

https://youtu.be/E64q4SAiHjg?t=28

LEGO Dam Breach #182 -Attack of the C-3POs

Construction Crew Surprise 11K views • 2 months ago

LEGO Dam Breach #183 -

37K views · 3 months ago

LEGO Dam Breach #181 - Will Woody be Saved from the ... 10K views · 3 months ago

LEGO Dam Breach #180 -These are Not the Droids Yo ...

47K views • 3 months ago

LEGO Dam Breach #179 - A **Castle Wrecked**

51K views · 4 months ago

LEGO Dam Breach #178 - Toy Story Playgound

34K views • 4 months ago

LEGO Dam Breach 177 - The Rebel Ambush

34K views • 4 months ago

LEGO Dam Breach #176 - Toy Story Carnival

26K views • 4 months ago

LEGO Dam Breach #175 - The Fantastic T-Rex

52K views • 5 months ago

LEGO Dam Breach #174 - The **A-Wing Base**

36K views · 5 months ago

LEGO Dam Breach #173 -Micro Village Mudslide

69K views • 5 months ago

LEGO Dam Breach #172 -**Riding the Rapids at Camp**

134K views • 5 months ago

LEGO Dam Breach #171 -**Rebels Have the High Ground**

36K views • 5 months ago

LEGO Dam Breach #170 -Sand Castle Battle 246K views • 5 months ago

LEGO Dam Breach #169 - Will the House Survive This... 28K views · 6 months ago

LEGO Dam Breach #168 -**Dinosaur Extinction**

449K views · 6 months ago

LEGO Dam Breach #167 -Where did the Village Go?

75K views · 6 months ago

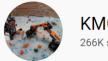
LEGO Dam Breach #166 -Sand Castle Collapse

155K views · 6 months ago

LEGO Dam Breach #165 -**Rebuild the Cabin!**

LEGO Dam Breach #164 -**Raptors in Fantastic Beasts?**

LEGO Dam Breach #163 -**Piggy Farm Returns**


LEGO Dam Breach #162 -Grindelwald's Escape

LEGO Slow Motion #02 -Monster Truck Crashes

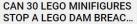
LEGO Dam Breach #161 - A **House Washes Away**

5:26

LEGO DAM BREACH AND SAND CASTLE - TOTAL ...

- LEGO DAM BREACH HARD FLOOD!
- **LEGO DAM BREACH NEW** SAND CITY COLLAPSE

Lego Adventurers - Destroyed


Piramids. Dam Breach Film

2.4M views • 1 year ago

LEGO CITY FIRE RESCUE. LEGO DAM BREACH FILM

Epic Attempt Of The Lego

3.4M views • 1 year ago

Minifigures To Stop The Leg...

LEGO Minifigures Against...

5M views • 1 year ago

3.9M views • 1 year ago

STOP A LEGO DAM BREAC ... 3.8M views • 1 year ago

6.8M views • 5 months ago

6.3M views · 2 years ago

6M views • 3 months ago

LEGO Dam Breach - LEGO Minifigures and Sand Castle...

2.3M views • 1 year ago

LEGO DAM BREACH - LEGO **CITY POLICE TRUCK - TWO...** 2.3M views • 1 year ago

LEGO BEACH - DAM BREACH 2.2M views · 2 years ago

Rebellion Of LEGO Minifigures Against LEGO...

1.9M views · 2 years ago

LEGO DAM BREACH -

DESTRUCTION OF THE SAN...

1.3M views • 3 months ago

LEGO Dam Breach: LEGO City

Explore New Big Sand Castle!

2.6M views · 2 years ago

LEGO DAM BREACH - MINE FLOODING AND COLLAPSE

1.8M views • 4 months ago

Dam Breach - LEGO **Construction Site**

1.2M views · 2 years ago

LEGO DAM BURST, FLOODING SECRET

1.8M views · 2 years ago

LEGO DAM BREACH - BRIDGE COLLAPSE

1.2M views • 1 year ago

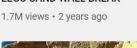
CITY FIRE RESCUE

LEGO DAM BREACH - LEGO

Lego Dam Breach Airport 1.7M views • 1 year ago

LEGO DAM BREACH - CITY COLLAPSE

942K views • 4 months ago


BUILDING STRONG®

LEGO Dam Breach - Dinosaur Attack LEGO Minifigures on...

1M views · 1 year ago

LEGO Dam Breach SAND CASTLE 1M views · 2 years ago

Estimating Dam Breach Parameters

Measured Calculated

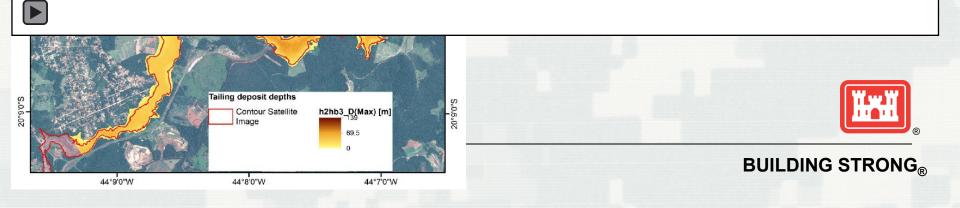
80

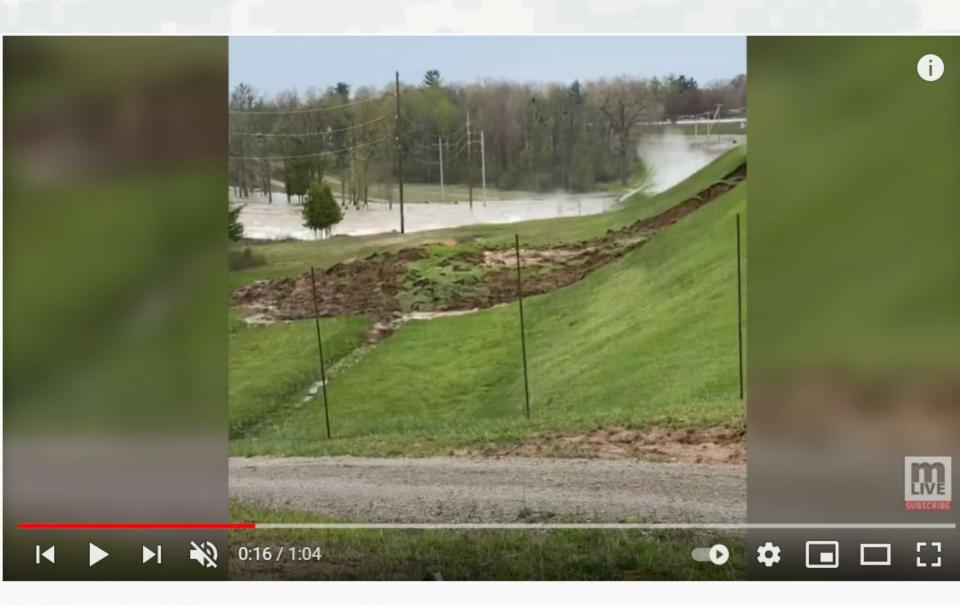
40

Elapsed time (min)

Stanford Gibson, PhD Sediment Specialist Hydrologic Engineering Center

NRCS Embankment Failure Research (SIMBA/WinDAMB model)


Temple, Darrel M., and Hanson, Gregory J., "Earth Dam Overtopping and Breach Outflow," Presented at the ASCE World Water & Environmental Resources Congress 2005, EWRI, Anchorage, AK, 15-19 May 2005.


Taum Sauk Upper Dam, Missouri

Height = 94 ft Storage = 1,600 acre-ft Failure time: 5:20 am Wednesday, 14Dec2005 Hazard Classification: High

Brazil Mine Tailings Failure

Modeling by Prof Leonardo Moura University of Brasilia

10K **9** 1.2K

SHARE ≡+ SAVE

-

Michigan dam failure caught on video

2,913,549 views • May 20, 2020

Three Approaches

1. User Entered Data -Parameter Estimation

2. Simplified Physical

Simplified Physical

User Entered Data

3. DL Breach

User Entered Data Simplified Physical Physical Breaching (DLBreach) Physical Breaching (DLBreach)

Ŧ

Three Approaches

- 1. User Entered Data -Parameter Estimation
- 2. Simplified Physical

Simplified Physical

User Entered Data

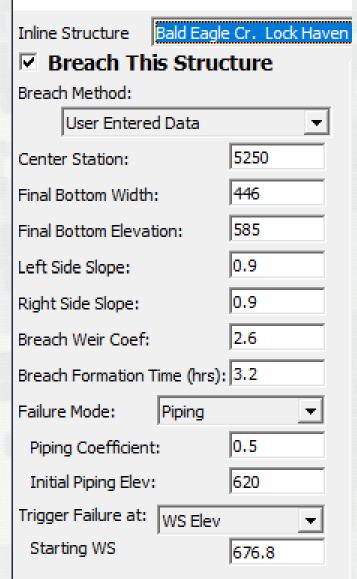
3. DL Breach

User Entered Data Simplified Physical Physical Breaching (DLBreach) Physical Breaching (DLBreach)

Ŧ

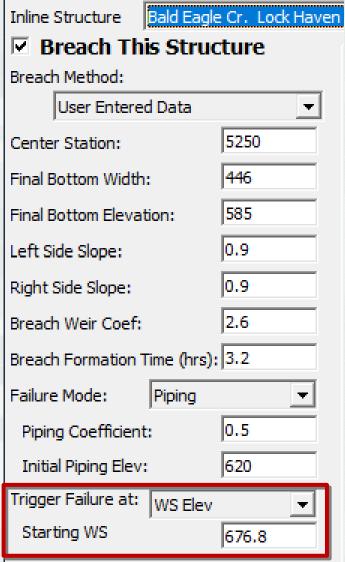
HEC-RAS Breach Data

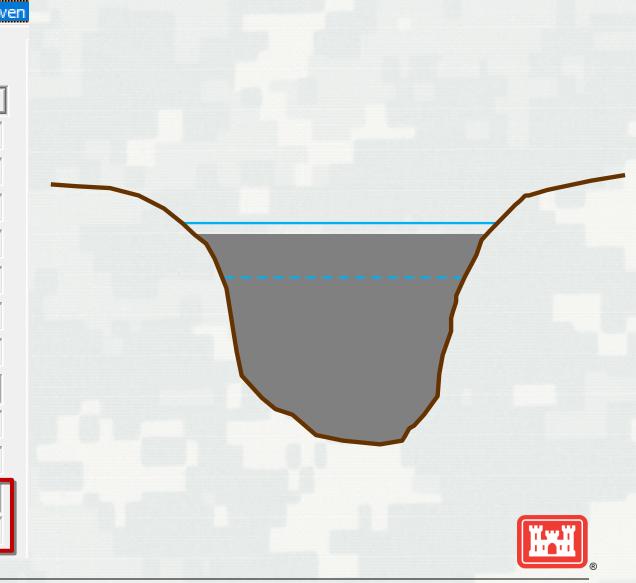
Dam (Inline Structure) Breach Data Delete this Breach ... Bald Eagle Cr. Lock Haven 81454 τl 1 t Delete all Breaches ... Inline Structure Breach This Structure Breach Plot Breach Progression Simplified Physical Physical Breaching (DLBreach) Parameter Calculator Breach Repair (optional) Breach Method: User Entered Data User Entered Data Simplified Physical Center Station: 5250 Legend Physical Breaching (DLBreach) 446 Final Bottom Width: Ground 585 Final Bottom Elevation: 700 Bank Sta 0.9 Left Side Slope: 0.9 Right Side Slope: Final Breach 680 2.6 Breach Weir Coef: Breach Formation Time (hrs): 3.2 Elevation (ft) Piping Failure Mode: 660 0.5 Piping Coefficient: 620 Initial Piping Elev: 640 Trigger Failure at: WS Elev Starting WS 676.8 620 Which of these 600 parameters are hard? 580-1000 2000 3000 4000 5000 6000 7000 0 Station (ft) • I.

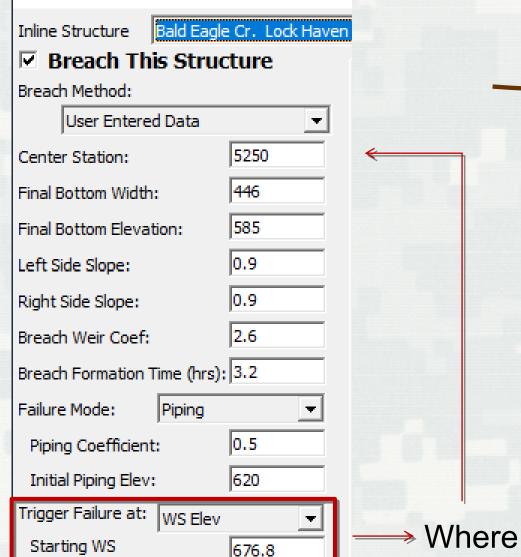

HEC-RAS Breach Data Input

- Location: Centerline of breach
- Type: Overtopping or Piping
- **Size**: Bottom elevation, width and side slopes
- **Time:** to maximum size and progression type
- Triggering situation:
 - ✓ Pool elevation
 - ✓ Pool elevation + Duration
 - ✓ Clock time

 $\textbf{BUILDING STRONG}_{\texttt{R}}$


Dam (Inline Structure) Breach Data


Before we get into the tough parameters...lets take on some of these others.


Dam (Inline Structure) Breach Data

But First...A Couple Other Features

Dam (Inline Structure) Breach Data

But First...A Couple Other Features

This doesn't matter much for a dam

But levees can be more complicated

BUILDING STRONG_®

Three Approaches

- 1. User Entered Data -Parameter Estimation
- 2. Simplified Physical

Simplified Physical

User Entered Data

3. DL Breach

Physical Breaching (DLBreach)

Ŧ

Estimating the Breach Parameters

Literature And Guidance

- Existing COE guidance
- Prediction of embankment dam breach parameters: USBR (1998) Dam Safety Research Report

Empirical Methods -

- MacDonald and Langridge-Monopolis (1984)
- ► Froehlich (1995b)
- ► Von Thun and Gillette (1990)
- ► Xu and Zhang (2009)

$\textbf{BUILDING STRONG}_{\texttt{R}}$

Technology Review (1998)

Prediction of Embankment Dam Breach Parameters

A Literature Review and Needs Assessment

DSO-98-004

Water Resources Research Laboratory

July 1998

Suggested Breach Parameters

Dam Type	Average Breach Width (B _{ave)}	Horizontal Component of Breach Side Slope (H) (H:V)	Failure Time, t _f (hours)	Agency
Earthen/Rockfill	(0.5 to 3.0) x HD (1.0 to 5.0) x HD (2.0 to 5.0) x HD (0.5 to 5.0) x HD*	0 to 1.0	0.1 to 1.0	USACE 1980 FERC NWS USACE 2007
Concrete Gravity	Multiple Monoliths Usually ≤ 0.5 L Usually ≤ 0.5 L Multiple Monoliths	Vertical Vertical	0.1 to 0.3 0.1 to 0.2	FERC NWS
Concrete Arch	Entire Dam Entire Dam (0.8 x L) to L (0.8 x L) to L	J 1	≤ 0.1 ≤ 0.1	
Slag/Refuse	(0.8 x L) to L (0.8 x L) to L	1.0 to 2.0	$\begin{array}{c} 0.1 \text{ to } 0.3\\ \leq 0.1 \end{array}$	FERC NWS

*Note: Dams that have very large volumes of water, and have long dam crest lengths, will continue to erode for long durations (i.e., as long as a significant amount of water is flowing through the breach), and may therefore have longer breach widths and times than what is shown in Table 3. HD = height of the dam; L =length of the dam crest; FERC - Federal Energy Regulatory Commission; NWS - National Weather Service

Where: HD = Height of the dam.

L = Length of the dam crest.

Breach Parameter Calculator

Dam (Inline Structure) Breach Data						
Inline Structure Cherry Creek 1 1.01 🗨 🖡 Delete this Breach Delete all Breaches						
Breach This Structure Breach Plot Breach Progression Simplified Physical Breach Repair (optional) Parameter Calculator						
Breach Method: User Entered Data 💌	Breach Plot Breach Prog	ression Simplified	Physical Breach F	Repair (optional) F	Parameter Calculator	1 ノー
,	Input Data					
Center Station: 7150	Top of Dam Elevation (ft): 56	544.5 Breach	Bottom Elevation (f	t): 5523	
Final Bottom Width: 912	Pool Elevation and Failu	ire (ft): 56	539.5 Pool Vo	lume at Fallure (acre	e-ft): 240000	
Final Bottom Elevation: 5523			Failure	mode:	Overtopping 💌	
Left Side Slope: 0.5	MacDonald			/		1
Right Side Slope: 0.5	Dam Crest Width (ft):	50		f US Dam Face Z1 (ł		
Breach Weir Coef: 2.6	Earth Fill Type: Non-	nomogeneous or Ro	ckfill 💌 Slope o	f DS Dam Face Z2 (ł	H:V): 2.6	
Breach Formation Time (hrs): 2.92						
Failure Mode: Overtopping						
Piping Coefficient: 0.5	<u> </u>					
Initial Piping Elev:	Method	Breach Bottom Width (ft)	Side Slopes (H:V)	Breach Development Time		
Trigger Failure at: WS Elev 🔻	→			(hrs)		
Starting WS 5639.5	MacDonald et al	912	0.5	2.92	Select	
100010	Froehlich (1995)	675	1.4	3.04	Select	
	Froehlich (2008)	562	1	2.60	Select	
	Von Thun & Gillete	411	0.5	0.96	Select	
	Xu & Zhang	576	1.08	4.85 *	Select	

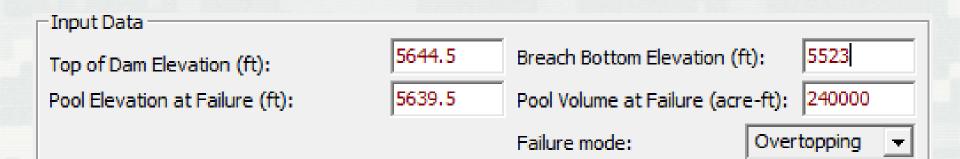
* Note: the breach development time from the Xu Zhang equation includes more of the initial erosion period and post erosion than what is used in the HEC-RAS breach formation time.

NG®

Cancel

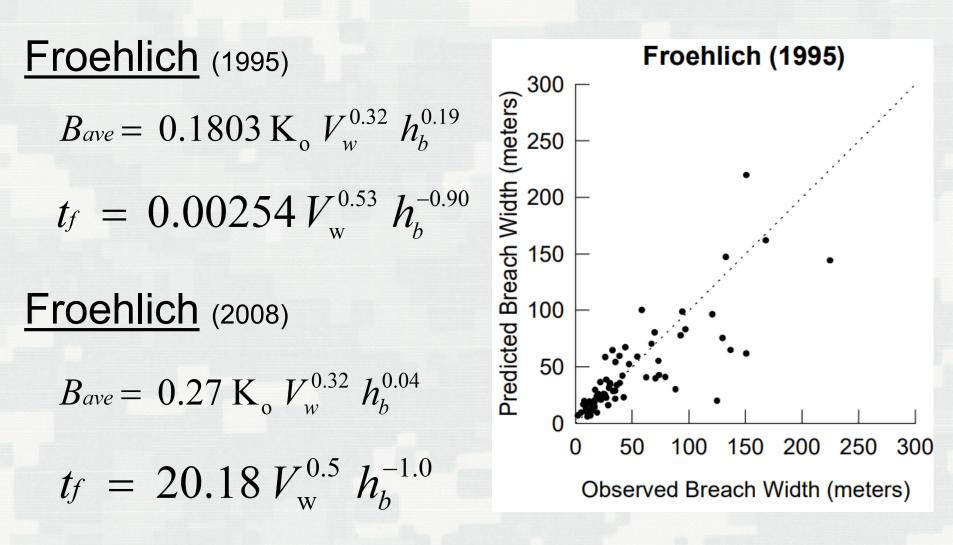
OK

MacDonald and Langridge-Monopolis (1984)

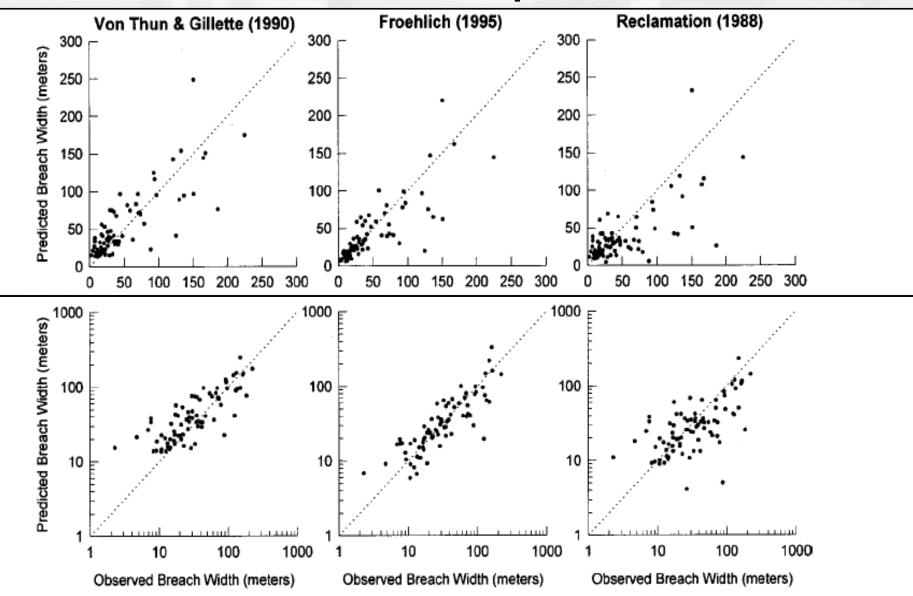

Earthfill

$$V_{eroded} = 0.0261 (V_{out} * h_w)^{0.769}$$

 $t_{f} = 0.0179 (V_{eroded})^{0.364}$ BREACHsize = $f(V_{eroded})$


Non-earthfill

$$V_{eroded} = 0.00348 (V_{out} * h_w)^{0.852}$$


Von Thun & Gillette (1990)	Reservoir Size, m ³	Cb, meters		
$B_{avg} = 2.5h_w + C_b$	< 1.23*10 ⁶ 1.23*10 ⁶ - 6.17*10 ⁶ 6.17*10 ⁶ - 1.23*10 ⁷ > 1.23*10 ⁷	6.1 18.3 42.7 54.9		
$t_f = 0.02h_w + 0.25$ (erosion resistant)	Reservoir Size, acre-feet < 1,000 1,000-5,000	Съ, feet 20 60		
$t_f = 0.015 h_w$ (easily erodible)	5,000-10,000 >10,000	140 180		
Pool Elevation at Failure (ft): 5639.5 Pool V	n Bottom Elevation (ft): olume at Failure (acre-ft): e mode: Over	5523 240000 rtopping -		
h _w = Pool Elev – Breach Bottom Elev V _{out} = Pool Volume at Failure				
	BUILD	ING STRONG _®		

 V_w = Volume of water at h

Width Comparison

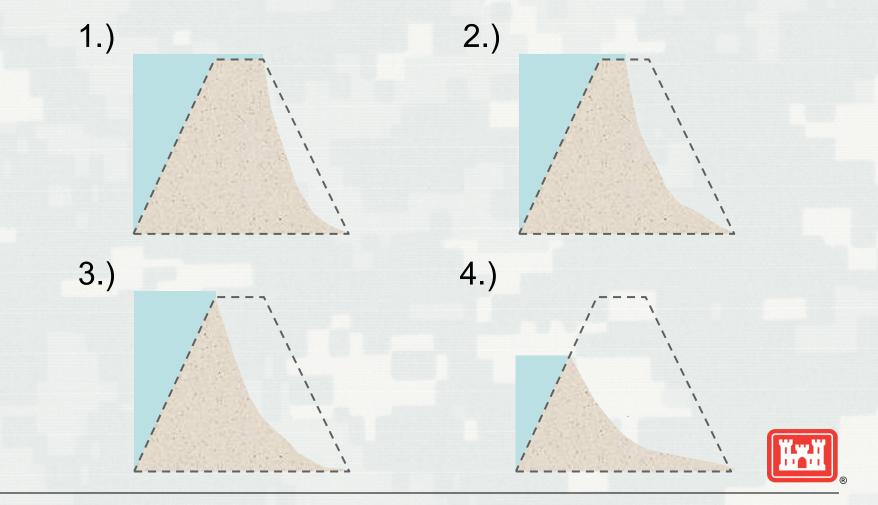
Predicted and observed breach widths (Wahl 1998), plotted arithmetically (top) and on logarithmic scales (bottom)

Four Important Ideas

1. Do not mix-and-match width and breach time.

Method	Breach Bottom Width (ft)	Side Slopes (H:V)	Breach Development Time (hrs)	
MacDonald et al	122	0.5	2.57	Select
Froehlich (1995)	628	1.4	3.44	Select
Froehlich (2008)	544	1	3.04	Select
Von Thun & Gillete	363	0.5	0.81	Select
Xu & Zhang	499	1.06	5.05 *	Select

Four Important Ideas


1. Do not mix-and-match width and breach time.

2. Xu & Zang has a different breach development time.

Method	Breach Bottom Width (ft)	Side Slopes (H:V)	Breach Development Time (hrs)	
MacDonald et al	122	0.5	2.57	Select
Froehlich (1995)	628	1.4	3.44	Select
Froehlich (2008)	544	1	3.04	Select
Von Thun & Gillete	363	0.5	0.81	Select
Xu & Zhang	499	1.06	5.05 *	Select

Thought Experiment

When does the clock start for "breach time" in HEC-RAS?

Four Important Ideas

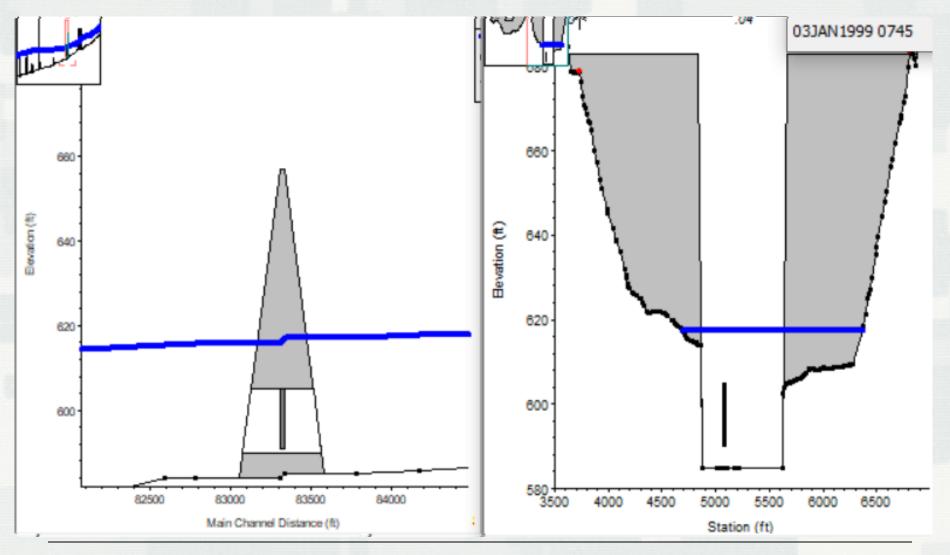
1. Do not mix-and-match width and breach time.

2. Xu & Zang has a different breach development time.

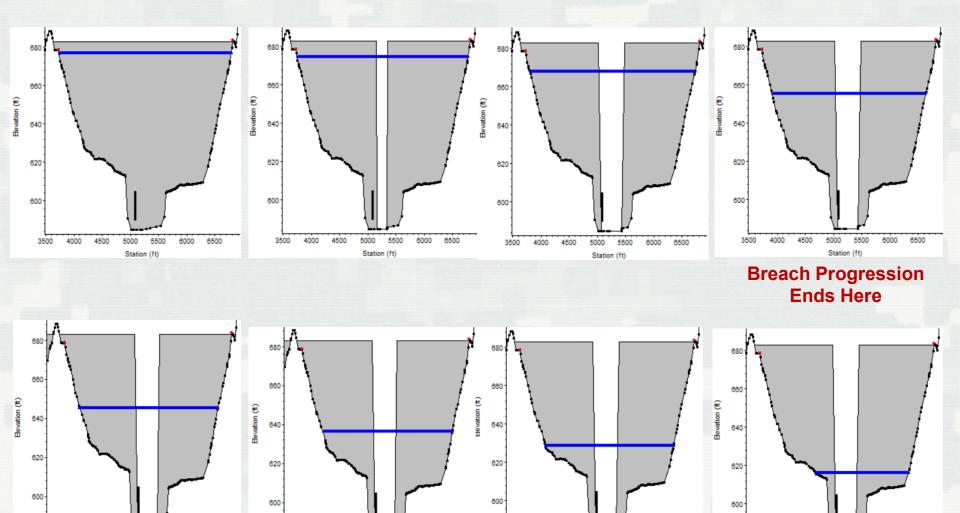
3. Does the breach progression make physical sense?

Does it keep eroding at low head?Does it stop eroding with despite high head and velocity?

Evaluate Breach Progress


Breach parameter estimation is uncertain.

Method	Breach Bottom Width (ft)	Side Slopes (H:V)	Breach Development Time (hrs)	
MacDonald et al	122	0.5	2.57	Select
Froehlich (1995)	628	1.4	3.44	Select
Froehlich (2008)	544	1	3.04	Select
Von Thun & Gillete	363	0.5	0.81	Select
Xu & Zhang	499	1.06	5.05 *	Select


 We can use HEC-RAS hydraulic results to inform our decision on breach parameter selection.

Profile and Breach Plots

Do you have any concerns about this simulation?

Station (ft)

6000 6500

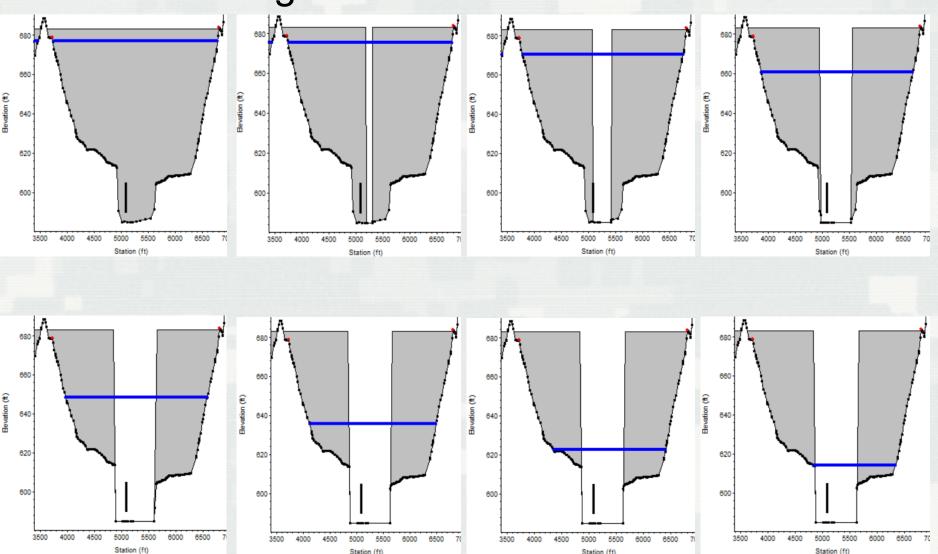
∆ Head and Velocity Still High

Station (ft)

4000 4500

Station (ft)

6500 7


BUILDING STRONG®

5000 5500

Station (ft)

6000 6500

This Simulation Continues to Widen for High ∆Head and Velocities

Widening rate in this method is not connected to hydraulics. The user must check to make sure results make physical sense.

BUILDING STRONG_®

Three Approaches

1. User Entered Data -Parameter Estimation

2. Simplified Physical

Simplified Physical

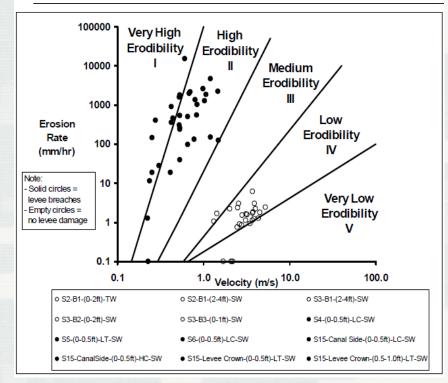
User Entered Data

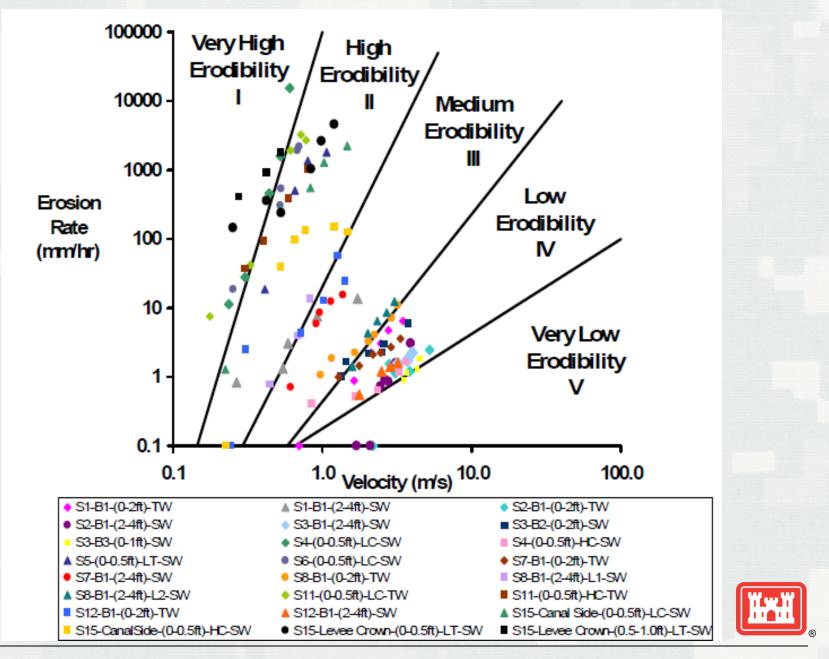
3. DL Breach

Physical Breaching (DLBreach)

Ŧ

Dam (Inline Structure) Breach Data	
Inline Structure Bald Eagle Loc Hav	81500 🔽 🖡 🕇 Delete this Breach Delete all Breaches
✓ Breach This Structure	
Breach Method: Simplified Physical 💌	Breach Plot Breach Progression Simplified Physical Breach Repair (optional) Parameter Calculator
Center Station: 3900	Overtopping Downcutting Widening Relationship
	Velocity (ft/s) Downcutting Rate (ft/hr) Velocity (ft/s) Widening Rate (ft/hr)
Max Possible Bottom Width: 1800	
Min Possible Bottom Elev: 592	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Left Side Slope: 2	
,	5 5 5 5 5
	<u>6</u> 7 <u>15</u> <u>6</u> 7 <u>15</u>
Breach Weir Coef: 2.6	7 10 30 7 10 30 8 20 50 8 20 50 10
Breach Formation Time (hrs): 1	8 20 50 8 20 50 9 30 100 9 30 100
Failure Mode: Piping 💌	10 10
Piping Coefficient: 0.6	11 12 12
Initial Piping Elev: 620	13 13
Initial Piping Diameter: 1	14 15 15
Mass Wasting Feature:	16
Trigger Failure at: WS Elev 🗸	17 18 18
Starting WS 668.1	10
	19 20 20
	21 21
	22 22
	23 23
	24 24 25
	25 25
	OK Cancel


Where do these rates come from?


Date: May 31, 2013 (Revised July 2, 2013) From: Chris Bahner, P.E., D. WRE

Subject: Updated Levee Breach Characteristics for MMC SOP

Technical Memorandum for Record

The guidance is under development. There are some historic values that can help.

Three Approaches

- 1. User Entered Data -Parameter Estimation
- 2. Simplified Physical

Simplified Physical

User Entered Data

3. DL Breach

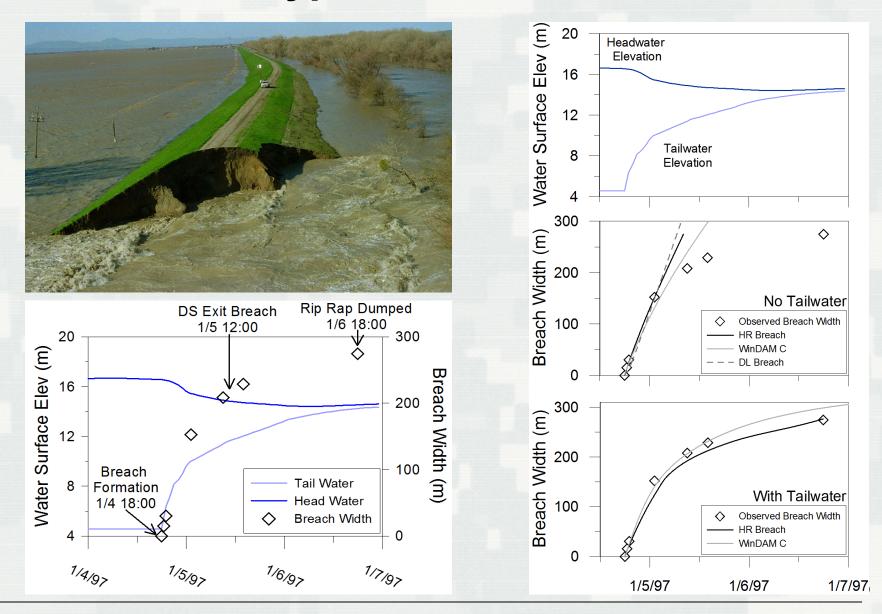
Physical Breaching (DLBreach)

Ŧ

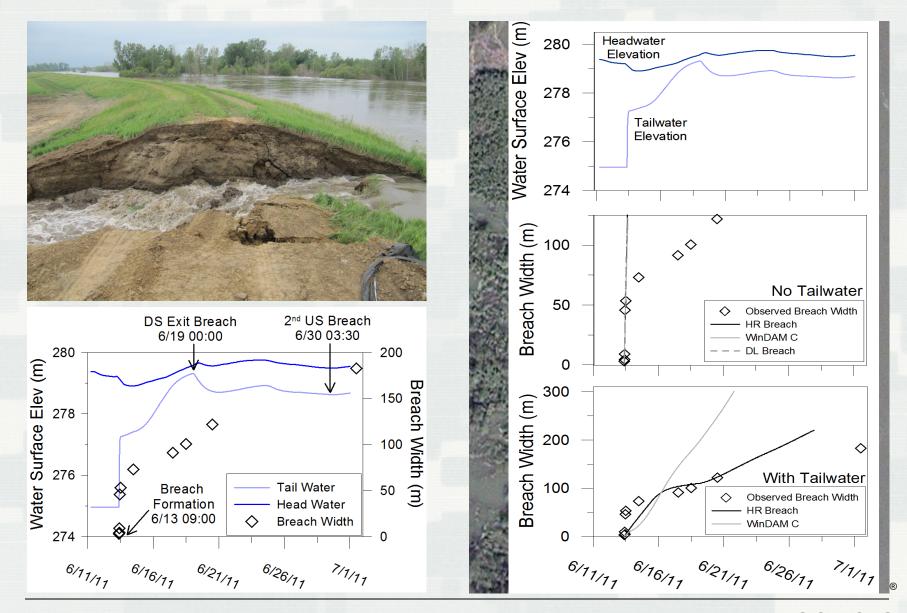
Estimating the Breach Evolution

Process Models:

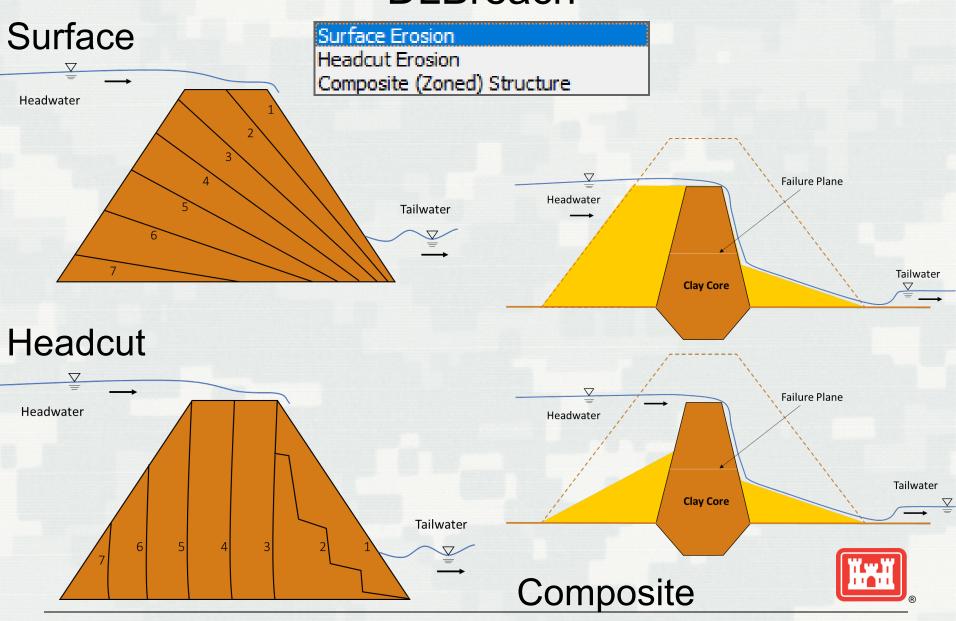
ARS SIMBA/WinDAMB


► HR-BREACH (HR Wallingford)

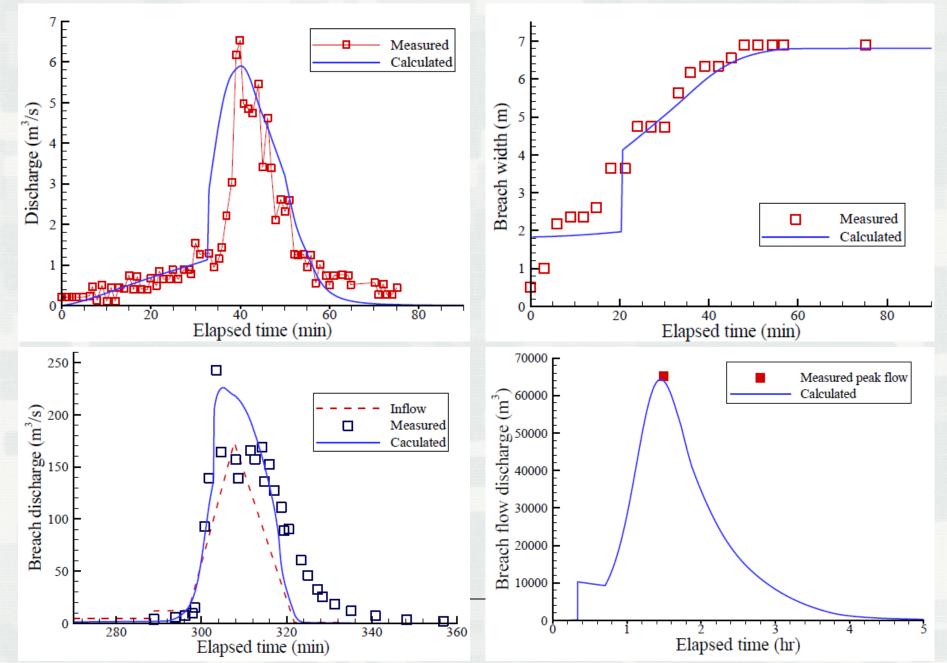
DL Breach (Dr Weiming Wu)


BUILDING STRONG_ ${\ensuremath{\mathbb{R}}}$

Sutter Bypass Levee Breach


From: Risher, P. and Gibson, S. (2016) "Applying Mechanistic Dam Breach Models to Historic Levee Breaches," Proceedings FloodRisk 2016.

Hamburg Breach (Missouri River)



From: Risher, P. and Gibson, S. (2016) "Applying Mechanistic Dam Breach Models to Historic Levee Breaches," Proceedings FloodRisk 2016.

DLBreach

DLBreach

DLBreach

Dam (Inline Structure) Breach Data

Inline Structure Teton Reach 1	.5 • Delete this Breach Delete all Breaches
Breach This Structure	Breach Plot Breach Progression Simplified Physical Physical Breaching (DLBreach) Parameter Calculator Breach Repair (options
Breach Method:	Erosion Model (Overtopping Only):
Physical Breaching (DLBreach) 💌	Model a cover laver
Center Station: 1000	Surface Erosion Clay Cover and Core Parameters:
Max Possible Bottom Width: 250	Surface Erosion Parameters Cover Core
Min Possible Bottom Elev: 0	Headcut Erosion Parameters Cover Core Composite (Zoned) Structure Core Height: Core
Left Side Slope: 0	Core Crest Width:
Right Side Slope: 0	Embankment Width: 10.5 Core US Slope:
Breach Weir Coef: 1.7	Slope (H:B) Roughness: Core DS Slope: US Slope: 0.3333 0.016
Breach Formation Time (hrs):	Flat Top: 0.016 Core Center Location:
Failure Mode: Piping 💌	DD Slope: 0.4 0.016 Core Manning n:
Piping Coefficient: 0.05	Soil Parameters: Soil Type: Cohesionless
Initial Piping Elev: 48	Soil Type: Cohesive
Initial Piping Diameter: 0.1	Sediment Diameter: 0.00003
Mass Wasting Feature:	Porosity: 0.3 Specific Gravity:
Trigger Failure at: Set Time	Specific Gravity: 2.65
Start Date 01JAN2000	Clay Content: 0.3
Start Time 2400	Cohesion: 25000. Friction Angle:
	Friction Angle: 0.65
Which of these	Adaptation Length:
	Erodibility (kd): 8.
parameters	Critical Shear Stress: 0.15 US Slope Thickness:
,	DS Slope Thickness:
are hard?	Breach Direction: One way
	OK Cancel

Four Important Ideas

1. Do not mix-and-match width and breach time.

2. Xu & Zang has a different breach development time.

3. Does the breach progression make physical sense?

4. Test sensitivity...on important result. (e.g. Arrival Time/Max Stage vs Breach Geometry)

-Try multiple methods

BUILDING STRONG_ ${\ensuremath{\mathbb{R}}}$

US Army Corps of Engineers Hydrologic Engineering Center

Using HEC-RAS for Dam Break Studies

August 2014

https://www.hec.usace.army.mil/publications/TrainingDocuments/TD-39.pdf

BUILDING STRONG®

Approved for Public Release. Distribution Unlimited.

TD-39

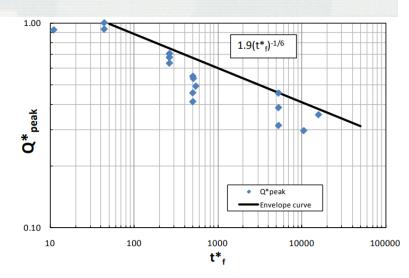
References

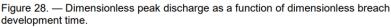
- ASCE/EWRI Task Committee on Dam/Levee Breaching, "Earthen Embankment Breaching", Journal of Hydraulic Engineering, December 2011.
- Colorado State Department of Natural Resources, Division of Water Resources, Office of the State Engineer, Dam Safety Branch, "Guidelines for Dam Breach Analysis,", 10 Feb. 2010.
- Colorado State University, "Predicting Peak Outflow from Breached Embankment Dams," prepared for the National Dam Safety Review Board Steering Committee on Dam Breach Equations by M.W. Pierce, C.I. Thornton and S.R. Abt, June 2010.
- FERC (1988), USA Federal Regulatory Commission Notice of Revised Emergency Action Plan Guidelines, February 22, 1988.
- Fread, D. L., (1988) (revised 1991), BREACH: An Erosion Model for Earthen Dam Failures, National Weather Service, Office of Hydrology, Silver Spring, MD.
- Froehlich, D. C. (1987), "Embankment Dam Breach Parameters," Hydraulic Engineering, Proc. 1987 ASCE National Conference on Hydraulic Engineering, New York, 570-575.
- Froehlich, D. C. (1995a), "Embankment Dam Breach Parameters Revisited," Water Resources Engineering, Proc. 1995 ASCE Conf. on Water Resources Engineering, New York, 887-891.
- Froehlich, D. C. (1995b), "Peak Outflow from Breached Embankment Dam," J. Water Resour. Plan. Management Div., ASCE 121(1), 90-97.
- Froehlich, David C. (2008), "Embankment Dam Breach Parameters and Their Uncertainties," Journal of Hydraulic Engineering, ASCE, Vol. 134, Issue 12, pp 1708-1721, Dec. 2008.
- Gee, D. Michael and Brunner, Gary W., 2007. "Comparison of Breach Predictors," Association of State Dam Safety Officials (ASDSO), Dam Safety 2007, Austin, TX, 9-13 September 2007.
- Gee, D. Michael, 2010. "Dam Breach Modeling with HEC-RAS using Embankment Erosion Process Models," World Environmental and Water Resources Congress 2010, ASCE-EWRI, Providence, R.I., 16-20 May 2010.

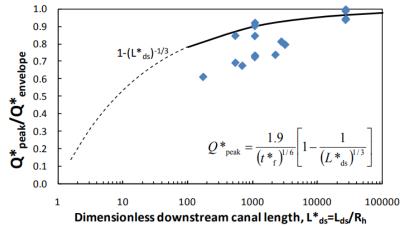
BUILDING STRONG_®

References

HR BREACH Model http://www.floodsite.net/html/HR_Breach_Model.htm


- MacDonald, T. C., and Langridge-Monopolis, J. (1984), "Breaching Characteristics of Dam Failures," ASCE J. Hydraulic Engineering, 110(5), 567-586,
- Temple, Darrel M., and Hanson, Gregory J., "Earth Dam Overtopping and Breach Outflow," Presented at the ASCE World Water & Environmental Resources Congress 2005, EWRI, Anchorage, AK, 15-19 May 2005.
- U.S. Army Corps of Engineers, Hydrologic Engineering Center, "Flood Emergency Plans Guidelines for Corps Dams," RD-13, June 1980.
- U.S. Army Corps of Engineers, Hydrologic Engineering Center, "Numerical Simulation of Mudflows from Hypothetical Failures fo the Castle Lake Debris Blockage near Mount St. Helens, WA", HEC-PR-14, October 1990.
- Von Thun, J. L., and Gillette, D. R. (1990), "Guidance on Breach Parameters," Internal Memorandum, U.S. Dept. of the Interior, Bureau of Reclamation, Denver, March 13, 1990, 17p.
- Wahl, Tony L., "Prediction of Embankment Dam Breach Parameters A Literature Review and Needs Assessment," DSO-98-004, Dam Safety Research Report, U.S. Department of the Interior, Bureau of Reclamation, Dam Safety Office, July 1998.
- Wahl, Tony L., "Uncertainty of Predictions of Embankment Dam Breach Parameters," ASCE Journal of Hydraulic Engineering, May 2004.
- Wahl, Tony L., et al., 2008. "Development of Next-Generation Embankment Dam Breach Models," United States Society on Dams, 28th Annual USSD Conference, Portland, OR, April 28-May 2, 2008, pp. 767-779.
- Washington State Dept. of Ecology, Dam Safety Guidelines, Tech. Note 1 Dam Break Inundation Analysis and Downstream Hazard Classification, Water Resources Program, Dam Safety Office, P.O. Box 47600, Olympia, WA 98504-7600, July 1992, <u>http://www.ecy.wa.gov/programs/wr/dams/Images/pdfs/technote_1.pdf</u>


Xu, Y., and Zhang, L.M., 2009. "Breaching Parameters for Earth and Rockfill Dams." J. Geotech. Geoenviron. Eng. 135(12), 1957-1969.



BUILDING STRONG_®

USBR Levee Breach Lab Studies

Hydraulic Laboratory Report HL-2011-09

Physical Hydraulic Modeling of Canal Breaches

U.S. Department of the Interior Bureau of Reclamation Technical Service Center Hydraulic Investigations and Laboratory Services Group Denver, Colorado