
Contents:
Watershed Physical Description
The physical representation of a watershed is accomplished with a basin model. Hydrologic elements are
connected in a dendritic network to simulate runoff processes. Available elements are: subbasin, reach, junction,
reservoir, diversion, source, and sink. Computation proceeds from upstream elements in a downstream direction.
An assortment of different methods are available to simulate infiltration losses. Options for event modeling include
initial constant, SCS curve number, exponential, Green Ampt, and Smith Parlange. The onelayer deficit constant
method can be used for simple continuous modeling. The threelayer soil moisture accounting method can be
used for continuous modeling of complex infiltration and evapotranspiration environments. Gridded methods are
available for the deficit constant, Green Ampt, SCS curve number, and soil moisture accounting methods. A
canopy component can be added to represent interception and transpiration. A surface component can be added
to represent depression storage.
Seven methods are included for transforming excess precipitation into surface runoff. Unit hydrograph methods
include the Clark, Snyder, and SCS techniques. Userspecified unit hydrograph or sgraph ordinates can also be
used. The modified Clark method (ModClark), is a linear quasidistributed unit hydrograph method that can be
used with gridded meteorologic data. An implementation of the kinematic wave method with multiple planes and
channels is also included.
Five methods are included for representing baseflow contributions to subbasin outflow. The recession method
gives an exponentially decreasing baseflow from a single event or multiple sequential events. The constant
monthly method can work well for continuous simulation. The linear reservoir method conserves mass by routing
infiltrated precipitation to the channel. The nonlinear Boussinesq method provides a response similar to the
recession method but the parameters can be estimated from measurable qualities of the watershed.
A total of six hydrologic routing methods are included for simulating flow in open channels. Routing with no
attenuation can be modeled with the lag method. The traditional Muskingum method is included along with the
straddle stagger method for simple approximations of attenuation. The modified Puls method can be used to
model a reach as a series of cascading, level pools with a userspecified storagedischarge relationship.
Channels with trapezoidal, rectangular, triangular, or circular cross sections can be modeled with the kinematic
wave or MuskingumCunge methods. Channels with overbank areas can be modeled with the MuskingumCunge method
and an 8point cross section. Additionally, channel losses can also be included in the routing. The
constant loss method can be added to any routing method while the percolation method can be used only with
the modified Puls or MuskingumCunge methods.
Water impoundments can also be represented. Lakes are usually described by a userentered storagedischarge
relationship. Reservoirs can be simulated by describing the physical spillway and outlet structures. Pumps can
also be included as necessary to simulate interior flood area. Control of the pumps can be linked to water depth
in the collection pond and, optionally, the stage in the main channel.
Diversion structures can also be represented. Available methods include a userspecified function, lateral weir,
pump station, observed diversion flows. There is also method with a constant diversion rate with an optional
annual adjustment pattern.
Back to the top
Meteorology Description
Meteorologic data analysis is performed by the meteorologic and includes shortwave radiation, precipitation,
evapotranspiration, and snowmelt. Not all of these components are required for all simulations. Simple event
simulations require only precipitation, while continuous simulation additionally requires evapotranspiration.
Generally, snowmelt is only required when working with watersheds in cold climates. Selection
of the PriestleyTaylor method for evapotranspiration requires one of the shortwave and longwave radiation
methods. Selection of the PenmanMonteith method for evapotranspiration requires both a shortwave and
longwave radiation method.
Four different methods for analyzing historical precipitation are included. The userspecified hyetograph method
is for precipitation data analyzed outside the program. The gage weights method uses an unlimited number of
recording and nonrecording gages. The Thiessen technique is one possibility for determining the weights. The
inverse distance method addresses dynamic data problems. An unlimited number of recording and nonrecording
gages can be used to automatically proceed when missing data is encountered. The gridded precipitation method
uses radar rainfall
data.
Five different methods for producing synthetic precipitation are included. The frequency storm method uses
statistical data to produce balanced storms with a specific exceedance probability. Sources of supporting statistical
data include U.S. Department of Commerce, National Weather Service (NWS)
Technical Paper 40 (May 1961) and
National Oceanic and Atmospheric Administration's (NOAA)
Atlas 2 and Atlas 14. The standard project storm
method implements the regulations for precipitation when estimating the standard project flood which is described
in USACE, EM 111021411
(March 1965). The SCS hypothetical storm method implements the primary
precipitation distributions for design analysis using Natural Resources Conservation Service (NRCS) criteria
Techncial Release 55
(June 1986). The HMR52 method can be used for computing the probable maximum
precipitation using NOAA criteria. The userspecified hyetograph method can be used with a synthetic hyetograph
resulting from analysis outside the program.
Potential evapotranspiration can be computed using monthly average values. There is also an implementation of
the Priestley Taylor method. A gridded version of the Priestley Taylor method is also available where the required
parameters of temperature and solar radiation are specified on a gridded basis. The PenmanMonteith method
uses an energy balance at the land surface. A userspecified method can be used with data developed from
analysis outside the program.
Snowmelt can be included for tracking the accumulation and melt of a snowpack. A temperature index method is
available that dynamically computes the melt rate based on current atmospheric conditions and past conditions in
the snowpack; this improves the representation of the "ripening" process. The concept of cold content is
incorporated to account for the ability of a cold snowpack to freeze liquid water entering the pack from rainfall.
A subbasin can be represented with elevation bands or grid cells.
The Priestley Taylor evapotranspiration method requires the net radiation, which is specified with the shortwave
radiation method. The PenmanMonteith method requires both shortwave and longwave radiation. The Bristow
Campbell and FAO56 methods are available for computing shortwave radiation. The Satterlund and FAO56
methods are available for computing longwave radiation. There is also a specified method for timeseries data
and a gridded method that can both be used for either shortwave or longwave radiation.
Back to the top
Hydrologic Simulation
The time span of a simulation is controlled by control specifications. Control specifications include a starting date
and time, ending date and time, and a time interval.
A simulation run is created by combining a basin model, meteorologic model, and control specifications. Run
options include a precipitation or flow ratio, capability to save all basin state information at a point in time, and
ability to begin a simulation run from previously saved state information.
Simulation results can be viewed from the basin map. Global and element summary tables include information on
peak flow, total volume, and other variables. A timeseries table and graph are available for elements. Results
from multiple elements and multiple simulation runs can also be viewed. All graphs and tables can be printed.
Back to the top
Model Optimization
Most parameters for methods included in subbasin and reach elements can be estimated automatically using
optimization trials. Observed discharge must be available for at least one element before optimization can begin.
Parameters at any element upstream of the observed flow location can be estimated. Seven different objective
functions are available to estimate the goodnessoffit between the computed results and observed discharge.
Two different search methods can be used to minimize the objective function. Constraints can be imposed to
restrict the parameter space of the search method.
Back to the top
Forecasting Streamflow
The basin model includes features designed to increase the efficiency of producing forecasts of future flows in a
realtime operation mode. Zones can be created that group subbasins together on the basis of similar hydrologic
conditions or regional characteristics. Zones can be assigned separately for loss rate, transform, baseflow, and
channel routing. The forecast alternative is a type of simulation that uses a basin model and meteorologic model
in combination with control parameters to forecast future flows. Parameter values can be adjusted by zone and
blending can be applied at elements with observed flow.
Back to the top
DepthArea Reduction
Frequency storms are commonly used to compute the flow resulting from a precipitation event with a known
exceedance probability. For example, a common regulatory requirement is to compute the flow that results from a
1% storm. The storm area is a key parameter because the average intensity of a storm decreases significantly as
the area increases. The deptharea analysis is available to facilitate the computation of the flow throughout a large
watershed. Points are selected where flow estimates are required, and the storm area is automatically adjusted to
compute the correct storm area for each selected point.
Back to the top
Assessing Model Uncertainty
Watersheds exhibit a great deal of variability. The land surface elevation can vary dramatically from headwaters to
outlet. Soil properties change from one place to another place. Land use also changes with location but also
changes over time. Each of the hydrologic processes can be modeled at varying levels of detail. There is a lack of
perfect knowledge of the atmospheric conditions over the watershed. All of these issues jointly produce uncertainty
in the simulated watershed response. The uncertainty analysis allows parameters to be represented with a
probability distribution function (PDF) and then performs a Monte Carlo simulation to describe the uncertainty in
output variables such as peak flow, volume, and reservoir pool elevation.
Back to the top
Sediment and Water Quality
Optional components in the basin model can be used to include sediment and water quality in an analysis.
Surface erosion can be computed at subbasin elements using the MUSLE approach for rural areas or the build
up/washoff approach for urban settings. Channel erosion, deposition, and sediment transport can be added to
reach elements while sediment settling can be included in reservoir elements. Nutrient boundary conditions
(nitrogen and phosphorus) can be added to source and subbasin elements. Nutrient transformations and
transport will be computed in reach and reservoir elements.
Back to the top
GIS Connection
The power and speed of the program make it possible to represent watersheds with hundreds of hydrologic
elements. Traditionally, these elements would be identified by inspecting a topographic map and manually
identifying drainage boundaries. While this method is effective, it is prohibitively time consuming when the
watershed will be represented with many elements. A geographic information system (GIS) can use elevation
data and geometric algorithms to perform the same task much more quickly. A GIS companion product has been
developed to aid in the creation of basin models for such projects. That companion product is Geospatial
Hydrologic Modeling Extension (HECGeoHMS), and can be used to create basin and meteorologic models for use
with the program.
Back to the top
