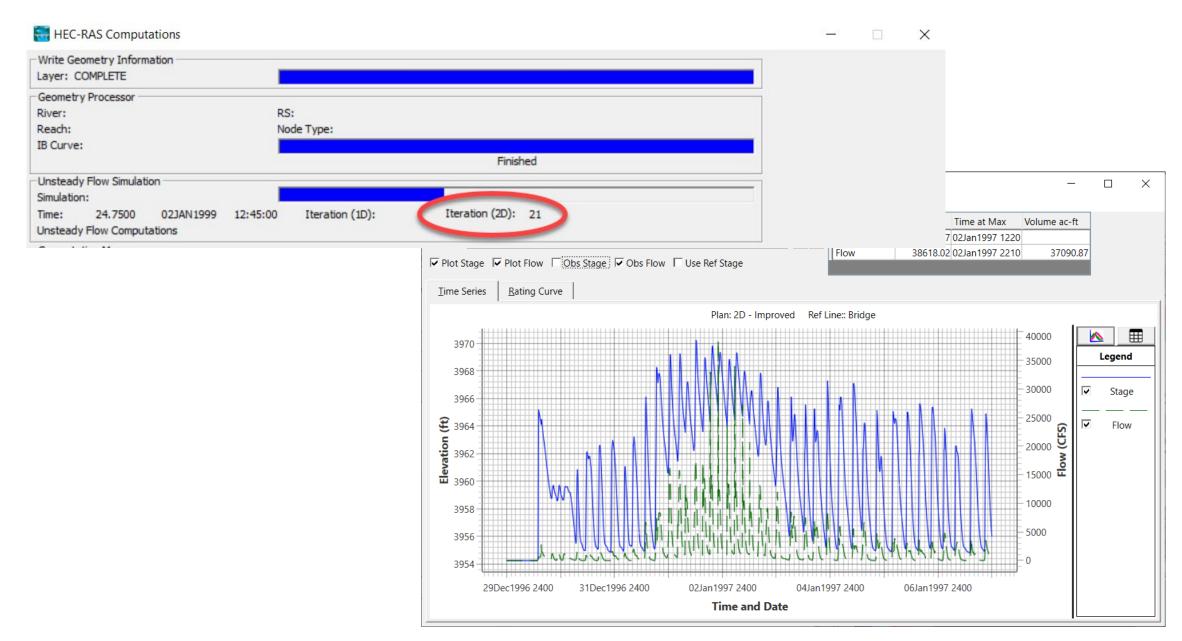
Common 2D Model Stability Problems Troubleshooting Strategies

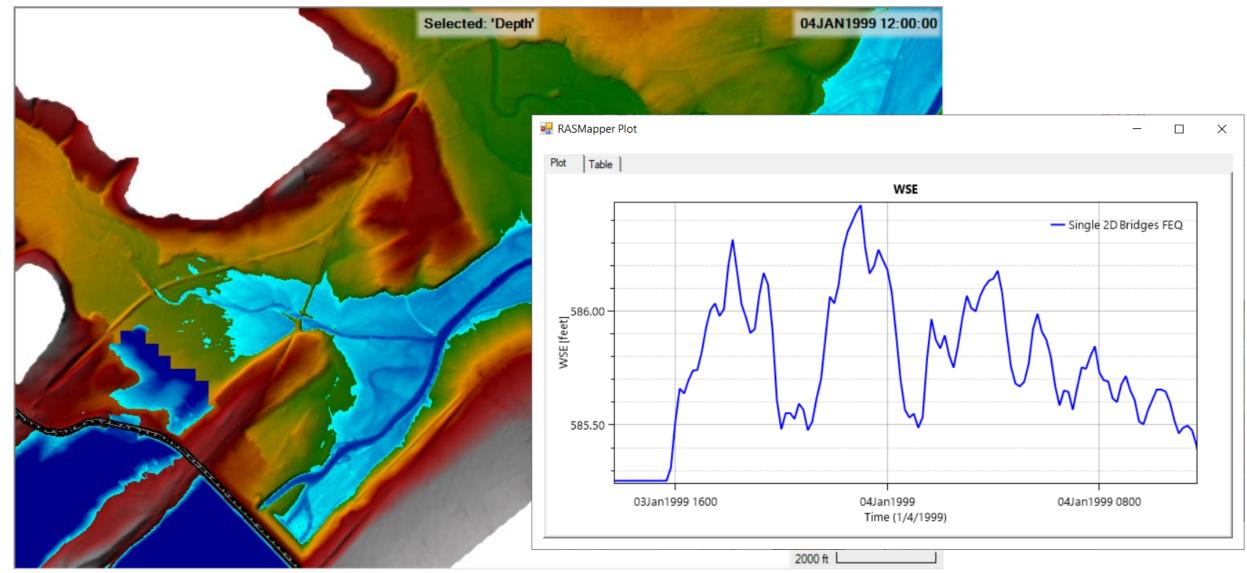
Eric Tichansky P.E., C.F.M Cameron Ackerman, P.E., D.WRE

USACE, Institute for Water Resources, Hydrologic Engineering Center

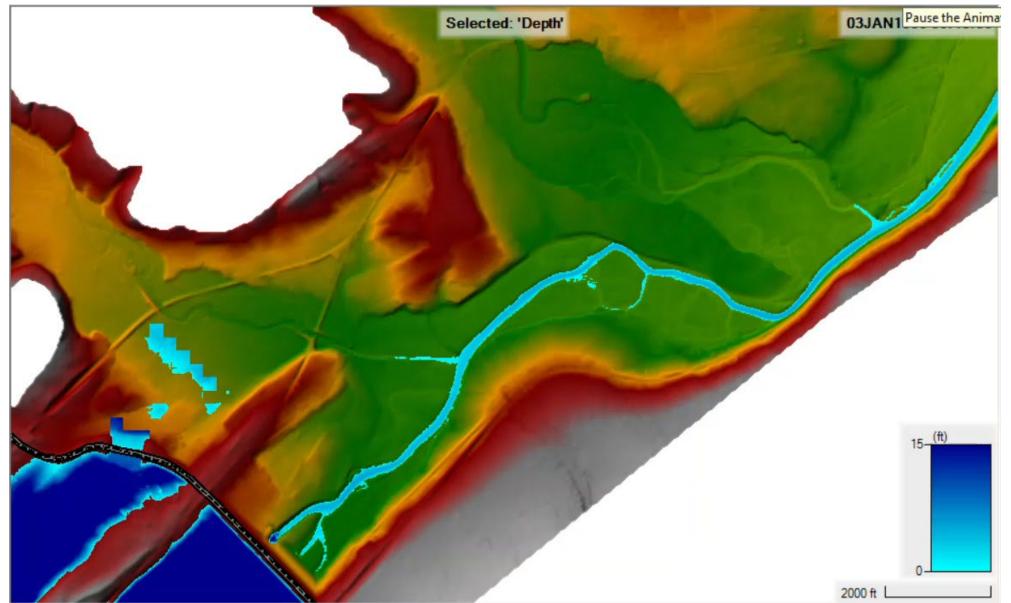


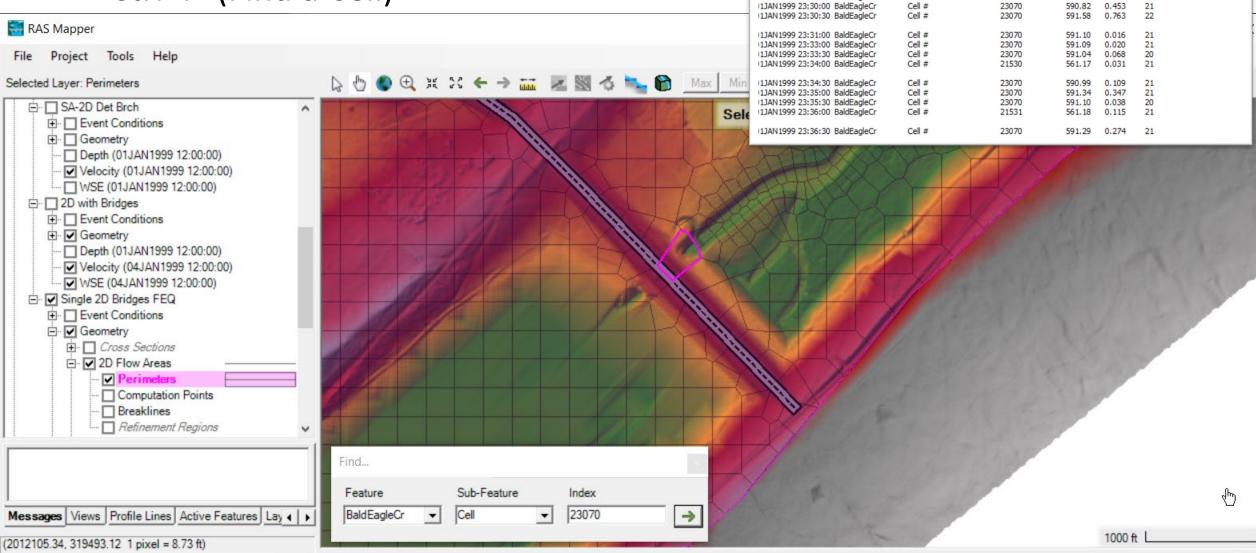
2D Flow Area Stability Issues

- Iterations and Instabilities
- Cell size and time step
- Diagnostic Tools
- Flood wave wetting front
- Weird shaped/small cells
- Channel Alignment/cell size
- Partial cell wetting
- Internal hydraulic structures



RAS Mapper Visualization




Model Instability

• Ctrl+F (Find a Cell)

Cell #

1JAN1999 23:29:00 BaldEagleCr

1JAN 1999 23:29:30 BaldEagleCr

23070

23070

23070

23070

23070

23070

23070

23070

23070

23070

23070

591.23

590.53

590.80

591.77

589.20

589.27

592.73

590.16

592.53

590.61

591.91

0.222

0.703

0.667

0.972

2.566

3.414

3.288

1.100

2.369

0.826

1.292

21

22

20

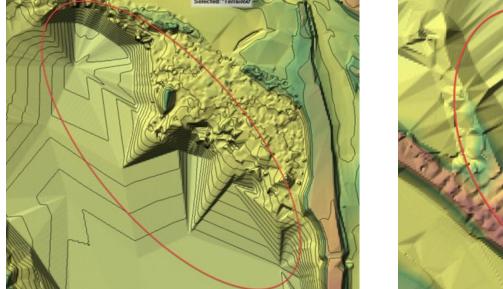
20

22

22

20

21


22


21

21

Cell Size and Time Step

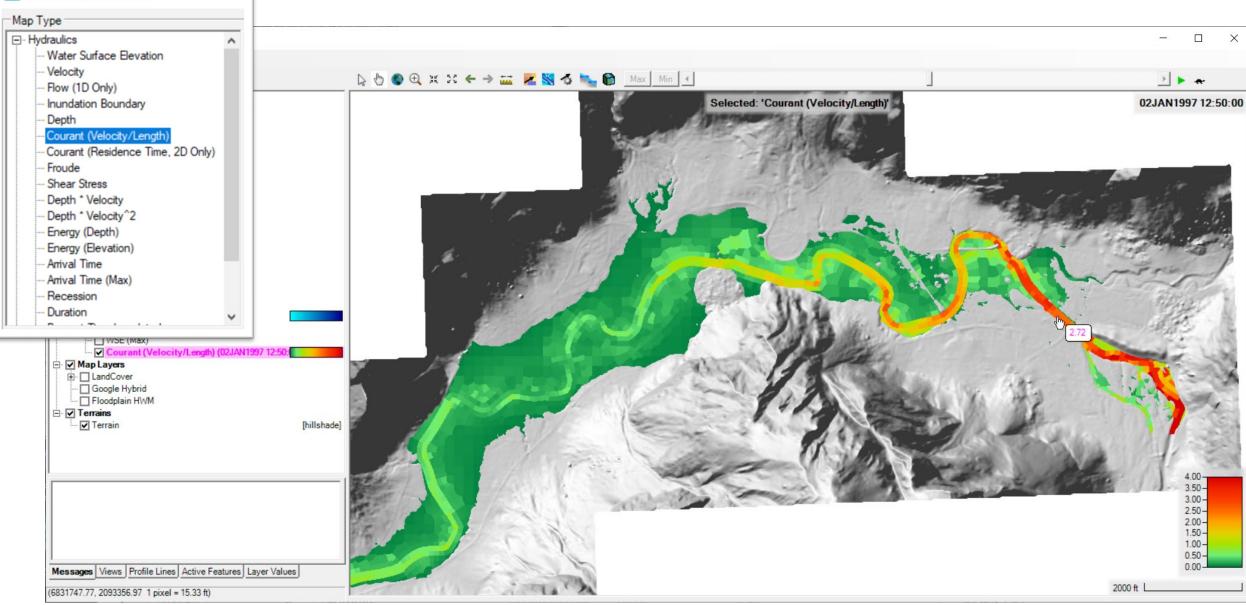
- Too large a time step for the cell size/velocity can cause model instability
- Diffusion Wave is more forgiving than Shallow Water eqns. But full St. Venant more accurate
- Use Courant condition pick the best time step.
- The time step you use will also depend on how fast the hydrograph rises:
 - Fast rising = Lower time step/Courant number
 - Slow rising = Higher time step/Courant number

Courant Condition Guidelines

- Shallow Water Equations
 - Experience shows, max C = 3.0

$$C = \frac{V * \Delta T}{\Delta X} \le 1.0$$

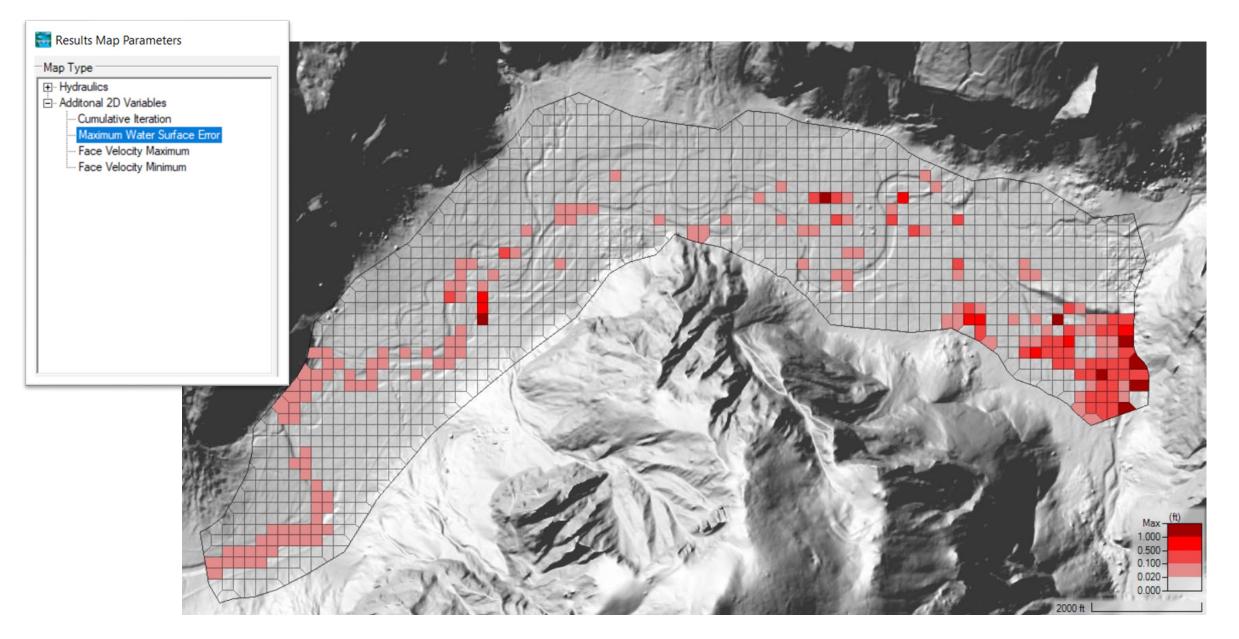
- Diffusion Wave Approximation
 - Experience shows, max C = 5.0


$$C = \frac{V * \Delta T}{\Delta X} \le 2.0$$

- C = Courant Number
- V = Velocity of the Flood Wave (ft/s)
- ΔT = Computational Time Step (seconds)
- $\Delta X = The average Cell size (ft)$

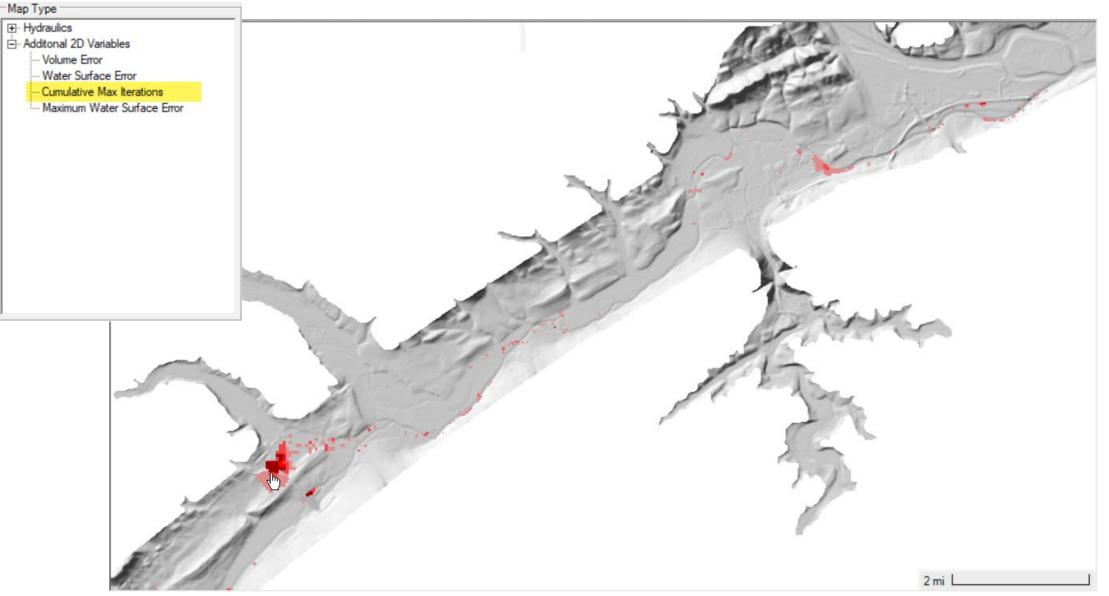
Runtime Messages

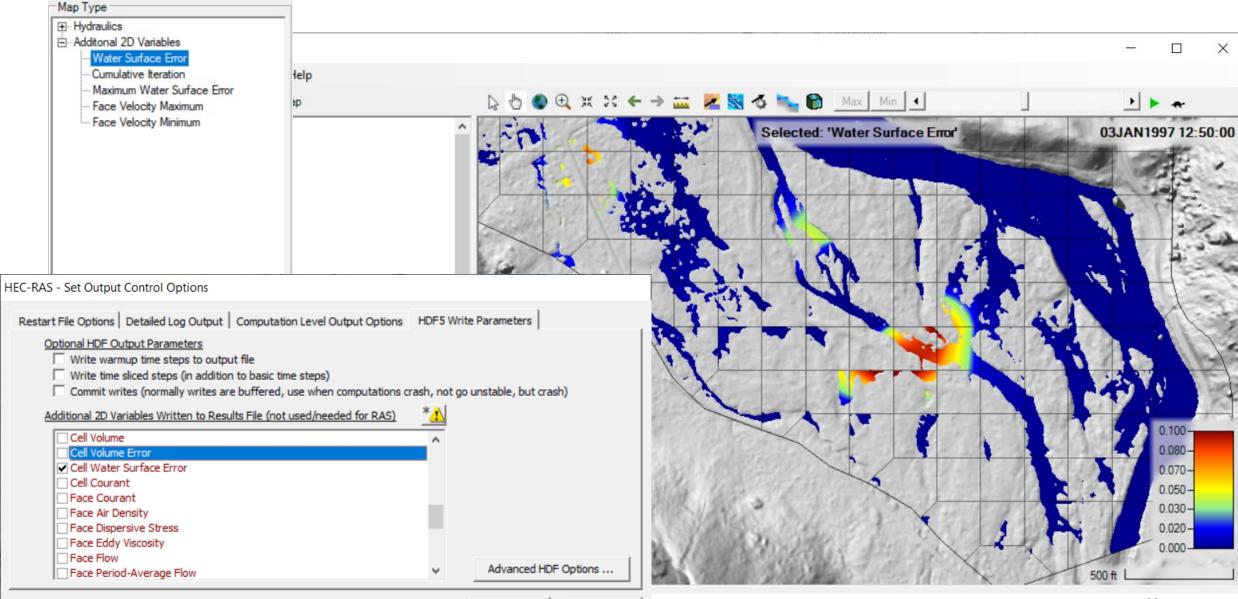
J/JAN 1997 15: 14:00						
	ZDArea	Cell #	1085	4003.97	0.010	20
7JAN 1997 15:37:00	2DArea	Cell #	1085	4003.97	0.010	20
7JAN 1997 15:39:00	2DArea	Cell #	1085	4003.97	0.012	20
7JAN 1997 16:06:00	2DArea	Cell #	1085	4003.96	0.010	20
7JAN 1997 16:22:00	2DArea	Cell #	1085	4003.96	0.010	20
7JAN 1997 16:24:00	2DArea	Cell #	1085	4003.96	0.011	20
7JAN 1997 16:39:00	2DArea	Cell #	1085	4003.96	0.010	20
7JAN 1997 16:52:00	2DArea	Cell #	1085	4003.96	0.011	20
7JAN 1997 16:54:00	2DArea	Cell #	1085	4003.96	0.012	20
7JAN 1997 17:28:00	2DArea	Cell #	1085	4003.96	0.010	20
7JAN 1997 17:45:00	2DArea	Cell #	1085	4003.96	0.011	20
Dverall Volume Accou						
lease review "Compu	utational Log Fi	le" output for volume ac				
Vease review "Computer Results to	utational Log Fi	le" output for volume ac				
lease review "Compu- Vriting Results to Finished Unsteady	DSS Flow Simula	le" output for volume ac				
Overall Volume Accou Mease review "Compu- Finished Unsteady ID Post Process Skipp Computations Sun	utational Log Fi DSS Flow Simula bed (simulation	le" output for volume ac				


Computation Log File

***	Volume Account	ing for 2D Flow /	Area in Acre Fee	et ***		
2D Area ******	Starting Vol *********	Ending Vol ********	Cum Inflow *********	Cum Outflow *********	Error ****	Percent Error ******
2DArea		401.4	48924.	48523.	0.3240	0.000662
*** Fotal Boundary Flux o Fotal Boundary Flux o Starting Volume Ending Volume	f Water In f Water Out	Accounting (for th 48924. 48523. 0.000000 401.4 Percent Error ************ 0.000662	ne entire model;) in Acre Feet **	*	

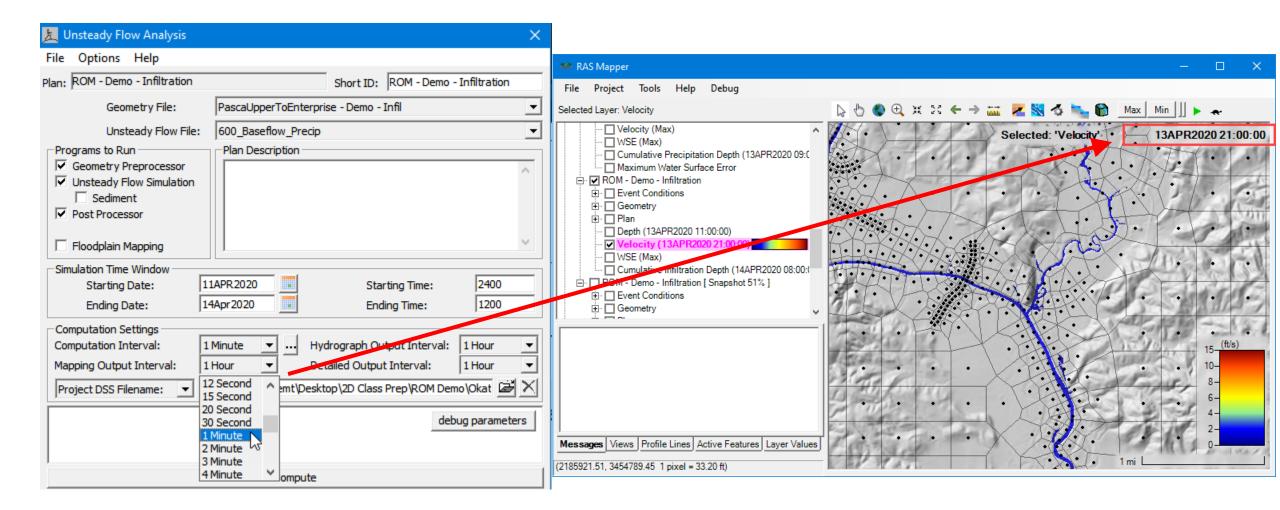
Maximum Water Surface Error





Cumulative Max Iterations

Cell Water Surface Error (For each time step)

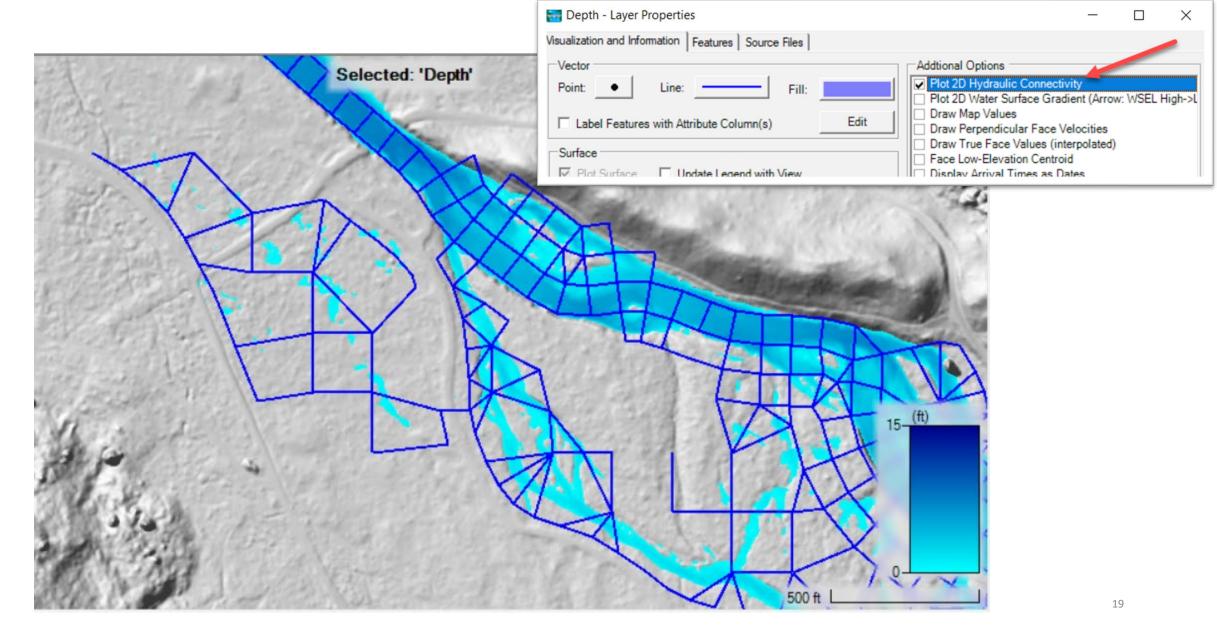

OK

HEC

Reduce Output Intervals

HEC-RAS Computations				- 🗆 X
Write Geometry Information				
Geometry Processor			🕒 🕙 🔍 💥 26 🗲 🤿 🚟 🜌 💹 🚳 📩 Max Min 🕑) = ++
	RS: 5012 Node Type: Inline Weir		Results	1 1.00
IB Curve:			a state - RP -	A 100
Unsteady Flow Simulation	Finished			3113
Simulation:			A STATE IS IS	
Time: 35.5000 18APR2014 14:30:00 Unsteady Flow Computations	Iteration (1D): 0 Iteration (2D): 0		The second se	Marilen -
Unsteady Post Processor				
Date/Time:	1		STATION VY BREAK I'M THE	11/3
Computation Messages			The state of the state of the state	1.1.1
Maximum 1D/2D iterations 18APR2014 13:04:32 1D/2D Flow error 1.0	770 BoiseRiver Lower 3749		1 20 555 C 1 1 1	720 1 3 1 1
18APR2014 13:04:36 1D/2D Flow error 1.2 18APR2014 13:04:52 1D/2D Flow error -1.3	262 Tributary Split 3774 702 Tributary Split 3774		alles and all and and and	1-11-125
18APR 2014 13:05:00 1D/2D Flow error 1.1			122 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
18APR2014 13:05:16 1D/2D Flow error 1.1				
18APR2014 13:05:20 1D/2D Flow error -1.0 18APR2014 13:05:24 1D/2D Flow error 1.1	193 BoiseRiver Lower 3749			
	666 BoiseRiver Lower 3749			
18APR2014 13:06:08 1D/2D Flow error 3	239 BoiseRiver Lower 3749 3. Tributary Split 3774 I		P07.snapsho prPark2D.p06.	A State
18APR2014 14:00:36 1D/2D Flow error 1.0	832 BoiseRiver Lower 3749 778 BoiseRiver Upper 7099		#Park2D.p06. #Park2D.p10.	1 1 11
18APR2014 14:11:48 1D/2D Flow error -1.5			#Park2D.p03. #Park2D.p09.	A Dates
	940 BoiseRiver Upper 7099 574 BoiseRiver Upper 7099	Y es	Layer Values	the state
Pause Make Snapshot of Results	(0-62%)	Stop	500 ft L	- and a second le

<u>ት</u> Un	steady Flow Analysis	HEC-RAS - Set Output Control Options
File Plan:	Options Help Stage and Flow Output Locations	Restart File Options Detailed Log Output Computation Level Output Options HDF5 Write Parameters
Pro V Sim Cor Cor Mat Prc	Flow Distribution Locations Flow Roughness Factors Seasonal Roughness Factors Automated Roughness Calibration Unsteady Encroachments Ungaged Lateral Inflows Dam (Inline Structure) Breach Levee (Lateral Structure) Breach SA Connection Breach SA Connection Breach Computation Options and Tolerances Output Options Friction Slope Method for Cross Sections	Optional HDF Output Parameters Write warmup time steps to output file Write time sliced steps (in addition to basic time steps) Commit writes (normally writes are buffered, use when computations crash, not go unstable, but crash) Additional 2D Variables Written to Results File (not used/needed for RAS) Additional 2D Variables Written to Results File (not used/needed for RAS) Cell Soil Moisture Deficit Cell Unsaturated Water Content Cell Volume Error Cell Volume Error Cell Courant Face Courant Face Courant Face Air Density
Time	Friction Slope Method for Bridges Initial Backwater Flow Optimizations	OK Cancel
	Sediment Computation Options and Tolerances Sediment Output Options Sediment Dredging Options	Writes results to disk throughout the
	 Check Data Before Execution View Computation Log File View Runtime Messages 	simulationIncreases run time



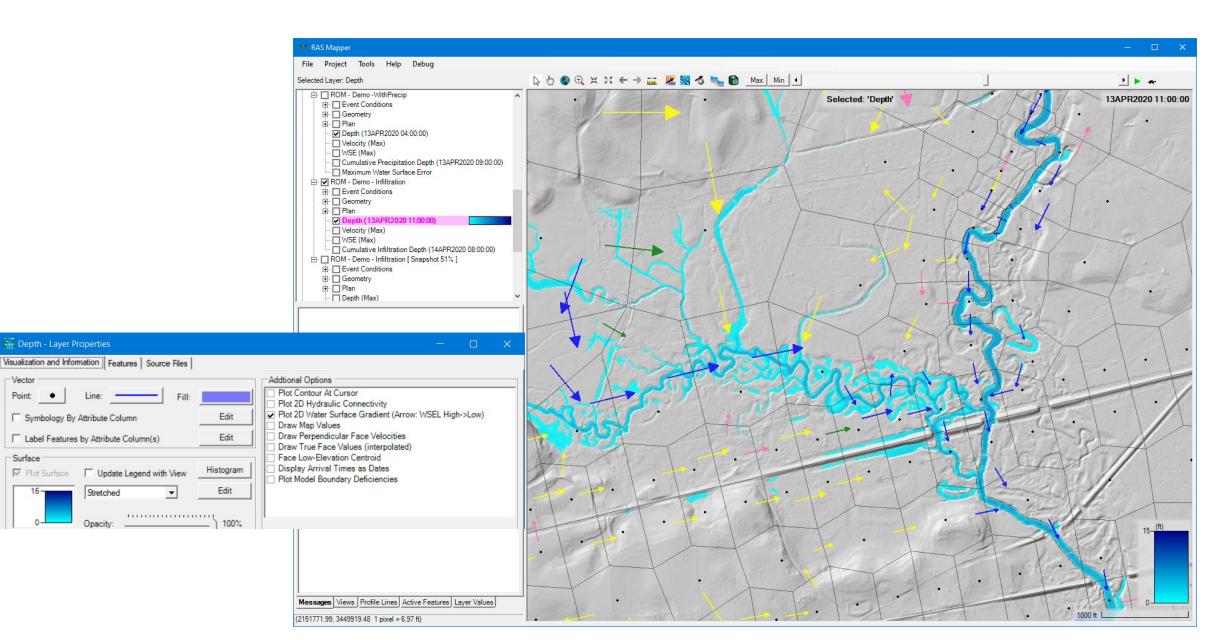
Floodwave Wetting Front

- 2D Models can often go unstable at the wetting front of the floodwave
 - Can cause model iterations
 - Can also cause bad max velocity plots
- Ways to improve this:
 - Reduce Time Step
 - Increase cell size- use polygon refinement tool
 - Too large of an elevation change across a single cell make cells smaller or larger
 - Breaklines for high ground barriers

Hydraulic Connectivity

2D Water Surface Gradient

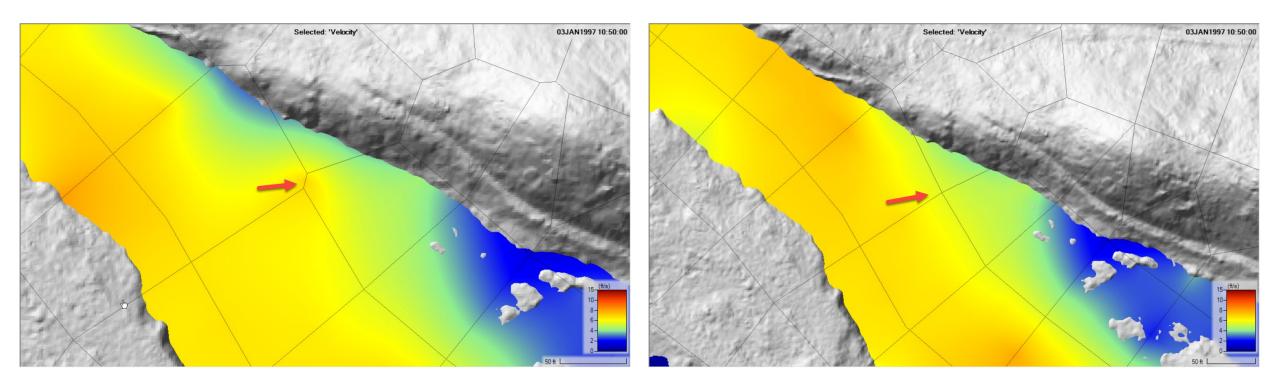
Vector


Point:

Surface

15

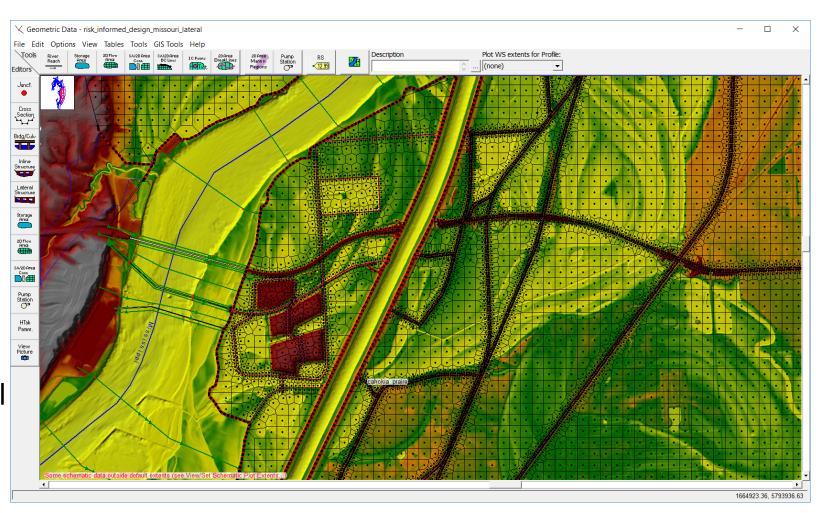
.



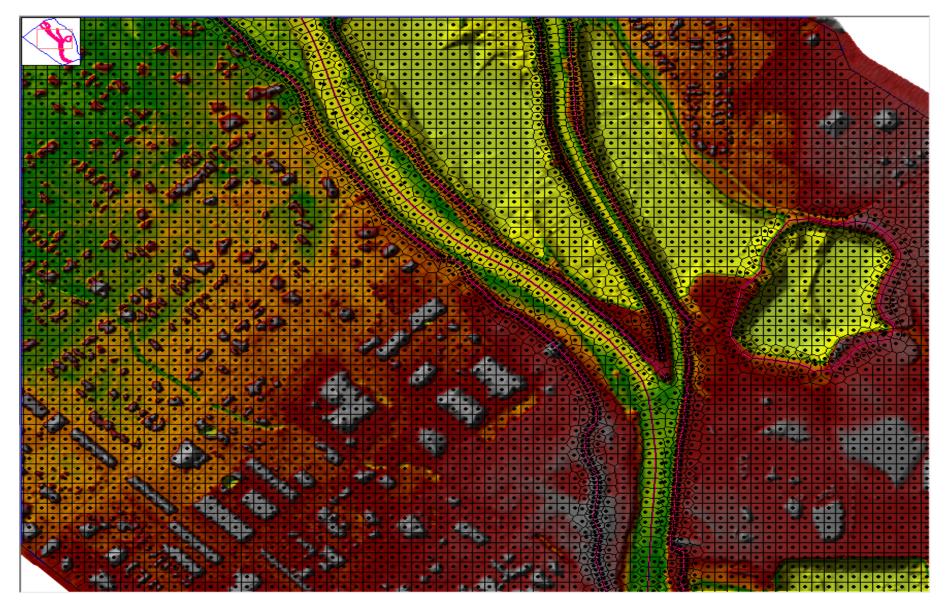
Weird Shaped Cells/Small Faces

- Cells need to transition in size slowly
 - No more than 50% change in size
- Small cells and short faces compared to other cells and cells – this may cause excessive model iterations.

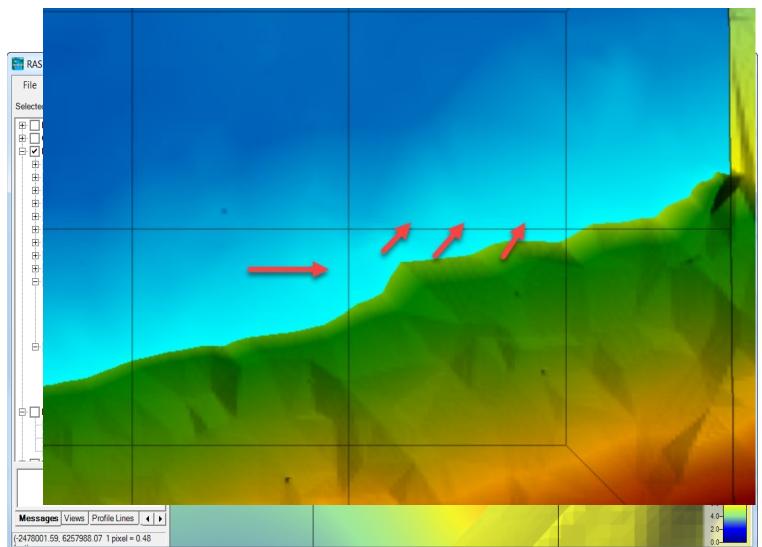
Project Settings	Mesh Tolerances
Projection	
General	Minimum Face Length Tolerance (Perceit): 20-
Render Mode	Verify Computation Point is within the Cell Boundar



- In general people do not use enough breaklines
- Use breaklines along high ground barriers to flow in order to align faces
 - This will improve accuracy
 - This will improve model stability



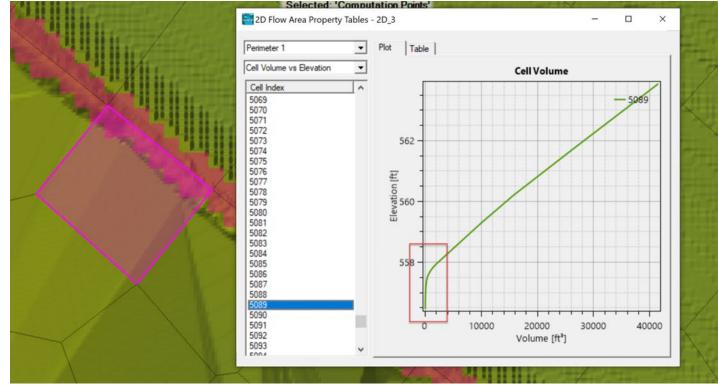
- Need to define the channel portion of the 2D mesh appropriately
- 2D Faces need to be aligned with high ground separating channel from floodplain
- Channel needs to have enough cells across the channel in order to get a good velocity profile. Recommend at least 7 to 10 cells across channel
- Fewer cells ok for water surface only
- Use Breaklines/Refinement Regions to accomplish this



Polygon Refinement for Main Channel

Partial Cell Wetting Issue

- Excessive model iteration can occur when just a corner of a cell has flow and the velocity is high.
- This will be even more unstable when flow comes into a cell through a small portion of a face but can leave over a much larger portion of another face
- Adjust cell sizes, use breaklines and polygon refinement tool to fix



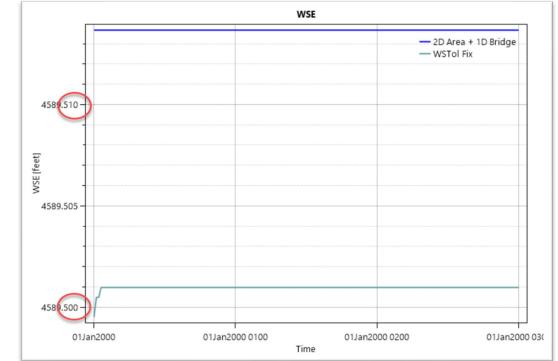
Steep Volume Elevation

- When the lower portion of the cell volume-elevation is steep,
- Small changes in volume produce large changes in water surface
- Excessive iterations have a hard time converging
- Large water surface errors represent small volume errors

WS Elevation Tolerance - Diagnostics

• Output reports Cell with largest Error

)1JAN2000 00:00:30)1JAN2000 00:00:40		Cell #	2022	4589.43	0.105	21. 20
					\sim	-
)1JAN2000 00:00:50)1JAN2000 00:01:00		Cell # Cell #	2022 2022	4589.43 4589.43	0.105	20
)1JAN2000 00:01:00		Cell #	2022	4589.43	0.105	20
)1JAN2000 00:01:20		Cell #	2022	4589.43	0.105	20
7154142000 00.01.20	201101171120		2022	1005.10	0.105	~
)1JAN2000 00:01:30	2DFlowArea	Cell #	2022	4589.43	0.105	20
)1JAN2000 00:01:40		Cell #	2022	4589.43	0.105	20
)1JAN2000 00:01:50		Cell #	2022	4589.43	0.105	20
)1JAN2000 00:02:00	2DFlowArea	Cell #	2022	4589.43	0.105	20
)1JAN2000 00:02:10	2DElowArea	Cell #	2022	4589.43	0.105	20
)1JAN2000 00:02:10		Cell #	2022	4589.43	0.105	20
)1JAN2000 00:02:30		Cell #	2022	4589.43	0.105	20
)1JAN2000 00:02:40		Cell #	2022	4589.43	0.105	20
						-
)1JAN2000 00:02:50	2DFlowArea	Cell #	2022	4589.43	0.105	20
)1JAN2000 00:03:00	2DFlowArea	Cell #	2022	4589.43	0.105	20
)1JAN2000 00:03:10	2DFlowArea	Cell #	2022	4589.43	0.105	20
)1JAN2000 00:03:20	2DFlowArea	Cell #	2022	4589.43	0.105	20
1114012000 00.02.20	20 Elaw Area	Call #	2022	4500 42	0.105	~
)1JAN2000 00:03:30)1JAN2000 00:03:40		Cell # Cell #	2022	4589.43 4589.43	0.105	20
)1JAN2000 00:03:40)1JAN2000 00:03:50		Cell #	2022 2022	4589.43	0.105	20
111AN2000 00:03:50		Cell #	2022	4580 43	0.105	20


• Error due to volume or water surface?

Restart File Options Detailed Log Output Computation Level Output Options HDF5 Write Parameters	
Optional HDF Output Parameters Write warmup time steps to output file Write time sliced steps (in addition to basic time steps) Commit writes (normally writes are buffered, use when computations crash, not go unstable, but crash) Additional 2D Variables Written to Results File (not used/needed for RAS)	
Cell Soil Moisture Deficit Cell Unsaturated Water Content Cell Unsaturated Wetting Front Depth Cell Velocity Cell Volume Cell Volume Cell Volume Error Cell Water Surface	
Stage and Flow Hydrograph File Type Options	
Image: Surface Cell Image: Surface Cell Image: Surface Cell Image: Surface Cell Image: Surface Cell Image: Surface Cell Image: Surface Cell Image: Surface Cell Image: Surface Cell Image: Surface Cell Image: Surface Cell Image: Surface Cell Image: Surface Cell Image: Surface Cell Image: Surface Cell Image: Surface Cell Image: Surface Cell Image: Surface Cell Image: Surface Cell Image: Surface Cell Image: Surface Cell Image: Surface Cell Image: Surface Cell Image: Surface Cell Image: Surface Cell Image: Surface Cell Image: Surface Cell Image: Surface Cell Image: Surface Cell Image: Surface Cell Image: Surface Cell Image: Surface Cell Image: Surface Cell Image: Surface Cell Image: Surface Cell Image: Surface Cell Image: Surface Cell Image: Surface Cell Image: Surface Cell Image: Surface Cell Image: Surface Cell Image: Surface Cell Image: Surface Cell Image: Surface Cell Image: Surface Cell Image: Surface Cell Image: Surface Cell Image: Surface Cell Image: Surface Cell Image: Surface Cell Image: Surface Cell Image: Surface Cell Image: Surface Cell Image: Surface Cell	Jend ation Number
	gend ▲ ation Number
31Dec1999 2400 01Jan2000 0030 01Jan2000 0100 01Jan2000 0130 01Jan2000 0200 01Jan2000 0230 01Jan2000 0300 Time and Date	

|--|

1JAN2000 00:00:30		Cell #	2022	4589.43	0.105	20	• Take care!
11JAN2000 00.00.40	2DFIOWALEd	Cell #	2022	100.10	0.105	2	
1JAN2000 00:00:50	2DFlowArea	Cell #	2022	4589.43	0.105	20	
1JAN2000 00:01:00		Cell #	2022	4589.43	0.105	20	
1JAN2000 00:01-10	2DElowArea	Cell #	2022	4590 43	0 105	20	
)1JAN2000 00:0	F	Parameter		(1	Default)		2DFlowArea
1	Theta (0.5-1.0)						1 1
)1JAN2000 00:0 2	Theta Warmup	(0.5-1.0)					1 1
)1JAN2000 00:0 3	Water Surface 1	[olerance [max=0.2](ft)					0.01 0.11
)1JAN2000 00:0 4	Volume Tolerand	te (ft)					0.01 0.01
)1JAN2000 00:0 5	Maximum Iterati	ions					20 20
6	Equation Set					Dif	iffusion Wave SWE-ELM (original/faster)
1JAN2000 00:02.10	ZUTIOWAICO		2022	CT-COCT	0.105	41	
)1JAN2000 00:02:20	2DFlowArea	Cell #	2022	4589.43	0.105	20	
)1JAN2000 00:02:30	2DFlowArea	Cell #	2022	4589.43	0.105	20	
)1JAN2000 00:02:40	2DFlowArea	Cell #	2022	4589.43	0.105	20	Evaluate Results!
							• Evaluate Results!
)1JAN2000 00:02:50	2DFlowArea	Cell #	2022	4589.43	0.105	20	
)1JAN2000 00:03:00	2DFlowArea	Cell #	2022	4589.43	0.105	20	ws
)1JAN2000 00:03:10	2DFlowArea	Cell #	2022	4589.43	0.105	20	
1JAN2000 00:03:20	2DFlowArea	Cell #	2022	4589.43	0.105	20	
1JAN2000 00:03:30	2DFlowArea	Cell #	2022	4589.43	0.105	20	•••••••••••••••••••••••••••••••••••••••
1JAN2000 00:03:40	2DFlowArea	Cell #	2022	4589.43	0.105	20	
				4500 40		-	
)1JAN2000 00:03:50	2DFlowArea	Cell #	2022	4589.43	0.105	20	

Internal Hydraulic Structures

- Too small of cell sizes at invert of culvert or gate.
 - Small cells have less volume
 - Flow/volume for the culvert is computed over the time step as V = Q x DT
- Highly submerged weirs with culverts and gates can have stability issues. "Weir and Gate Flow Submergence decay exponents"
- Flow over the embankment can be computed as weir flow or 2D Flow Equations
 - Use Weir options when the is a high embankment
 - Use 2D flow option for non-weir flow situations

Questions?

