Hydrologic Modeling with HEC-HMS

21 June 2023

US Army Corps of Engineers® Mike Bartles, P.E. Tom Brauer, P.E. Jay Pak, Ph.D., P.E. Hydrologic Engineering Center

Agenda

- Introductions
- Introduction to HEC-HMS
- Tech Transfer Materials and Documentation
- Purposes of HEC-HMS
- Software Demonstration
 - <u>Generating a Flow Forecast for Magat</u> <u>River, Philippines</u>
- Break

Q&A

- Sediment and Reservoir Siltation
- Upcoming Enhancements

Tom Brauer

- University of Florida
 - B.S. (2010)
 - M.S. (2011)
- USACE Galveston District
- USACE Hydrologic Engineering Center (HEC)
 - HEC-HMS Lead Developer

Mike Bartles

- Penn State University
 - B.S. (2009)
- USACE Philadelphia District
- Villanova University
 - M.S. (2014)
- USACE Hydrologic Engineering Center (HEC)
- HEC-HMS team member and HEC-SSP Team Lead

Jay Pak

- Kyung Hee University, Seoul, Korea
 - B.S. (1992) & M.S. (1994)
- University of Southern California
 - M.S. (1998) & Ph.D. (2005)
- USACE Los Angeles District & Far East District
- USACE Hydrologic Engineering Center (HEC)

 Watershed Scale Sediment and Post-Fire Hydrology/Debris Flow Specialist

HEC-HMS Overview

- Free!
- ~75,000 downloads per year
- Latest Release
 - Version 4.10
- Beta Release
 - Version 4.11-beta.16
- MacOS and Linux versions
 available

JS Army	Corps
of Engine	eers®

About Newsletters Soft	tware Publications Training Visitors Links Contact	
US Army Corps of Engineers	Hydrologic Engineering Center	
HOME > SOFTWARE > HECHMS > DOWNLOADS	HEC-HMS has been developed for the U.S. Army Corps of Engineers. However, software developed at the Hydrologic Engineering Center is made available to the public whenever appropriate. Use is not restricted and individuals outside of the	
HEC-HMS	Corps of Engineers may use the program without charge. HEC will not provide user assistance or support for this software to non-Corps users. Downloading this software indicates full acceptance of your responsibility in the use of this program. Please see the distribution policy for more details.	
Features	See all and ballon policy for more decails.	
Downloads	Windows	
Documentation	The Windows setup package contains HEC-HMS 4.10. After starting the program, Documentation and Sample projects are available from the Help menu. HEC-HMS 4.10 has been tested on Windows 10 64-Bit.	
Training Material	Beta Version:	
Known Issues	Lownload HEC-HMS 4.11 Beta 16 (238 MB) [Release Notes]	
Bug Report	Current Version (Primary Download Site): Download HEC-HMS 4.10 for Windows (202 MB) [Release Notes]	
Suggestions	A Download HEC-HMS 4.10 Portable Version (238 MB) [Release Notes]	
Email List	> Archived Versions:	
Support Policy	macOS	
	The disk image contains HEC-HMS 4.10. After starting the program, Documentation and Sample projects are available from the Help menu.	
	HEC-HMS 4.10 has been tested on macOS Monterey. Install HEC-HMS by dragging the app to the Application folder.	
	We do not currently use an Apple Developer account to digitally sign the application. See instructions here for running the application.	
	Beta Version: Download HEC-HMS 4.11 Beta 16 (168 MB) [Release Notes]	
	Current Version: Download HEC-HMS 4.10 (240 MB) [Release Notes]	
	Archived Versions:	

Link to Downloads

- Documentation
 - <u>Release Notes</u>
 - User's Manual
 - <u>Technical Reference Manual</u>
 - <u>Applications Guide</u>
 - Validation Guide

- Training Materials
 - Tutorials and Guides
 - Hydrologic Modeling with HEC-HMS
 - Advanced Applications of HEC-HMS
 - <u>Hydrology and Hydraulics for</u> <u>Dam Safety</u>
 - <u>Webinars</u>
 - <u>Conference Materials</u>

US Army Corps of Engineers®

Link to Tutorials and Guides

Basic HEC-HMS Class Materials

of Engineers®

US Army Corps of Engineers®

HEC-HMS Webinars

Purpose of HEC-HMS

- Simulate the hydrologic processes of dendritic watersheds
 - Estimate runoff for short (hours to days) and long (months to years) time windows
 - Analyze water availability, urban drainage, flow forecasting, future urbanization impacts, reservoir spillway design, flood damage reduction, floodplain regulation, systems operation, and sediment transport
 - Generate output(s) for use in other applications

Purpose of HEC-HMS

Purpose of HEC-HMS

Uncertain Runoff

Other Common Use Cases

- Feasibility Studies
- Dam and Levee Safety Risk Assessments
- Flow- and Stage-Frequency Analyses
- Flood Forecasting
- Quantitative Climate Change Assessments

Software Demonstration

SURFACE EROSION & SEDIMENT TRANSPORT MODELING CAPABILITIES IN HEC-HMS

- 1. Surface Erosion and Sediment Transport Process
- 2. Surface Erosion Method (Watershed/Subbasin)
- 3. Transport Potential Functions (Channel/Reach)
- 4. Dynamic Volume Reduction/Siltation Method (Reservoir)
- 5. Case Studies:
 - Large Reservoir Volume Reduction Studies (Long-Term Simulation)
 - Sediment Analysis Study with Upper North Bosque River Watershed (UNBRW), TX

SURFACE EROSION AND SEDIMENT/DEBRIS TRANSPORT PROCESS

SUBBASIN: MUSLE EQUATION

- Modified Universal Soil Loss Equation (MUSLE).
 - Developed by Williams, 1975.
 - Rainfall energy factor replaced by Runoff factor
 - Incorporates detachment and transport
 - Applicable to individual storms

$$Sed = 11.8 (Q_{surf} \times q_{peak})^{0.56} \times K \times LS \times C \times P$$

- Sed = Sediment Yield per Event (metric tons)
- $Q_{surf} = Surface Runoff Volume (m³)$
- $-q_{peak} = Peak Runoff Rate (m³/s)$
- K = Soil Erodibility Factor
- LS = Topographic Factor
- C = Cover and Management Factor
- P = Support Practice Factor

🔒 Subbasin		Canop	ру	Surface
Loss Transform		Baseflow	Erosion	Options
Basin Name:	North	Bosque Ca	libration	
Element Name:	90314	2		
"Erodibility Factor:	0.38			
*Topographic Factor:	4.21			
*Cover Factor:	0.004	37		
*Practice Factor:	1			
*Threshold (CFS)	11			
*Exponent:	0.75			
Gradation Curve:	SCS12	2		•]
•				

<u>REACH</u>: TRANSPORT POTENTIAL FUNCTIONS

•Ackers-White (1973)

•Englund-Hansen (1967)

•Laursen (1968)-Copeland (1989)

•Myer-Peter-Müller (1948)

•Toffaleti (1968)

•Yang (1973/1984)

•Wilcock (2001)

	Sediment Type?	What Function	is are 'in Play'?	Additional Considerations?		
	Clay	Krone-Pa	rthinades			
	Silt	Laursen- Krone-Pa	Copeland Inthinades	-lf mixed with clay – need additional data		
	Sand	Ackers-White Englund-Hansen Toffaletti Yang Laursen-Copeland MPM ¹ Wilcock ¹ Yang Larsen-Copeland		-Primarily for 'large rivers' – not good for coarse material		
89)	Gravel+			-Recommend Wong-Parker correction -Mainly for 'bimodal' beds (gravel or cobble beds with 25-40% sand) – must use surface gradation and 'Active Layer' mixing method -Separate gravel function -Separate gravel function		
vees Shear St	trace		Stream Dowe			
			Stream rower			
Neyer-Peter Muller		Ackers-White	(<i>tV</i>)			
_aursen-Copeland		Englund-Hans	en (<i>tV</i>)*			
Vilcock and Cro	owe		Vang (1/S)			

A little guide to how Stanford thinks about transport functions

Kernel State (1) Heta 9 (C:\Users\g0hecihp\Desktop\Draft Journal File Edit View Components GIS Parameters Compute Res 💽 Q 🙈 🖌 🖬 🍑 🎐 🖵 🏄 🗅 🚘 🖪 4 V 💥 🖼 🖾 🖂 📖 Run: LAEO1_SDR_M \sim --None--Deer Ck DB Basin Models Basin 1 Deer Ck DB LADE1 Deer Ck DB LADE1 E&H · 🔎 eer Ck DB LADE 🗄 🚔 S 1 ⊞ 🝰 S_2 **4**11 🗄 🗠 😽 Reach-1 📲 S 3 🦉 j 2 Sink-1 Beer Ck DB LADE1 1SB B Deer Ck DB MSDPM Deer Ck DB MSDPM SDR-M Meteorologic Models - 🍣 2003 Event A Specified Hyetograph Control Specifications Time-Series Data Precipitation Gages 👫 Mt. Baldy (MTBY) Components Compute Results Basin Model Sediment Name: Deer Ck DB LADE1 SDR-M Transport Potentia Sediment Delivery Ratio Ackers-White *Clav Ratio Engelund-Hansen *Silt Ratio Laursen-Copeland Mever-Peter Muller *Sand Ratio *Gravel Ratio Wilcock Cohesive Potential: Yang *Specific Gravity: 2.65 *Clav Density (KG/M3) 480.55 *Silt Density (KG/M3) 1041.2 Sand Density (KG/M3) 1489.7 *Fall Velocity: Van Rijr Grade Scale: Clay Silt Sand Grave

Sources: HEC-RAS 1D Sediment Transport User's Manual (https://www.hec.usace.army.mil/confluence/rasdocs/rassed1d/1d-sediment-transport-technical-reference-manual/computing-transport-capacity)

REACH: TRANSPORT CAPACITY

Bed Material and Inflowing Load divided into separate grain classes (up to 20)

Transport Potential is calculated for each grain size

<u>Transport Capacity (Existing 7-transport Potential Functions) =</u>

(Transport Potential for each grain size) X (fraction of that material in active layer of bed)

Where:

- $T_c =$ Total transport capacity
- N = number of grain size classes
- β_j = % of active layer composed of material in grain size class "j"
- T_i = Transport potential computed for
 - 100% of the material grain class "j"

SDR is not function of fraction of each grain size material in active layer of bed)

Transport Potential = Transport Capacity

REACH: SEDIMENT CHANNEL ROUTING

- •Fisher's
- Linear Reservoir
- Uniform Equilibrium
 Volume Ratio

Muskingum

RESERVOIR: CHEN'S SEDIMENT TRAP EFFICIENCY METHOD (CHEN 1975)

Critical settling velocity

$$v_c = \frac{h}{T} = \frac{Q}{A} = overflow \ rate$$

- Trapping Efficiency
 - Stratified (quiescent) reservoir (upper bound)

$$TE = 100 \frac{v_s}{v_c} = 100 \frac{A}{Q} v_s$$

Fa	II Velocities (v_s):
1.	Rubey
2.	Van Rijn
3.	Toffaleti
4.	Report 12

• Mixed (turbulent) reservoir (lower bound)

$$TE = 100 \left[1 - e^{-\frac{v_s}{v_c}} \right]$$

- The settling velocity is computed using the method selected for the Basin Model.
- The critical settling velocity is computed as the discharge rate (Q) from the reservoir divided by the surface area (A). The computations are
 performed separately for each grain size class or subclass.

RESERVOIR: BRUNE'S SEDIMENT TRAP EFFICIENCY METHOD (BRUNE 1953)

Capacity/Annual Inflow Ratio

$$V_* = \frac{V_{res}}{V_{inflow}}$$

- V_{res} = Reservoir Capacity
- V_{inflow} = Annual Inflow (A user specified initial value is required)
- Trapping Efficiency

 $TE = a \left[1 - 2e^{-bV_*^{0.35}} \right]$

- *a* = Coefficient (Low=95, Medium=97, High=100)
- *b* = Coefficient (Low=5.37, 6.42, High=7.71)

type of reservoir, and method of operation

RESERVOIR: SEDIMENT ROUTING METHODOLOGY

• Sediment deposition

$$D_b = Q_{sed}^{In} \times \frac{TE}{100}$$

• Suspended sediment

$$S_R = Q_{sed}^{In} - D_b$$

• Outflow sediment

$$Q_{sed}^{Out} = S_R \frac{V_{Out}}{V_R}$$

 Q_{sed}^{In} = Total Inflow Sediments Q_{sed}^{Out} = Total Outflow Sediments V_{Out} = Outflow volume V_R = Reservoir volume HEC

RESERVOIR: VOLUME REDUCTION PROCESS

Sand & Gravel: 2-Optopn (V-Shape or Elongated Taper)

Update Elevation-Storage-Area-Discharge Curves Each

RESERVOIR: HEC-HMS GUI FOR TWO SEDIMENT TRAP EFFICIENCY METHODS

Reservoir Sedim	ent Options		
Basin Name:	Brand_Canyon_MSDPM		
Description:	Brand_DB		
Description:	Nees		
Downstream:	None V		
Method:	Outflow Structures V		
Storage Method:	Elevation-Storage-Area ~	_	
*Elev-Stor Function:	Brand_DB ~	\simeq	
*Elev-Area Function:	Brand_DB ~	\simeq	
Initial Condition:	Elevation \checkmark		
*Initial Elevation (M)	262		
Main Tailwater:	Assume None v		
Auxiliary:	None ~		\boldsymbol{V}
Time Step Method:	Automatic Adaption $$		
Outlets:	0 🖨		
Spillways:	1		
Dam Tops:	0 €		
Pumps:	0 🖨		
Dam Break:	No ~		
Dam Seepage:	No		
Release:	No		
Evaporation:	No		
Sediment Method:	Chen Sediment Trap 🗸 🗸 🗸		
	Brune Sediment Trap		
	Complete Sediment Trap		
	Specified Sediment	-	
	Zero Sediment Trap		

📃 Reservoir	Sediment	Options		
Basin Name: North Bosque Cal HICO Element Name: Reservoir-SCS14				
	Met	thod: Average Value	\sim	
*Annual Inflow	Volume (AC	C-FT) 20000		
*Capacity	Elevation (F	EET) 1480		
	*Consta	ant A 97		
	*Consta	ant B 6.42		
Reservoir C	apacity Met	thod: Yes	~	
D	eposition Sh	nape: V-Shape	~	

📃 Reservoir	Sediment	Options	
E Eler	Basin Name nent Name	e: North Bosque Cal HICO e: Reservoir-SCS14	
	Method	d: Average	~
*Ten	nperature (F	55.4	
Reservoir Capa	acity Method	d: Yes	~
Depo	sition Shape	e: V-Shape	~
		V-Shape	
		Elongated Taper	

CASE STUDIES: LARGE RESERVOIR VOLUME REDUCTION

Percent Finer (%)

100

Basin Model

- Inflow element
- Reservoir element
- Outflow element

Inflow Element

- Daily sediment loads taken from the Kansas Watershed Study
- Incoming gradation from USGS measurements

Reservoir Element

- Initial elevation-storage and elevation-area tables
- Trapping Efficiency: both the Brune and Chen methods tested
- Deposition Shape: both the V-shape and Elongated tested
- Outflow: specified release

Control Specifications

- Timestep: 12 hours
- Simulation period
 - Tuttle Creek: 1972-2020
 - Kanopolis: 1960-2017
 - Perry: 1979-2009

Model [Big_Blue_R]	- • •	
Model [Big_Blue_R]		Tuttle_Creek
Outflow		Meteorologic Models Control Specifications Time-Series Data Paired Data Elevation-Area Functions Diameter-Percentage Functions Inflow_gradation

		Components	Co	mpute	Results	
Basin Name: Element Name:	Tuttle Elong Brune Calib Tuttle	🌽 Paired Da	ta	Table	Graph	-
Description:						
Downstream:	Sink-1	Diameter (MM	0			
Method:	Outflow Structures				0.040	0
Storage Method:	Elevation-Storage-Area				0.062	5
ev-Stor Function:	Tuttle 1972				2 000	_
v-Area Function:	Tuttle 1972				2.000	U
Initial Condition:	Elevation					_
tial Elevation (FT)	1080.7					
Main Tailwater:	Assume None	~	Ī			
Auxiliary:	None	~	Ŀ			
ime Step Method:	Automatic Adaption	~				
Outlets:		0 🗢				
Spillways:		0 🖨]			
Dam Tops:		0 🜲	Ī			
Pumps:		0 🚖	Ī			
Dam Break:	No	~	i.			
Dam Seepage:	No	~	1			
Release:	Yes	~	Ī			
Evaporation:	No	~	1			
Sediment Method:	Brune Sediment Trap	~	1			

TUTTLE CREEK RESULTS

Calibration Method

- Shifted majority of fine and silt fraction to sand
- Maintained volume balance by lowering sand and clay specific weights
- Final gradation was 5% clay and 95% sand
- Models further calibrated by adjusting sand specific weight
- Measured data may have errors

Name:	Tuttle Elong Brune Calib	
Transport Potential:	None	\sim
Cohesive Potential:	None	\sim
*Specific Gravity:	2.65	
*Clay Specific Weight (LB/FT3)	23.2	
*Silt Specific Weight (LB/FT3)	65	
*Sand Specific Weight (LB/FT3)	49.57	
*Fall Velocity:	Rubey	\sim
Grade Scale:	Clay Silt Sand Gravel	\sim

KANOPOLIS RESULTS (OLDER SURVEYS)

Calibration

- Applied same methodology as for Tuttle Creek
- Kanopolis showed more deposition at lower elevations
- Final gradation was 10% clay and 90% sand.
- Errors in the observed data.

Modeled pool elevation matched well with observed

Without sediment, the model underpredicts stage by as much as 9 feet

HEC-RAS COMPARISON

HEC-RAS Model

- 1D quasi-unsteady sediment
- Same inputs for incoming sediment load
- Calibrated to the 2009-2020
 period

<u>Comparison</u>

- Both model agreed relatively well
- HEC-RAS deposits more sediment at higher elevations

CASE STUDY: UNBRW

Source: https://ascelibrary.org/doi/full/10.1061/%28ASCE%29HE.1943-5584.0001205

Upcoming Enhancements

- Ensemble analysis
 enhancements
- Time-varying parameters
- Temporal disaggregation of daily gridded inputs
- Gridded data modeling
 enhancements
- Stochastic Storm Transposition

Sediment transport and debris flow enhancements

Stochastic Storm Transposition

Interface Translation

- HEC-HMS was designed to operate independent of regional and language settings on a user's computer
- 95+ language, countries, and/or locales are supported

Thank You!

US Army Corps of Engineers®

https://www.hec.usace.army.mil/software/hec-hms/