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CHAPTER 11 
 

Modeling Ice-covered Rivers 
 

HEC-RAS allows the user to model ice-covered channels at two levels. 
The first level is an ice cover with known geometry. In this case, the user 
specifies the ice cover thickness and roughness at each cross section. 
Different ice cover thicknesses and roughness can be specified for the 
main channel and for each overbank and both can vary along the channel. 
The second level is a wide-river ice jam. In this case, the ice jam thickness 
is determined at each section by balancing the forces on it. The ice jam 
can be confined to the main channel or can include both the main channel 
and the overbanks. The material properties of the wide-river jam can be 
selected by the user and can vary from cross section to cross section. The 
user can specify the hydraulic roughness of the ice jam or HEC-RAS will 
estimate the hydraulic roughness on the basis of empirical data. 
 
This chapter describes the general guidelines for modeling ice-covered 
channels with HEC-RAS. It contains background material and the 
equations used. For information on how to enter ice cover data and to 
view results, see Chapter 6 and Chapter 8 of the HEC-RAS User’s 
Manual. 
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Modeling Ice Covers with Known Geometry 
 

Ice covers are common on rivers during the cold winter months and they 
form in a variety of ways. The actual ways in which an ice cover forms 
depend on the channel flow conditions and the amount and type of ice 
generated. In most cases, river ice covers float in hydrostatic equilibrium 
because they react both elastically and plastically (the plastic response is 
termed creep) to changes in water level. The thickness and roughness of 
ice covers can vary significantly along the channel and even across the 
channel. A stationary, floating ice cover creates an additional fixed 
boundary with an associated hydraulic roughness. An ice cover also makes 
a portion of the channel cross sectional area unavailable for flow. The net 
result is generally to reduce the channel conveyance, largely by increasing 
the wetted perimeter and reducing the hydraulic radius of a channel, but 
also by modifying the effective channel roughness and reducing the 
channel flow area.  
 
The conveyance of a channel or any subdivision of an ice-covered 
channel, Ki, can be estimated using Manning’s equation: 
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Where: nc  = the composite roughness. 

Ai  = the flow area beneath the ice cover. 
Ri  = the hydraulic roughness modified to account for the 

presence of ice.  
 

The composite roughness of an ice-covered river channel can be estimated 
using the Belokon-Sabaneev formula as: 
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Where: nb  = the bed Manning’s roughness value. 

ni  = the ice Manning’s roughness value.  
 

The hydraulic radius of an ice-covered channel is found as:  
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Where: Pb  = the wetted perimeter associated with the channel bottom 
and side slopes 

Bi  = the width of the underside of the ice cover  
 

It is interesting to estimate the influence that an ice cover can have on the 
channel conveyance. For example, if a channel is roughly rectangular in 
shape and much wider than it is deep, then its hydraulic radius will be cut 
approximately in half by the presence of an ice cover. Assuming the flow 
area remains constant, we see that the addition of an ice cover, whose 
roughness is equivalent to the beds, results in a reduction of conveyance 
of 37%. 

 
Separate ice thickness and roughness can be entered for the main channel 
and each overbank, providing the user with the ability to have three 
separate ice thicknesses and ice roughness at each cross section. The ice 
thickness in the main channel and each overbank can also be set to zero. 
The ice cover geometry can change from section to section along the 
channel. The suggested range of Manning’s n values for river ice covers is 
listed in Table 1. 

 
The amount of a floating ice cover that is beneath the water surface is 
determined by the relative densities of ice and water. The ratio of the two 
densities is called the specific gravity of the ice. In general, the density of 
fresh water ice is about 1.78 slugs per cubic foot (the density of water is 
about 1.94 slugs per cubic foot), which corresponds to a specific gravity of 
0.916. The actual density of a river ice cover will vary, depending on the 
amount of unfrozen water and the number and size of air bubbles 
incorporated into the ice. Accurate measurements of ice density are 
tedious, although possible. They generally tell us that the density of 
freshwater ice does not vary significantly from its nominal value of 0.916. 
In any case the user can specify a different density if necessary. 

 
 Table 11.1   

Suggested Range of Manning’s n Values for Ice Covered Rivers 
 
The suggested range of Manning’s n values for a single layer of ice 

Type of Ice Condition Manning’s n value 
Sheet ice Smooth 0.008 to 0.012 

 Rippled ice 0.01 to 0.03 
 Fragmented single layer 0.015 to 0.025 

Frazil ice New 1 to 3 ft thick 0.01 to 0.03 
 3 to 5 ft thick 0.03 to 0.06 
 Aged 0.01 to 0.02 
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The suggested range of Manning’s n values for ice jams 
Thickness Manning’s n values 

ft Loose frazil  Frozen frazil Sheet ice 
0.3 - - 0.015 
1.0 0.01 0.013 0.04 
1.7 0.01 0.02 0.05 
2.3 0.02 0.03 0.06 
3.3 0.03 0.04 0.08 
5.0 0.03 0.06 0.09 
6.5 0.04 0.07 0.09 
10.0 0.05 0.08 0.10 
16.5 0.06 0.09 - 

 
 

Modeling Wide-River Ice Jams 
 

The wide river ice jam is probably the most common type of river ice jam. 
In this type, all stresses acting on the jam are ultimately transmitted to the 
channel banks. The stresses are estimated using the ice jam force balance 
equation: 
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where: xσ  = the longitudinal stress (along stream direction) 

t  = the accumulation thickness 
bτ   = the shear resistance of the banks 

B  = the accumulation width 
′ρ   = the ice density 

g  = the acceleration of gravity 
Sw  = the water surface slope 

iτ   = the shear stress applied to the underside of the ice by the 
flowing water  

 
This equation balances changes in the longitudinal stress in the ice cover 
and the stress acting on the banks with the two external forces acting on 
the jam: the gravitational force attributable to the slope of the water 
surface and the shear stress of the flowing water on the jam underside.  

 
Two assumptions are implicit in this force balance equation: that xσ , t, 
and iτ  are constant across the width, and that none of the longitudinal 
stress is transferred to the channel banks through changes in stream width, 
or horizontal bends in the plan form of the river. In addition, the stresses 
acting on the jam can be related to the mean vertical stress using the 
passive pressure concept from soil mechanics, and the mean vertical stress 
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results only from the hydrostatics forces acting in the vertical direction. In 
the present case, we also assume that there is no cohesion between 
individual pieces of ice (reasonable assumption for ice jams formed during 
river ice breakup). A complete discussion of the granular approximation 
can be found elsewhere (Beltaos 1996). 

 
In this light, the vertical stress, 

zσ , is: 
 

tez γσ =        (11-5) 
 

Where: 
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Where: e  = the ice jam porosity (assumed to be the same above and 
below the water surface) 

s  = the specific gravity of ice 
 

The longitudinal stress is then:  
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Where: 
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φ = the angle of internal friction of the ice jam  

 
The lateral stress perpendicular to the banks can also be related to the 
longitudinal stress as  
 

xy k σσ 1=        (11-9) 
 
Where: k   = the coefficient of lateral thrust  1
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Finally, the shear stress acting on the bank can be related to the lateral 
stress: 
 

yb k στ 0=        (11-10) 
 
Where: 
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Using the above expressions, we can restate the ice jam force balance as: 
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where: F  = a shorthand description of the force balance equation 

 
To evaluate the force balance equation, the under-ice shear stress must be 
estimated. The under-ice shear stress is: 

 
fici SRgρτ =       (11-13) 

   
Where: Ric  = the hydraulic radius associated with the ice cover 

Sf  = the friction slope of the flow 
 

Ric can be estimated as:  
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The hydraulic roughness of an ice jam can be estimated using the 
empirical relationships derived from the data of Nezhikovsky (1964). For 
ice accumulations found in wide river ice jams that are greater than 1.5 ft 
thick, Manning’s n value can be estimated as: 

 
40.023.0069.0 ii tHn −=       (11-15) 

 
and for accumulations less than 1.5 ft thick 
 

77.023.00593.0 ii tHn −=      (11-16) 
 

where: H  =  the total water depth 
ti  =  the accumulation thickness 
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Solution Procedure 
 

The ice jam force balance equation is solved using an approach analogous 
to the standard step method. In this, the ice thickness at each cross section 
is found, starting from a known ice thickness at the upstream end of the 
ice jam. The ice thickness at the next downstream section is assumed and 
the value of F found. The ice jam thickness at this downstream cross 
section, tds, is then computed as: 
 

LFtt usds +=        (11-17) 
 

Where: tus  = the thickness at the upstream section 
L  = the distance between sections 
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The assumed value and computed value of tds are then compared. The new 
assumed value of the downstream ice jam thickness set equal to the old 
assumed value plus 33% of the difference between the assumed and 
computed value. This “local relaxation” is necessary to ensure that the ice 
jam calculations converge smoothly to a fixed value at each cross section. 
A maximum of 25 iterations is allowed for convergence. The above steps 
are repeated until the values converge to within 0.1 ft (0.03 m) or to a user 
defined tolerance.  
 
After the ice thickness is calculated at a section, the following tests are 
made: 
 
1. The ice thickness cannot completely block the river cross section. 

At least 1.0 ft must remain between the bottom of the ice and the 
minimum elevation in the channel available for flow. 

 
2. The water velocity beneath the ice cover must be less than 5 fps 

(1.5 m/s) or a user defined maximum velocity. If the flow velocity 
beneath the ice jam at a section is greater than this, the ice 
thickness is reduced to produce a flow velocity of approximately 5 
fps or the user defined maximum water velocity. 

 
3. The ice jam thickness cannot be less than the thickness supplied by 

the user. If the calculated ice thickness is less than this value, it is 
set equal to the user supplied thickness. 
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It is necessary to solve the force balance equation and the energy equation 
(eq. 2-1) simultaneously for the wide river ice jam. However, difficulties 
arise because the energy equation is solved using the standard step 
method, starting from the downstream end of the channel and proceeding 
upstream, while the force balance equation is solved starting from the 
upstream end and proceeding downstream. The energy equation can only 
be solved in the upstream direction because ice covers and wide river jams 
exist only under conditions of subcritical flow. To overcome this 
incompatibility and to solve both the energy and the ice jam force balance 
equations, the following solution scheme was adopted.  
 
A first guess of the ice jam thickness is provided by the user to start this 
scheme. The energy equation is then solved using the standard step 
method starting at the downstream end. Next, the ice jam force balance 
equation is solved from the upstream to the downstream end of the 
channel. The energy equation and ice jam force balance equation are 
solved alternately until the ice jam thickness and water surface elevations 
converge to fixed values at each cross section. This is “global 
convergence.” 
 
Global convergence occurs when the water surface elevation at any cross 
section changes less than 0.06 ft, or a user supplied tolerance, and the ice 
jam thickness at any section changes less than 0.1 ft, or a user supplied 
tolerance, between successive solutions of the ice jam force balance 
equation. A total of 50 iterations (or a user defined maximum number) are 
allowed for convergence. Between iterations of the energy equation, the 
ice jam thickness at each section is allowed to vary by only 25% of the 
calculated change. This “global relaxation” is necessary to ensure that the 
entire water surface profile converges smoothly to a final profile. 
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