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Hydraulic Modeling
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Formal Framework:
• Mass Conservation
• Momentum Conservation
• Empirical Equations

Computational Concepts:
• Computational Mesh
• Numerical Methods
• Subgrid Bathymetry

HEC-RAS

Engineering Problems:
• Project Planning & Design
• Dam and Levee Breaks
• Overland Flows, Floods

Data:
• Topography, Maps, LIDAR
• Historical Information
• Modeler Experience



Outline

• Mass Conservation (Continuity)
• Momentum Conservation (Depth-Averaged)

• Acceleration
• Coriolis term
• Hydrostatic pressure
• Turbulent mixing
• Friction

• Diffusion Wave Equation
• Numerical Methods
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Review of Basic Concepts
• Continuity: Fluid mass cannot be created nor destroyed
• Uniform Flow: Flow is uniform in space
• Steady Flow: Flow is uniform in time
• Laminar Flow: Translational flow (high viscous force relative to inertial force)
• Turbulent Flow: Chaotic flow (small viscous force relative to inertial force)
• Shear stress: Tangential force per unit area
• Pressure: Normal force per unit area
• Streamline: Line drawn through flow where every point is tangential to 

velocity vector
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Introduction
• Shallow Water Equations

• System of partial differential equations with many forms which arise the 
simulation of fluid flow in rivers, oceans, coastal regions, atmospheric flows, 
and debris flows 

• Main assumption: vertical accelerations much smaller than horizontal 
accelerations

• Derived from: Navier-Stokes equations which describe the conservation of 
mass and linear momentum in fluids
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Mass Conservation
• Assuming a constant water density

• Integrating over a computational cell

• Finite-Volume Discretization
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Momentum Conservation
• Momentum Equation (non-conservative form)

• From Newton’s 2nd Law of motion (i.e. F=ma)
• Momentum: M = mV
• Assumes constant water density, small vertical velocities, 

hydrostatic pressure, etc.
• Non-linear and a function of both velocity and water levels
• Continuity and Momentum Equations are the Shallow Water 

Equations or sometimes referred to as the “Full Momentum” 
equations in HEC-RAS
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Accelerations
• Eulerian: Frame of reference fixed in space and time

• Easier to compute
• Time-step restricted by Courant condition

• Lagrangian: Frame of reference moves with 
total derivative along flow path

• More expensive to compute
• Allows larger time-steps
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Coriolis Acceleration
• Effect of rotating frame of reference (earth’s rotation)
• Constant for the each 2D domain (f-plane approx.)

𝑐

• : sidereal angular velocity of the Earth
• : latitude. Positive for northern hemisphere. 

Negative for southern hemisphere

• Coriolis acceleration disabled by default 
to save computational time

• Negligible for most river and flood simulations
• When to enable Coriolis term?

• Large domains
• Higher latitudes
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Pressure Gradient 
• Assumes vertical water accelerations are small compared to gravity
• Total pressure is

• 𝑎𝑡𝑚

• : constant water density
• gravity acceleration constant
• 𝑠:  water surface elevation
• z: vertical coordinate

• Pressure gradient
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Bottom Friction
• Resisting force due to relative motion of fluid against the bed

• Bed Shear Stress

• Drag Coefficient

• Friction coefficient
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Wind Stress
• Surface Stress is given by

• Wind Reference Frame
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Diffusive-Wave Approximation
• Ignoring the following terms

• Expanding and dividing both sides by the square of its norm leads to

• Inserting the above equation into the Continuity Equation leads to the 
Diffusion-Wave Equation (DWE)
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SWE vs. DWE
• Use SWE for:

• Flows with dynamic changes in acceleration
• Studies with important wave effects, tidal flows
• Detail solution of flows around obstacles, bridges or bends
• Simulations influenced by Coriolis, mixing, or wind
• To obtain high-resolution and detailed flows

• Use DWE for:
• Flow is mainly driven by gravity and friction
• Fluid acceleration is monotonic and smooth, no waves
• To compute approximate global estimates such as flood extent
• To assess approximate effects of dam breaks
• To assess interior areas due to levee breeches
• For quick estimations or preliminary runs
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• 1D Wave equation

Local Inertial Approximation
• Ignoring the following terms

• Also known as the Gravity-Wave Equations

• Compared to DWE
• Includes temporal term

• Velocity (momentum) is a state
variable and is tracked in time
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Example: Sloshing in a Rectangular Basin
• Grid

• Initial Water Surface
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• Setup
• Diffusive-Wave 
• Local Inertial Approximation
• Implicit weighting factor: 1
• Grid resolution: 100 m
• Time step size: 5 s

• Time-series at one end



Advection 
• Flume Experiment
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DWE

SWE



Advection
DWE
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SWE-ELM



Numerical Dissipation 
• Steady-flow in meandering river
• Computational errors especially from 

the advection term can produce 
artificial numerical dissipation

• Extremely coarse models benefit from 
ignoring the advection term

19



Diffusion of Momentum
• Non-conservative Formulation

• Only option in Version 5.0.7 and earlier, 
• Optional in Version 6.0

• Conservative Formulation 
• Default in Version 6.0
• Only option for Eulerian SWE solver
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Mixing Term Formulation Comparison

Bathymetry and 
water level

Produces a net 
dissipation

Decreases velocities in 
middle of channel but 
increases velocities 
near banks
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Eddy Viscosity: Turbulence Model
• Old: Parabolic

• Versions 5.0.7 and earlier
• Isotropic (same in all directions)
• 1 parameter: mixing coefficient D

• New: Parabolic-Smagorisnky

• Default method in Version 6.0
• Non-Isotropic (not the same in all directions)
• 3 parameters: DL , DT , and Cs
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Turbulence

• Low turbulence
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• High turbulence



Turbulence
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• No turbulence • With turbulence



Computational Mesh
• Mesh/grid can be unstructured
• Polygonal cells of up to 8 sides
• Cells must be concave
• Multiple 2D mesh can be run together 

or independently
• Grid Notation

• Cells, Faces, Face Points (i.e. nodes or 
vertices), Computational Points, etc.

• State Variables
• Cell Water levels
• Face-normal Velocities

25



Numerical Methods
• Both DWE and SWE solvers are Semi-implicit
• Terms treated as:

• Explicit: acceleration and diffusion terms
• Semi-implicit: friction, flow divergence terms, and water level gradient 
• Fully-Implicit: pressure gradient term (for θ = 1)

• By treating the “fast” pressure gradient term implicitly, the time step 
limitation based on the wave celerity can be removed

• Both DWE and SWE use Finite-Difference and Finite-Volume
Methods

• Time integration: Finite-Difference
• Continuity Equation: Finite-Volume
• Momentum Equation: Finite-Difference (no control volume)

26



Implicit vs Explicit Time Stepping
• Explicit

• Next state computed based solely on 
previous state

• Easier to program and solve
• Smaller time steps
• Less robust

• Implicit
• Next state computed based on previous 

state and next state 
• Harder to program and solve
• Larger time steps
• More robust
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• Implicit 
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Eulerian-Lagrangian vs. Eulerian SWE Solvers
• ELM-SWE

• Only solver available in V5.0.7 and earlier
• Default in V6.0
• Not limited by Courant condition
• Excellent stability
• Can have momentum conservation 

problems around shocks or 
where the flow changes rapidly

• EM-SWE
• New to V6.0 as an option
• Limited to Courant less than 1.0
• Good Stability
• Improved momentum conservation 

for all flow conditions
28

Strength/Feature/Capability SWE-ELM SWE-EM

Larger Time Step X

Best Stability X

Courant Stability Criteria X

Diffusion Stability Criteria X

Computational Speed X

Wet/dry > 1 cell per time step X

Best Momentum Conservation X

Non-Conservative Mixing X

Conservative Mixing X X

Wind X X



Solution Procedure
• System of equations

• Algorithm
1. Compute Right-Hand-Side

• Contains explicit terms: 
advection, diffusion, wind, etc.

2. Outer Loop (Assembly and Updates)
• Update linearized terms and variables 

including coefficient matrix       
3. Inner Loop (Newton Iterations)
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Boundary Conditions
• Stage Hydrograph. Upstream or downstream
• Flow Hydrograph. Upstream or downstream. Local conveyance 

and velocities computed automatically. 
• Normal Depth BC.  At downstream boundaries. 
• Rating Curve BC.
• Wind. Only for shallow-water equations.
• Precipitation, evapotranspiration, and infiltration. Included as 

sources and sinks in the continuity equation.
• 1D reaches and 2D areas can be connected
• Multiple 2D areas can be connected to each other
• 2D areas can be connected to 1D lateral structures 

such as levees to simulate levee breaches
30



Computational Implementation
• Multiple 2D areas can be computed independently and 

simultaneously
• All solvers are can be run on multiple cores
• 2D solvers and parameters can be selected independently for 

each 2D area
• A partial grid solution keeps track of active portion of 

mesh and only computes the solution for active portion 
significantly reducing computational times. 
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Thank You!
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HEC-RAS Website:
https://www.hec.usace.army.mil/software/hec-ras/

Online Documentation:
https://www.hec.usace.army.mil/confluence/rasdocs



Face Water Surface Gradient

• Face-Normal Gradient

• Uses Cell Centroids and 
NOT the Computation Points

• Future versions may include non-orthogonal 
• Compact two-point stencil is computationally 

efficient and robust
• Important to have a good quality mesh 

to reduce errors
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Momentum Conservation
• Momentum conservation is directionally invariant
• Only “face-normal” component is needed at faces so

where        is the velocity in the N direction
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Face-Tangential Velocity
• Tangential velocities are computed on left and 

right of face with a Least-squares Formulation

• Of the left and right reconstructed velocities, 
only the tangential component is used, because 
the normal component is known

• Average face-tangential velocity computed as
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Discretization
• Cell Velocity Gradient (x-direction)

• Gauss’ Divergence Theorem

• Needed tor turbulence modeling

• Cell Velocity
• Perot’s Method

• Needed for the conservative form of the 
mixing term and for Eulerian advection
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Discretization: Laplacian

• Node Laplacian

• Used only by non-conservative turbulence
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Backtracking
1. Interpolate node velocities from faces
2. Set starting location and remaining time as    and 
3. From starting location and velocity, find location B
4. Compute time to location B:
5. Interpolate velocity at location B: 
if TB > TR

6. Set                                      , and go to step 3
else
7. Find location X as
8. Interpolate velocity vector at X

9. Compute advective velocity
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Fractional Step Method (ELM only)
• Coriolis Term approximated as

where

• First (Coriolis) Step

• Second Step includes all other terms
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Eulerian-Lagrangian Momentum Equation
• Semi-discrete form (2nd Fractional Step)

where

• Velocity V* includes Coriolis
• Mixing term is interpolated at backtracking location X and 

based on previous time step velocity field
• Friction term is semi-implicit
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Eulerian Momentum Equation
• Semi-discrete form

where

• Coriolis term computed at face f and is explicit
• No fractional step method like ELM solver
• Mixing term is computed at face f and is explicit
• Friction and pressure gradient terms are semi-implicit
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Discretization: Eulerian Advection
• Approach from Kramer and Stelling (2008)

• Courant-Freidrichs-Lewy (CFL) Condition
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Discretization: Mixing Term
• Non-Conservative Form

• Conservative Form

• Discretization same for both ELM and EM solvers
• Approximate Stability Criteria for EM solver

• ELM interpolates term to location X
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Subgrid Modeling

• Problem
• Water levels usually vary much more 

smoothly than the terrain
• Unfeasible to resolve every detail of the 

terrain with the computational mesh

• Approach
• Utilize a grid resolution sufficient 

to resolve the hydraulics
• Capture the details of the subgrid terrain 

through hydraulic properties tables
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Subgrid Bathymetry: Faces
• Faces treated similar to cells
• Hydraulic property tables computed 

• Wetted length
• Wetted Perimeter
• Area
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Benefits of Subgrid Bathymetry
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