

In general, routing techniques may be classified into two categories: hydraulic routing and hydrologic routing. Hydraulic routing techniques are based on the solution of the partial differential equations of unsteady open channel flow. These equations are often referred to as the St. Venant equations or the dynamic wave equations. Hydrologic routing employs the continuity equation and either an analytical or an empirical relationship between storage within the reach and discharge at the outlet as a replacement for the momentum equation.

This lecture describes several hydraulic and hydrologic routing techniques. Assumptions, limitations, and data requirements are discussed for each. The basis for selection of a particular routing technique are reviewed, and general guidelines to aid in the selection process are presented. This paper is limited to discussions on one dimensional flow routing techniques.

The effect of gravity on the state of flow is represented by a ratio of inertial forces to gravity forces. This ratio is given by the Froude number.

Subcritical flow has a low velocity and is often described as tranquil or streaming. In this state the role played by gravity forces is more pronounced. Supercritical flow has a high velocity and is often described as rapid, shooting, or torrential. In this state the inertial forces are dominant.

It is important to note that a gravity wave caused by a disturbance can propagate upstream in subcritical flow, but not supercritical flow. In subcritical flow, a disturbance that raises the water surface elevation at one location will cause the water surface to increase upstream for some distance. Because of this fact, when computing a subcritical water surface profile, the computations must start downstream and proceed in the upstream direction. For supercritical flow, disturbances only propagate in the downstream direction. The computation of supercritical water surface profiles starts upstream and continues in the downstream direction.

Usually, the flow in most natural channels is subcritical. However, some natural channels may have short reaches of supercritical flow. Constructed channels are either designed to flow in the subcritical or supercritical flow regime. On occasion natural or constructed channels may demonstrate flow in both regimes. This is a **mixed flow regime** situation, and requires special consideration when modeling the flow transitions.

Understanding whether the flow is in the subcritical or supercritical flow regime, and how the flow transitions from one regime to another, is an important aspect of computing accurate water surface profiles.

When flow occurs in an open channel, resistance is encountered by the water as it flows downstream. This resistance is generally counteracted by the components of gravity forces acting on the body of the water in the direction of motion. Uniform flow will develop if the resistance is balanced by these gravity forces.

 $\begin{array}{lll} \mbox{Mild Slope} & \mbox{Y}_n{>}\mbox{Y}_c \\ \mbox{Critical Slope}\mbox{Y}_n{=}\mbox{Y}_c \\ \mbox{Steep Slope} & \mbox{Y}_n{<}\mbox{Y}_c \end{array}$

When evaluating how a water surface profile transitions among the three flow regions, the following rules must be applied:

1. As the depth of water approaches normal depth, the slope of the water surface becomes asymptotic to the normal depth profile.

2. As the depth of water approaches critical depth, the slope of the water surface tends toward a perpendicular line to the critical depth line.

3. As the depth of water approaches zero, the slope of the water surface tends toward a perpendicular line with the channel bottom.

4. As the depth of water goes toward infinity $(Y>Y_n \text{ and } Y>Y_c)$, the slope of the water surface approaches a horizontal line.

The gradually varied flow that we will discuss is steady flow whose depth varies gradually along the length of the channel. This definition requires that two conditions be met: (1) the flow is steady (i.e., all of the variables remain constant for the time interval under consideration), and (2) the streamlines are approximately parallel (i.e., the pressure distribution over the cross section can be considered hydrostatic).

Uniform flow has been established when: (1) the depth, water area, velocity, and discharge at every section of the channel reach are constant; and (2) the energy line, water surface, and channel bottom are all parallel (i.e., $S_f = S_w = S_o$). Manning's equation is a uniform flow equation.

Five types of channel slopes exist: (1) adverse, (2) horizontal, (3) mild, (4) critical, and (5) steep. The mechanics of determining if a channel has an adverse or horizontal slope is quite simple. If the bed of the river has a positive slope, the slope is adverse; if the channel bottom lies in a horizontal plane, the slope is horizontal. To distinguish between mild, critical, and steep slopes is not as straightforward and comparison of normal and critical depth is probably the easiest way to categorize these slopes.

"The M1 profile represent the most well known backwater curve; it is the most important of all flow profiles from the practical point of view...occurs when the downstream end of a long mild channel is submerged."

"The M3 profile starts theoretically from the upstream channel bottom...and terminates with a hydraulic jump at the downstream end...This type of flow usually occurs when a superciritcal flow enters a mild channel."

"The S1 profile begins with a jump at the upstream end and becomes tangent to the horisonal pool level at the downstream end."

"The S2 profile is a drawdown curve. It is usually very short ...like a transition between a hydraulic drop and a uniform (super critical) flow."

Dashes indicate that the profile is leaving the realm of GVF

The modeler may be required to establish one or more boundary conditions for a given river system. The number and location of the boundary conditions will depend upon the extent of the river system being modeled, and the flow regime within the system.

Subcritical Flow Regime: boundary conditions are necessary at all of the external downstream ends of the river system.

Supercritical Flow Regime: boundary conditions are necessary at all of the external upstream ends of the river system.

Mixed Flow Regime: boundary conditions must be entered at all external ends of the river system.

					HEC
					SHEE
Requi	red Bounda	ry Conditior	าร		
	최 Steady Flow Analysis		_	×	
	File Options Help				
	Plan : Steady Flow	Short ID	SteadyFlow		
	Geometry File :	Base Geometry		-	
	Steady Flow File :	Steady Flows		-	
	-Flow Regime	Plan Description :			
	 Subcritical Supercritical 				
	O Mixed				
	Optional Programs				
	Floodplain Mapping				
		Compute			
	Enter/Edit short identifier for pla	n (used in plan comparisons)			
					10
					12

Known Water Surface Elevations - For this type of boundary condition the user must enter a known water surface elevation for each of the profiles to be computed.

Critical Depth - When this type of boundary condition is selected, the user is not required to enter any further information. The program will calculate critical depth for each profile and use that as the boundary condition.

Normal Depth - For this type of boundary condition, the user is required to enter an energy slope that will be used in calculating normal depth (using Manning's equation) at that location. A normal depth will be calculated for each profile based on the user entered energy slope. In general, the energy slope can be approximated by using the average slope of the channel or the average slope of the water surface in the vicinity of the cross section.

Rating Curve - When this type of boundary condition is selected, the user is required to enter an elevation versus flow rating curve. For each profile, the elevation is interpolated from the rating curve given the flow, using linear interpolation between the user entered points.

Selecting Boundary Conditions Steady Flow Boundary Conditions Set boundary for all profiles Set boundary for all profiles Critical Depth Normal Depth Rating Curve Delete <u>Selected Boundary Condition Locations and Types</u> <u>Normal Depth</u> <u>Rating Curve</u> <u>Delete</u> <u>Selected Boundary Condition Locations and Types</u> <u>Normal Depth</u> <u>Rating River</u> <u>Main</u> <u>Baxter River</u> <u>Main</u> <u>Lower</u> <u>10k</u> <u>Junction=Junction</u> <u>Junction=Junction</u> <u>Baxter River</u> <u>Main</u> <u>Lower</u> <u>10k</u> <u>Junction=Junction</u> <u>Junction=Junction</u> <u>Steady Flow Reach-Storage Area Optimization</u> <u>Concel</u> <u>Help</u> <u>Editor is in a mode that boundary conditions are entered per profile.</u>								HE
Steady Flow Boundary Conditions Set boundary for all profiles Set boundary for all profiles Available External Boundary Condition Types Known W.S. Critical Depth Normal Depth Rating Curve Delete Selected Boundary Condition Locations and Types River Reach Profile Upstream Downstream Baxter River Main 10k Junction=Junction 1 Baxter River Main - Lower 10k Junction=Junction 1 Normal Depth S = 0.0003 Inction=Steady Flow Reach-Storage Area Optimization OK Cancel Help Editor is in a mode that boundary conditions are entered per profile. OK <td>Solacting</td> <td>Round</td> <td>dary (</td> <td>`onditi</td> <td>ionc</td> <td></td> <td></td> <td></td>	Solacting	Round	dary (`onditi	ionc			
Steady Flow Boundary Conditions Set boundary for all profiles Image: Set boundary for one profile at a time Available External Boundary Condition Types Known W.S. Critical Depth Normal Depth Rating Curve Delete Selected Boundary Condition Locations and Types River Reach Profile Upstream Downstream Baxter River Main 10k Junction=Junction 1 Baxter River Main 55k Junction=Junction 1 Baxter River Main 110k Junction=Junction 1 Baxter River Main 10k Junction=Junction 1 Baxter River Main 10k Junction=Junction 1 Baxter River Main 10k Junction=Junction 1 Baxter River Main - Lower 10k Junction=Junction 1 Normal Depth S = 0.0003 Baxter River Main - Lower 110k Junction=Junction 1 Normal Depth S = 0.0003 Image: Steady Flow Reach-Storage Area Optimization OK Cancel Help Editor is in a mode that boundary conditions are entered per profile. OK Cancel Help Editor is in a	Jelecting	Dound	Jary	Jonun	10115			
Steady Flow Boundary Conditions Set boundary for all profiles Set boundary for all profiles Available External Boundary Condition Types Known W.S. Critical Depth Normal Depth Rating Curve Delete Selected Boundary Condition Locations and Types River Reach Profile Upstream Downstream Image: Colspan="2">Advance of the colspan="2">Advance of the colspan="2">Colspan="2"Colspa								
Set boundary for all profiles Set boundary for one profile at a time Available External Boundary Condition Types Known W.S. Critical Depth Normal Depth Rating Curve Delete Selected Boundary Condition Locations and Types River Reach Profile Upstream Downstream Baxter River Main 10k Junction=Junction 1 Baxter River Main 55k Junction=Junction 1 Baxter River Main 10k Junction=Junction 1 Normal Depth S = 0.0003 Baxter River Main Lower 15k Junction=Junction 1 Normal Depth S = 0.0003 Tule Creek Tributary 10k Junction=Junction 1 Normal Depth S = 0.0003 Tule Creek Tributary<	Steady Flow Bo	undary Conditions	;					
Available External Boundary Condition Types Known W.S. Critical Depth Normal Depth Rating Curve Delete Selected Boundary Condition Locations and Types River Reach Profile Upstream Downstream Image: Colspan="2">Available External Soundary Condition Locations and Types River Reach Profile Upstream Downstream Image: Colspan="2">Available External Soundary Condition Locations and Types Baxter River Main 10k Junction=Junction 1 Soundary Condition 1 Baxter River Main 110k Junction=Junction 1 Image: Colspan="2">Available External Soundary Condition Locations and Types Baxter River Main 10k Junction=Junction 1 Image: Colspan="2">Baxter River Baxter River Main - Lower 10k Junction=Junction 1 Normal Depth S = 0.0003 Image: Colspan="2">Tule Creek Tule Creek Trihutarv 10k Junction=Junction 1 Normal Depth S = 0.0003 Image: Colspan="2">Colspan="2">Colspan="2">Colspan= Colspan=	C Set boundar	y for all profiles		Set bounda	ary for one p	profile at a time		
Known W.S. Critical Depth Normal Depth Rating Curve Delete Selected Boundary Condition Locations and Types River Reach Profile Upstream Downstream Image: Condition 1 Baxter River Main 10k Junction=Junction 1 Delete Baxter River Main 55k Junction=Junction 1 Baxter River Main 10k Junction=Junction 1 Baxter River Main - Lower 10k Junction=Junction 1 Normal Depth S = 0.0003 Selected Rater River Main - Lower 55k Junction=Junction 1 Normal Depth S = 0.0003 Baxter River Main - Lower 10k Junction=Junction 1 Normal Depth S = 0.0003 Image: Condition Rater River Main - Lower 10k Junction=Junction 1 Image: Condition Rater River Main - Lower 10k Junction=Junction 1 Image: Condition Rater River Main - Lower 10k Junction=Junction 1 Image: Condition Rater River Main - Lower 10k Junction=Rater River Main - Lower Main - Lower <td></td> <td></td> <td>Available Exte</td> <td>rnal Boundary Cond</td> <td>tion Types</td> <td></td> <td></td> <td></td>			Available Exte	rnal Boundary Cond	tion Types			
Selected Boundary Condition Locations and Types River Reach Profile Upstream Downstream Baxter River Main 10k Junction=Junction 1 Baxter River Main 55k Junction=Junction 1 Baxter River Main 110k Junction=Junction 1 Baxter River Main 10k Junction=Junction 1 Baxter River Main - Lower 10k Junction=Junction 1 Baxter River Main - Lower 55k Junction=Junction 1 Baxter River Main - Lower 110k Junction=Junction 1 Normal Depth S = 0.0003 Raxter River Main - Lower 110k Junction=Junction 1 Normal Depth S = 0.0003 Image: Comparison 1 Baxter River Main - Lower 110k Junction=Junction 1 Tule Creek Trihutarv 10k Junction=Junction 1 Steady Flow Reach-Storage Area Optimization OK Cancel Help	Known W S	Oritical	Depth	Normal Depth	Pat	ing Curve	Delete	
Selected Boundary Condition Locations and Types River Reach Profile Upstream Downstream Baxter River Main 10k Junction=Junction 1 Baxter River Main 55k Junction=Junction 1 Baxter River Main 110k Junction=Junction 1 Baxter River Main - Lower 10k Junction=Junction 1 Baxter River Main - Lower 10k Junction=Junction 1 Baxter River Main - Lower 55k Junction=Junction 1 Baxter River Main - Lower 110k Junction=Junction 1 Baxter River Main - Lower 110k Junction=Junction 1 Baxter River Main - Lower 110k Junction=Junction 1 Tule Creek Trihutarv 10k Junction=Junction 1 Steady Flow Reach-Storage Area Optimization OK Cancel Help	NIOWIT W.S.		Deput	Normar Deput	- Not	ing curve	Delete	
River Reach Profile Upstream Downstream Baxter River Main 10k Junction=Junction 1 Baxter River Main 55k Junction=Junction 1 Baxter River Main 110k Junction=Junction 1 Baxter River Main - Lower 10k Junction=Junction 1 Baxter River Main - Lower 10k Junction=Junction 1 Baxter River Main - Lower 55k Junction=Junction 1 Normal Depth S = 0.0003 Baxter River Main - Lower 110k Junction=Junction 1 Normal Depth S = 0.0003 Baxter River Main - Lower 110k Junction=Junction 1 Normal Depth S = 0.0003 Tule Creek Trihutarv 10k Junction=Junction 1 Image: Steady Flow Reach-Storage Area Optimization Steady Flow Reach-Storage Area Optimization OK Cancel Help		5	Selected Boundar	y Condition Location	ns and Type	s		
Baxter River Main 10k Junction=Junction 1 Baxter River Main 55k Junction=Junction 1 Baxter River Main 110k Junction=Junction 1 Baxter River Main - Lower 10k Junction=Junction 1 Baxter River Main - Lower 10k Junction=Junction 1 Baxter River Main - Lower 55k Junction=Junction 1 Normal Depth S = 0.0003 Baxter River Main - Lower 110k Junction=Junction 1 Normal Depth S = 0.0003 Baxter River Main - Lower 110k Junction=Junction 1 Normal Depth S = 0.0003 Tule Creek Tributary 10k Junction=Junction 1 Vectors Intervention 1 Steady Flow Reach-Storage Area Optimization OK Cancel Help Editor is in a mode that boundary conditions are entered per profile. Editor is in a mode that boundary conditions are entered per profile.	River	Reach	Profile	Upstre	am	Downs	tream	
Baxter River Main 55k Junction=Junction 1 Baxter River Main 110k Junction=Junction 1 Baxter River Main - Lower 10k Junction=Junction 1 Baxter River Main - Lower 10k Junction=Junction 1 Baxter River Main - Lower 55k Junction=Junction 1 Normal Depth S = 0.0003 Baxter River Main - Lower 110k Junction=Junction 1 Normal Depth S = 0.0003 Tule Creek Tributarv 10k Iunction=Junction 1 Steady Flow Reach-Storage Area Optimization OK Cancel Help Editor is in a mode that boundary conditions are entered per profile. File Help	Baxter River	Main	10k			Junction=Junc	tion 1	
Baxter River Main 110k Junction=Junction 1 Baxter River Main - Lower 10k Junction=Junction 1 Normal Depth S = 0.0003 Baxter River Main - Lower 55k Junction=Junction 1 Normal Depth S = 0.0003 Baxter River Main - Lower 110k Junction=Junction 1 Normal Depth S = 0.0003 Baxter River Main - Lower 110k Junction=Junction 1 Normal Depth S = 0.0003 Tule Creek Tributary 10k Junction=Junction 1 Inction=Junction 1 Steady Flow Reach-Storage Area Optimization OK Cancel Help Editor is in a mode that boundary conditions are entered per profile. Editor is in a mode that boundary conditions are entered per profile.	Baxter River	Main	55k			Junction=Junc	tion 1	
Baxter River Main - Lower 10k Junction=Junction 1 Normal Depth S = 0.0003 Baxter River Main - Lower 55k Junction=Junction 1 Normal Depth S = 0.0003 Baxter River Main - Lower 110k Junction=Junction 1 Normal Depth S = 0.0003 Baxter River Main - Lower 110k Junction=Junction 1 Normal Depth S = 0.0003 Trule Creek Tributary 10k Junction=Junction 1 Incrition=Junction 1 Steady Flow Reach-Storage Area Optimization OK Cancel Help Editor is in a mode that boundary conditions are entered per profile. Formation and the storage Area Optimization Area opti	Baxter River	Main	110k			Junction=Junc	tion 1	
Baxter River Main - Lower 55k Junction=Junction 1 Normal Depth S = 0.0003 Baxter River Main - Lower 110k Junction=Junction 1 Normal Depth S = 0.0003 Tule Creek Tributary 10k Junction=Junction 1 Normal Depth S = 0.0003 Steady Flow Reach-Storage Area Optimization OK Cancel Help Editor is in a mode that boundary conditions are entered per profile. Formation and the storage of	Baxter River	Main - Lower	10k	Junction=Junction	on 1	Normal Depth 9	S = 0.0003	
Baxter River Main - Lower 110k Junction=Junction 1 Normal Depth S = 0.0003 Tule Creek Tributarv 10k Junction=Junction 1 Steady Flow Reach-Storage Area Optimization OK Cancel Help Editor is in a mode that boundary conditions are entered per profile. Image: Concel Help	Baxter River	Main - Lower	55k	Junction=Junction	on 1	Normal Depth 9	S = 0.0003	
Trule Creek Tributary 10k Dunction=Junction 1 Steady Flow Reach-Storage Area Optimization OK Cancel Editor is in a mode that boundary conditions are entered per profile.	Baxter River	Main - Lower	110k	Junction=Junction	on 1	Normal Depth S	6 = 0.0003	
Steady Flow Reach-Storage Area Optimization OK Cancel Help Editor is in a mode that boundary conditions are entered per profile. Editor is in a mode that boundary conditions are entered per profile.	Tule Creek	Tributary	10k			l lunction = lunc	tion 1	
Editor is in a mode that boundary conditions are entered per profile.	Steady Flow Re	ach-Storage Area O	ptimization		OK	Cancel	Help	
partor is in a mode and boundary contaitons are entered per promet	Editor is in a mor	le that boundary co	nditions are ente	red per profile				
	jeartor is in a mod	ic and boardary co	naraona are ente	red per pronie.				
								14

1. If a model only represents the main stem of a river system (tributaries are not being modeled), the user will be required to enter a flow change at each of the cross sections that are just downstream of a tributary inflow point.

2. If the peak flow increases significantly along the stream, due to local runoff inflows, the modeler should enter flow changes intermittently, as required to account for the local inflow.

3. If the peak flow decreases significantly as the flood wave travels downstream (hydrograph attenuation), the modeler should intermittently decrease the flows, as required to account for the hydrograph attenuation.

4. If flow is taken out of the river system due to a lateral weir; pumping station; or other mechanism, the modeler should reduce the flow between the relevant cross sections to account for the lost discharge.

	HEC						
Local Inflow							
$\frac{\pi}{2}$ Steady Flow Data - 10, 2 and 1% chance events $ \Box$ \times							
File Options Help							
Description : C Apply Data							
Enter/Edit Number of Profiles (32000 max): 3 Reach Boundary Conditions							
Locations of Flow Data Changes							
River: Fall River Add Multiple							
Reach: Upper Reach River Sta.: [9.8 Add A Flow Change Location							
How Change Location Profile Names and How Rates							
River Reach RS 10 yr 150 yr 100 yr							
1 Butte Cr. Indutary 0.2 100 500 1500							
2 Fail River Upper Reach 10 500 2000 5000							
3 Fail River Lower Reach 9.79 600 2500 5500							
4 Fail River Lower Reach 9.6 650 2700 7000							
Select river station for adding a new flow change location.							
	17						

In a steady flow analysis local inflows are specified by defining a new total discharge at the cross section downstream of the inflow.

Since steady flow profiles often do not represent a "snapshot" in time but the max flow throughout the system, the peak flow for the event is often specified for each cross section. If the system is long enough, however a hydrograph will attenuate which, while conserving the volume of flow will reduce the peak.

Lateral Weir can be used to calculate a flow which would be removed from the channel laterally. The water removed can be taken out of the model or sent to a storage area or another cross section. The use of lateral weirs and storage areas can sometimes be awkward in steady flow as they are intrinsically unsteady processes.

Since flows removed via lateral weirs and culverts are a function of the elevation head which are in turn a function of the flow RAS must iterate to achieve a solution. In order to make this happen you must turn the optimization function on for the lateral structure. If the optimization function is not turned on, no flow will be removed and lateral flows will be reported based on the backwater profile. These reported flows will likely overestimate the actual lateral flows since the water surface is higher than it would be if flows were removed.

Specify a Change in Energy - This option allows the user to force a specific change in energy between any two cross sections in the model. The change in energy can be set for a specific profile in a multiple profile model. The user can set several changes in energy within the model, for various locations. During the computations, the program will apply the specified change in energy between two cross sections, and then compute a water surface for the corresponding energy. This option is useful for modeling a complex hydraulic structure that cannot be directly handled with the available options in the program. If the change in energy for the complex structure can be computed external to HEC-RAS, then that change in energy can be applied between the two bounding cross sections. This allows the modeler to keep the whole system in one model, without breaking it into separate pieces.

Specify a Change in Water Surface - This option allows the user to force a specific change in the water surface elevation between two cross sections. This option works the same as the "Change in Energy" option described previously. The user can specify changes in water surface elevations at multiple locations for various profiles.

Insert a Known Water Surface - This option allows the user to force a specific water surface at a given cross section. The known water surface elevations can be specified at multiple locations for various profiles. During the computations, the program will not compute a water surface elevation for any cross section where a known water surface elevation has been entered. The program will use the known water surface elevation and then move to the next section.

Enter an Additional Energy Loss - This option allows the user to enter an additional energy loss between two cross sections. This energy loss gets added to any computed energy losses that occur during the balancing of the energy equation. The additional energy loss can be specified at multiple locations for various profiles.

🖼 Steady	Flow	Data	Optio	ns			HEC
Enter Observation	erved W	ater Sur	faces for	Compar	ison		
	Observed Water S River: Bogue Chit	to	rrison	Add	Multiple	Delete Row	
	Reach: Johnston S	ita 💽 i	River Sta.: 56.97	✓ Ada	d an Obs. WS	Location	
		Observe	ed WS Location		Observ	ed Water Surfaces	
	River	Reach	RS FE 07	Dn Dist	50 yr	100 yr	
	2 Bogue Chitto	Johnston Sta	55.40	0	348.2	348.3	
	2 Bogue Chitto	Johnston Sta	53.40	0	340.4	340.6	
	4 Bogue Chitto	Johnston Sta	52.50		338.2	328.3	
	5 Bogue Chitto	Johnston Sta	52.46	0	337.3	330.3	
	6 Bogue Chitto	Johnston Sta	52.38	0	336	337.7	
	7 Bogue Chitto	Johnston Sta	52.36	0	335.7	336.1	
	8 Bogue Chitto	Johnston Sta	52.29	0	335.2	335.6	
	9 Bogue Chitto	Johnston Sta	52.00	0	334.1	334.5	
	10 Bogue Chitto	Johnston Sta	51.15	0	330	330.5	
	11 Bogue Chitto	Johnston Sta	50.00	0	325.7	326	
				ОК	Can	cel Help	
							23

Enter Observed Water Surfaces For Comparison - This option allows the user to enter observed water surface elevations for comparison purposes. The user can enter observed water surface elevations at any cross section and for all the profiles. When these data are entered, the user can then display the observed water surfaces in the profile plots, as well as the profile tables.

		HEC
Steady Flow Data Option	S	
 Observed Rating Curves for Comparis 	son	
Unsteady Flow - Observed Rating Curves		
Add Delete Gage Name: Melvern	Rename	
Measured Rating Curve		
River: Marais de Cygnes 💌	Obseved Rating Curves	
Reach: RM 175-151	Stage (ft) Flow (cfs) ▲	
River Sta.: 173.39 MEL\ ▼	2 944 7	
Distance from the upstream	3 945 94	
RS to the reference:	4 946 243	
Description:	<u> </u>	
	7 949 931	
Measured Point Data	8 950 1220 -	
Plot	OK Cancel	
		24

Enter Observed Water Surfaces For Comparison - This option allows the user to enter observed water surface elevations for comparison purposes. The user can enter observed water surface elevations at any cross section and for all the profiles. When these data are entered, the user can then display the observed water surfaces in the profile plots, as well as the profile tables.

