relationship is triangular if the category damage assumes a triangular
uncertainty distribution.
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Levee Analysis

Computation of damage exceedance probability functions with levees is
straight forward when the levee only fails due to overtopping, but requires
some additional computations when geotechnical failure can occur.  The
computation of the damage exceedance probability curve for levee failure due
to overtopping only is easily done by setting the zero damage point to a stage
corresponding to the top of levee.  The integration of the damage exceedance
probability curved using equation (18) to obtain EAD is then applied as
without a levee.

The computation of the damage exceedance probability curve when
geotechnical failure is possible needs to consider the probability of failure
below the top of levee.  The damage exceedance probability curve is calculated
in this situation as follows (see Figure F.10):

where P[dj-˜ D — dj + 1 ] is read as “the probability that the annual damage, D,
will be in the interval dj-1˜ to dj,”; pm is the exceedance probability
corresponding to the stage that  cannot cause damage due to geotechnical or
overtopping failure; pj and pj+1 are the exceedance probabilities for stages that
cause damage corresponding to dj˜ and dj+1 in the absence of the levee; and
pf

j+½ is the failure probability of the levee for the stage with exceedance
probability midway between pj and pj+1.  Equation (18) then can be applied to
this damage exceedance probability curve to obtain EAD by letting:

and substituting:
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                Figure F.10  Damage Considering Levee Geotechnical Failure
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R'1&(1&p)
NR (22)

Project Reliability and Flood Risk Computations

Reliability is computed as the exceedance probability for a target stage or the
likelihood of levee failure.  Flood risk is defined as the probability of one or
more exceedances of the target stage or levee failures in a specified number of
years.

The target stage is determined by interpolation from the stage versus damage
relationship using a  specified fraction of a damage for a specified exceedance
probability .  This damage is determined from a damage-exceedance
probability function obtained by combining traditional estimates of the
contributing relationships (i.e., contributing relationships without uncertainty)
for the without-project condition.

The exceedance probability for this stage or the levee failure probability is
specified as both a “median” and “expected” value.  The median value is
obtained from the stage-exceedance probability curve obtained by the
traditional (no uncertainty) method.  The expected value is obtained by
averaging the target stage or levee failure probability over all the Monte Carlo
simulations.

The risk of flooding one or more times in NR years is computed as:

where p is either the probability of exceeding the target stage or levee failure. 
An expected value of R is reported as the average over all Monte Carlo
simulations.

Computation of Equivalent Annual Damage

Equivalent annual damage is computed by discounting future EAD values
given the appropriate interest rate and time for discounting.  The computation
is described in detail elsewhere (see Hydrologic Engineering Center, 1984). 
This computation is applied to not only the best estimate of EAD but to the
distribution of possible EAD values obtained as part of the Monte Carlo
simulation.  This results in a distribution of equivalent annual damage.
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Inundation Reduction Benefit Computations

Inundation reduction benefits are computed as the difference between with-and
without-project equivalent annual damage.  This differencing is performed
between the distribution of equivalent annual damage values obtained for both
with-and without-project condition resulting in a distribution of equivalent
annual damage.

The differencing of uncertainty distributions in this manner recognizes that
irrespective of the plan, the future exceedance probability of events causing
floods will be the same for all plans.  Consequently, differencing these
distributions results in the same answer as would be obtained by obtaining the
distribution of net benefits by performing Monte Carlo simulation of damage
differences.
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