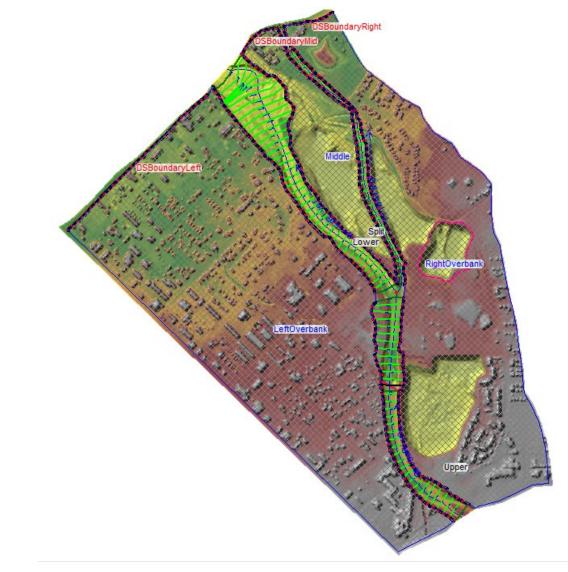
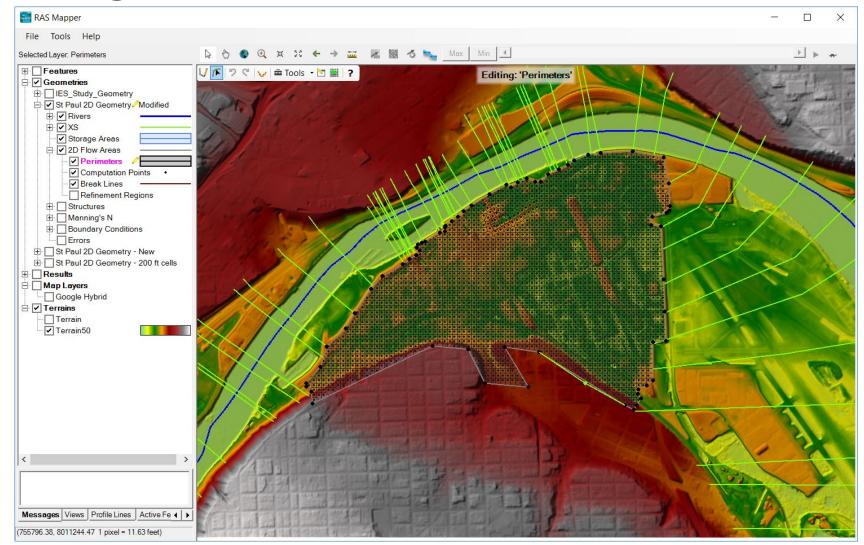
Combined 1D River and 2D Floodplain/Levee Areas

Eric Tichansky PE, CFM

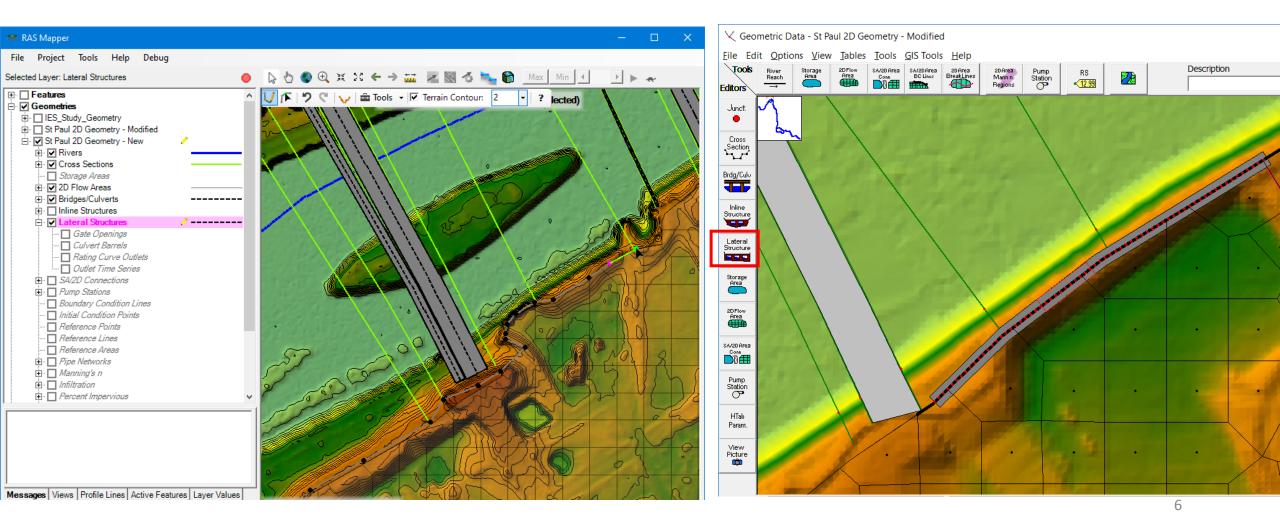

USACE, Institute for Water Resources, Hydrologic Engineering Center

1D/2D Unsteady Flow


Overview

- Connecting 2D overbanks to 1D channels with lateral structures
- Selecting appropriate parameters
- Selecting appropriate computation options

Modeling a Leveed Area in 2D


Modify The Mesh as Needed

Connecting a 2D Flow Area to a 1D River Reach with Lateral Structures

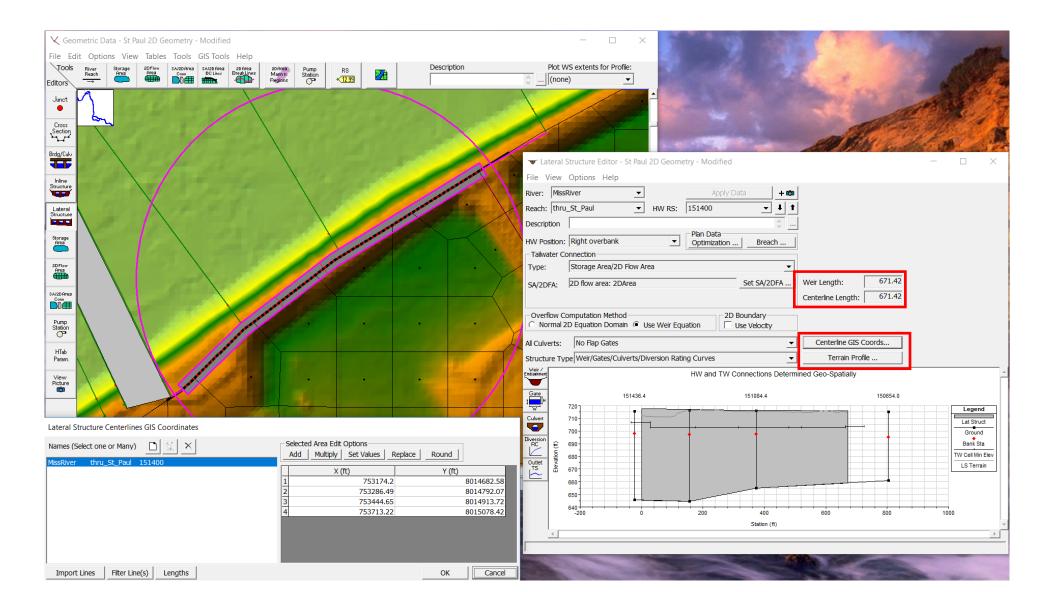
Lateral Structure Editor

w Lateral Structure Editor - St Paul 2D Geometry - Modified	- 🗆 X
<u>File View Options H</u> elp	
River: MissRiver Apply Data +	1
Reach: thru_St_Paul	
Description	
HW Position: Right overbank Plan Data Plan Data Breach Breach	
Tailwater Connection	
Type: Storage Area/2D Flow Area	
SA/2DFA: 2D flow area: 2DArea Set SA/2DFA	Weir Length: 671.42
	Centerline Length: 671.42
Overflow Computation Method 2D Boundary	
C Normal 2D Equation Domain Use Weir Equation Use Velocity	Centerline GIS Coords
All Culverts: No Flap Gates	Terrain Profile
Structure Type Weir/Gates/Culverts/Diversion Rating Curves	Clip Weir Profile to 2D Cells
Weir / Embawment HW and TW Connections Determined Geo-Spatially	·
	50854.0
	Legend
	Ground
E 690	Bank Sta
	TW Cell Min Elev
Outlet	LS Terrain
	800 1000
Station (ft)	•
	<u>}</u>
Edit lateral structure description	

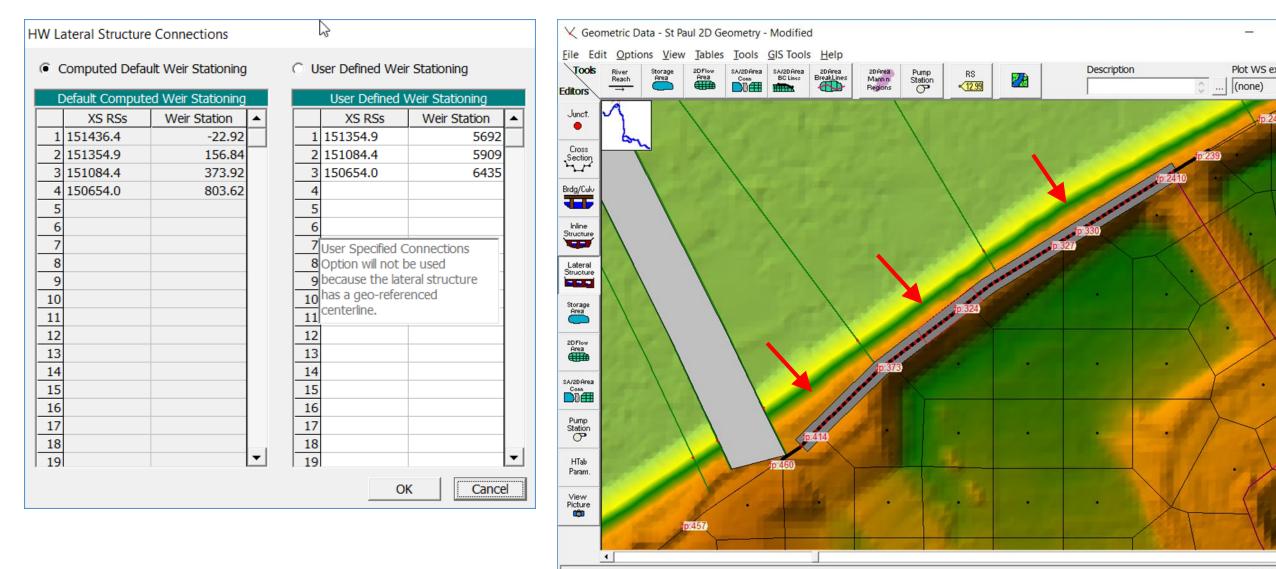
Weir/Embankment

Lateral Weir Embankment

Weir Data		- Emba	ankment Station/	Elevation 7	Table —	
Weir Width	25.	Inse	ert Row Dele	te Row	Filter	
Weir Computations: Standard Weir Ed	an 👻		Station	Eleva	ition	
Standard Weir Equation Parameters		1	0		717.52	
	<u> </u>	2	160.9	-	717.328	
Weir flow reference: Water Su	nace 💌	3	217.23		716.861	
Weir Coefficient (Cd)	2.	4	239.07		716.825	
		5	297.36		716.253	
		6	477.08		716.183	
		7	556.99		716.042	
Weir Crest Shape: Broad Crested	-	8	671.42	•	716.046	
. ,		9				
		10				
		11				
		12				
		13				
		14				
Weir Stationing Reference		15				
		16				
HW - Distance to Upstream XS:	3.	17				
		18				
		19				
		20				
HM/ Connections TM/ Conn	octions	21				
HW Connections TW Conn	ections	22				-
				ОК	Cano	cel


Reach: thru_St_Paul V RS: 151400 V		Structure Editor - Structure Edi	St Paul 2D Geome	try - Modified					×
Description HW Position: Right overbank Talwater Connection Type: Storage Area/2D Flow Area SA/2DFA: 2D flow area: 2DArea SA/2DFA: 2D flow area: 2DArea SA/2DFA: 2D flow area: 2DArea SA/2DFA: 2D flow area: 2DArea SA/2DFA: 2D flow area: 2DArea Set SA/2DFA Centerline Length: 671.4 Centerline Length: 671.4 Centerline GIS Coords Al Culverts: No Flap Gates Structure Type Weir/Gates/Culverts/Diversion Rating Curves Structure Type Weir/Gates/Culverts/Diversion Rating Curves Structure Type Weir/Gates/Culverts/Diversion Rating Curves Structure Type Weir/Gates/Culverts/Diversion Rating Curves Structure Type Weir/Gates/Culverts/Diversion Rating Curves Clip Weir Profile to 2D Cells Type: Structure Type Structure T			-						
HW Position: Right overbank Taiwater Connection Type: Storage Area/2D Flow Area SA/2DFA: 2D flow area: 2DArea SA/2DFA: 2D flow area: 2DArea Set SA/2DFA Overflow Computation Method Overflow Computation Method Overflow Computation Method Overflow Computation Method Conterline Length: 671.4 Centerline Length: 671.4 Centerline Length: 671.4 Centerline GIS Coords All Culverts: No Flap Gates Structure Type Weir/Gates/Culverts/Diversion Rating Curves Structure Type Weir/Gates/Culverts/Diversion Rating Curves Clip Weir Profile to 2D Cels Weir J Touter Type Culvert Culvert Diversion Diversion Culvert TS Culvert Culv	Reach: thru	_St_Paul	HW RS:	151400	<u> </u>	1			
HW Position: Right overbank Optimization Breach Talwater Connection Type: Storage Area/2D Flow Area Image: Storage Area/2D Flow Area SA/2DFA: 2D flow area: 2DArea Set SA/2DFA Weir Length: 671.4. Overflow Computation Method 2D Boundary Centerline Length: 671.4. Overflow Computation Method 2D Boundary Centerline GIS Coords All Culverts: No Flap Gates Terrain Profile Structure Type Weir/Gates/Culverts/Diversion Rating Curves Clip Weir Profile to 2D Cels Meir/W 151438.4 151084.4 150854.0 Total 151438.4 151084.4 150854.0 Total 151438.4 151084.4 150854.0 Total Total Station (ft) Station (ft) Total 200 400 600 500 1000	Description	ļ .			0				
Tailwater Connection Type: Storage Area/2D Flow Area SA/2DFA: 2D flow area: 2DArea Set SA/2DFA Weir Length: 671.4 Conterline Length: 671.4 Conterline Length: 671.4 Centerline Length: 671.4 Centerline GIS Coords All Culverts: No Flap Gates Courders Co	HW Position:	Right overbank	-		. Breach .				
SA/2DFA: 2D flow area: 2DArea Set SA/2DFA Weir Length: 671.4 Centerline Length: 671.4 Centerline Length: 671.4 Centerline Length: 671.4 Centerline Length: 671.4 Centerline Length: 671.4 Centerline GIS Coords All Culverts: No Flap Gates Culverts/Diversion Rating Curves Clip Weir/Gates/Culverts/Diversion Rating Curves Clip Weir Profile to 2D Cells HW and TW Connections Determined Geo-Spatially 151438.4 151084.4 150654.0 Culvert Diversion Culvert TS	- Tailwater Co	onnection							
SA/2DFA: 2D How area. 2D Area Get SA/2DFA: Centerline Length: 671.4 Coverflow Computation Method Normal 2D Equation Domain © Use Weir Equation Use Velocity Centerline GIS Coords All Culverts: No Flap Gates Culverts/Diversion Rating Curves Clip Weir/Gates/Culverts/Diversion Rating Curves Clip Weir/Forfile to 2D Cells Weir / Inbakinent Total A 151084.4 15084.0 Culvert Total A 151084.4 15084.0 Culvert Culvert Culverts/Diversion Rating Curves Clip Weir Profile to 2D Cells Weir / Clip Weir/Gates/Culverts/Diversion Rating Curves Clip Weir Profile to 2D Cells Weir / Culvert Culvert Culverts/Diversion Rating Curves Clip Weir Profile to 2D Cells Weir / Culvert Culvert Culverts/Diversion Rating Curves Clip Weir Profile to 2D Cells Total A 151084.4 151084.4 150854.0 Culvert Culvert Culvert Culverts/Diversion Rating Curves Clip Weir Profile to 2D Cells Total A 151084.4 151084.4 150854.0 Culvert Culvert Culvert Culverts/Clip Weir Connections Determined Geo-Spatially Total A 151084.4 150854.0 Total A 151084.4 150854.0 Two Cell Min Elev Ls Terrain Curves Clip Weir Culverts/Clip Weir Culverts/Cl	Type:	Storage Area/2D	Now Area			•			
Centerline Length: 671.4 Coverflow Computation Method Normal 2D Equation Domain Use Weir Equation All Culverts: No Flap Gates Structure Type Weir/Gates/Culverts/Diversion Rating Curves Structure Type Weir/Gates/Culverts/Diversion Rating Curves Terrain Profile to 2D Cells HW and TW Connections Determined Geo-Spatially HW and TW Connections Determined Geo-Spatially 151438.4 151438.4 151438.4 151438.4 151438.4 151438.4 151084.4 150854.0 Centerline GIS Coords Clip Weir Profile to 2D Cells Weir Culvert Culvert TS Culvert TS Curversion TS Cutvert TS Comment Curver C	SA/2DEA:	2D flow area: 2DA	rea		Set SA/2DFA	We	ir Length:	67	1.4
Overflow Computation Method Normal 2D Equation Domain Use Weir Equation No Flap Gates Culverts: No Flap Gates Structure Type Weir/Gates/Culverts/Diversion Rating Curves Terrain Profile Clip Weir Profile to 2D Cells HW and TW Connections Determined Geo-Spatially Timbaikment Use Velocity Terrain Profile to 2D Cells HW and TW Connections Determined Geo-Spatially Use Velocity Listic for the state of	542014.	,					nterline Leno	th: 67	1.4
C Normal 2D Equation Domain ● Use Weir Equation Use Velocity Centerline GIS Coords All Culverts: No Flap Gates Terrain Profile Clip Weir Profile to 2D Cells Weir / Market Weir / Istase.4 Istase.4 Istase.4<								, and j	
Structure Type Weir/Gates/Culverts/Diversion Rating Curves Clip Weir Profile to 2D Cells Weir / Weir / Weir / Weir / Diversion RC RC Diversion RC Diversion RC							Centerline G	SIS Coords	
HW and TW Connections Determined Geo-Spatially HW and TW Connections Determined Geo-Spatially HW and TW Connections Determined Geo-Spatially 151436.4 151084.4 150054.0 Touristic Culvert Diversion PC TS	All Culverts:	No Flap Gates				•	Terrain	Profile	
Weir/ Imbaikment HW and TW Connections Determined Geo-Spatially HW and TW Connections Determined Geo-Spatially 151438.4 151084.4 150854.0 Tourier Diversion PC TS	Structure Typ	Weir/Gates/Culv	erts/Diversion Ratir	ng Curves		▼ Cli	p Weir Profi	le to 2D Cells	
TOUTIET TS	Weir /				ermined Geo-Sna	atially			
Sate 720 Image: Culvert	Embaikment								
Sate 710 Legend Culvert 680 680 Culvert 580 1000 Diversion 660 800 1000 Culvert Station (ft) Station (ft)	— .		F.	151084.4		150654.0	0		
Top T	Gate			·		F			
Culvert eso Bank Sta Culvert eso eso TW Cell Min Elev Diversion eso eso eso eso RC eso eso eso eso eso Outriet TS station (ft) station (ft) eso eso	1 1 1 1 7	00	1	+ + +	· · · · ·	1			-
Oversion 000000000000000000000000000000000000	Culuert							Bank Sta	
Diversion RC 40 200 0 200 400 600 800 1000 Station (ft)									lev
Diversion RC 40 -200 0 200 400 600 800 1000 Station (ft)	,							Lo remain	
-200 0 200 400 600 800 1000 Outlet TS		50							
TS	e •		200	400	600	800	10	00	
	Outlet			Station (ft)					-
		-							+

9


Weir Length vs GIS Length

Lateral Weir Headwater Connections (HW)

Lateral Weir Tailwater Connections (TW)


TW Lateral Structure Connections

Computed Default Weir Stationing

C	Default Computed	Weir Stationing		
	2D Face Points	Weir Station		
1	456	-34.3083		
2	412	28.59606		
3	368	174.9681		
4	319	314.8326		
5	322	479.7218		
6	325	521.3957		
7	2408	663.5559		
8	239	725.6677		
9				
10				1
11				1
12				1
13				1
14				1
15				1
16				1
17				1
18				1
19			–	1

0	User	Defined	Weir	Stationing	
---	------	---------	------	------------	--

	User Defined We 2D Face Points		
1	454	5470.98	_
2	411	5537.3	
3	368	5703.08	
4	319	5861.57	
5	322	6048.15	
6	325	6095.38	
7	User Specified Cor	nnections	
	Option will not be		
	because the latera		
10	has a geo-referen centerline.	cea _	
	centernite.		
12			
13			
14			
15			
16			
17			
18			
19			-
	OK	Cance	4

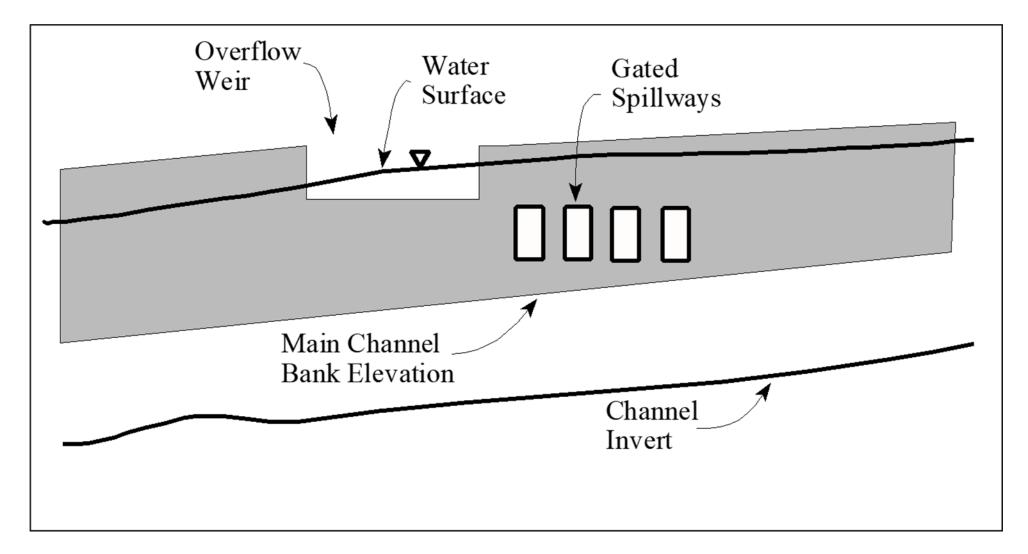
Overflow Computations

- Weir Equation
 - $Q = CLH^{3/2}$
 - Good for free fall conditions
 - Not great for submerged weir
- 2D Equation
 - Simply modifies cell face properties
 - Good for highly submerged conditions

	Options <u>H</u> elp	1	1		
	River 💌	Apply Data	+@		
Reach: thru	I_St_Paul	HW RS: 151400	<u> </u>		
Description			0		
HW Position:	Right overbank	Plan Data Optimization	Breach		
-Tailwater Co	onnection				
Type:	Storage Area/2D Flow A	irea	•		
SA/2DFA:	2D flow area: 2DArea	Se	et SA/2DFA	Weir Length:	671.42
				Centerline Length:	671.42
Overflow C	omputation Method	2D Bour	adan.		
	2D Equation Domain (velocity	Centerline GIS	Coords
M Culverts:	No Flan Gates			Terrain Pro	file
All Culverts:	No Flap Gates	Vivorsion Dating Curves	•	Terrain Pro	
Structure Ty	No Flap Gates	-	• •	Terrain Pro	
Structure Ty		Diversion Rating Curves HW and TW Connections Determin	ed Geo-Spatially		
	pe Weir/Gates/Culverts/D	-			
	pe Weir/Gates/Culverts/D	HW and TW Connections Determin		Clip Weir Profile to	0 2D Cells
Gate Gate Gate Gate Culvert	pe Weir/Gates/Culverts/D	HW and TW Connections Determin		Clip Weir Profile to	Legend
Structure Typ Weir/ moakment Gate L Culvert	151438.4	HW and TW Connections Determin		Clip Weir Profile to	0 2D Cells
Structure Typ Weir/ moakment Gate L Culvert	pe Weir/Gates/Culverts/D	HW and TW Connections Determin		Clip Weir Profile to	Legend Lat Struct Ground Bank Sta V Cell Min Elev
Structure Typ Weir/ mbakment Gate L Gate H Culvert BC Diversion RC Outlet	151438.4	HW and TW Connections Determin		Clip Weir Profile to	Legend Lat Struct Ground Bank Sta
Structure Typ	pe Weir/Gates/Culverts/D	HW and TW Connections Determin		Clip Weir Profile to	Legend Lat Struct Ground Bank Sta V Cell Min Elev
Structure Typ	151438.4 720 710 700 680 680 680 680 680 680 680 6	HW and TW Connections Determin		Clip Weir Profile to	Legend Lat Struct Ground Bank Sta V Cell Min Elev
Structure Typ	151438.4 151438.4 710 700 890 680 680 680 680 680 680 680 68	HW and TW Connections Determin 151084.4		Clip Weir Profile to	Legend Lat Struct Ground Bank Sta V Cell Min Elev

Weir Coefficients for Lateral Structures

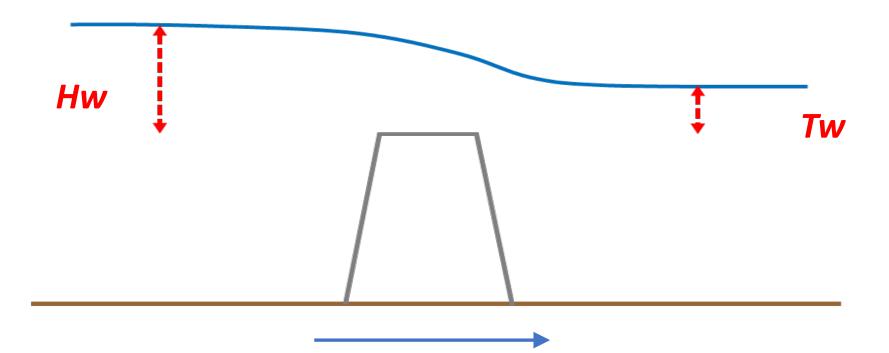
What is being modeled with the Lateral Structure	Description	Range of Weir Coefficients
Levee/Roadway – 3ft or higher above natural ground Levee/Roadway – 1 to 3 ft elevated above ground	Broad crested weir shape, flow over Levee/road acts like weir flow Broad Crested weir shape, flow over levee/road acts like weir flow, but becomes submerged easily.	 1.5 to 2.6 (2.0 default) SI Units: 0.83 to 1.43 1.0 to 2.0 SI Units: 0.55 to 1.1
Natural high ground barrier – 1 to 3 ft high	Does not really act like a weir, but water must flow over high ground to get into 2D area.	0.5 to 1.0 SI Units: 0.28 to 0.55
Non elevated overbank terrain. Lat Structure not elevated above ground	Overland flow escaping the main river.	0.2 to 0.5 SI Units: 0.11 to 0.28


Weir Coefficients for Lateral Structures

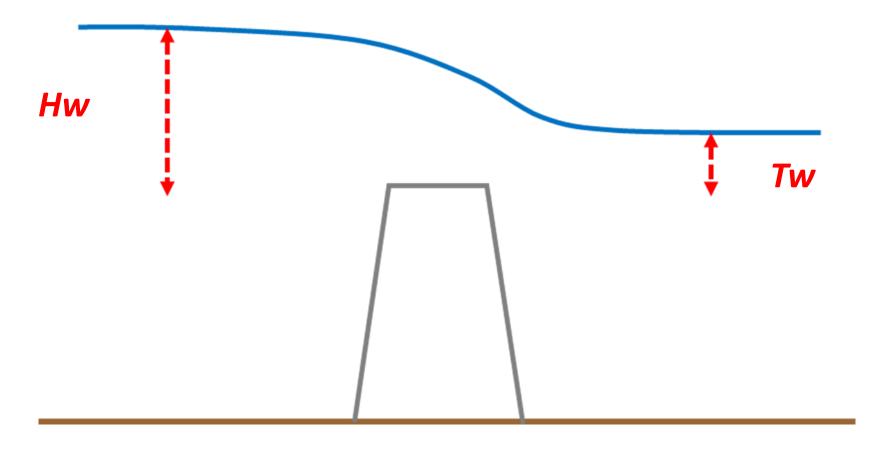
What is being modeled with the Lateral Structure	Description	Range of Weir Coefficients
Levee/Roadway – 3ft or higher above natural ground	Broad crested weir shape, flow over Levee/road acts like weir flow	1.5 to 2.6 (2.0 default) SI Units: 0.83 to 1.43
Levee/Roadway – 1 to 3 ft elevated above ground	Broad Crested weir shape, flow over levee/road acts like weir flow, but becomes submerged easily.	1.0 to 2.0 SI Units: 0.55 to 1.1
Natural high ground barrier – 1 to 3 ft high	Does not really act like a weir, but water must flow over high ground to get into 2D area.	0.5 to 1.0 SI Units: 0.28 to 0.55
Non elevated overbank terrain. Lat Structure not elevated above ground	Overland flow escaping the main river.	0.2 to 0.5 SI Units: 0.11 to 0.28

Weir Computation

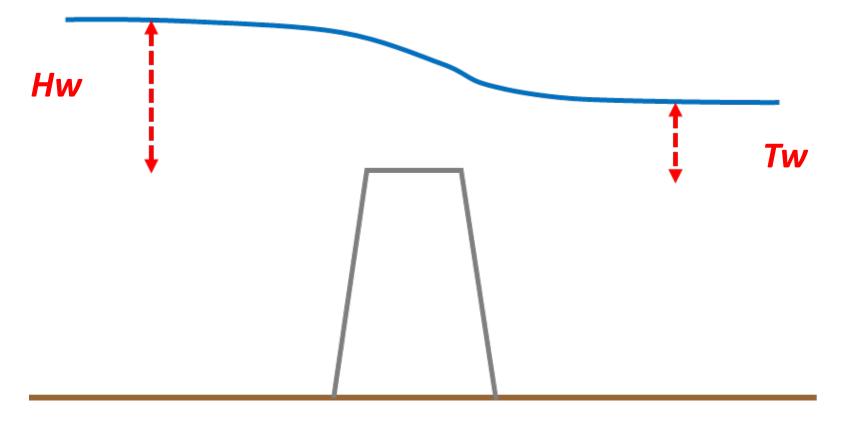
Computation Considerations


- Flow is assumed constant over the timestep
 - Long timesteps can transfer too much volume and oscillate
- Order of computations
 - 1D computes first then 2D
 - Weir flow is computed with current HW (1D) and previous TW (2D)
- Tailwater elevations
 - TW elevations of each connected cell is used
- Weir submergence

Weir Submergence

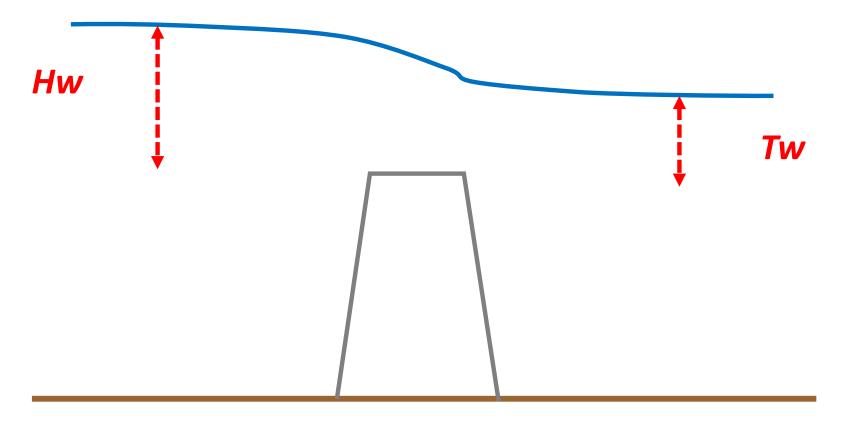

- Tailwater begins to impact weir flow
- A weir submergence curve is used to compute the reduction in flow
- This can be a dramatic reduction

Will Weir Submerge?



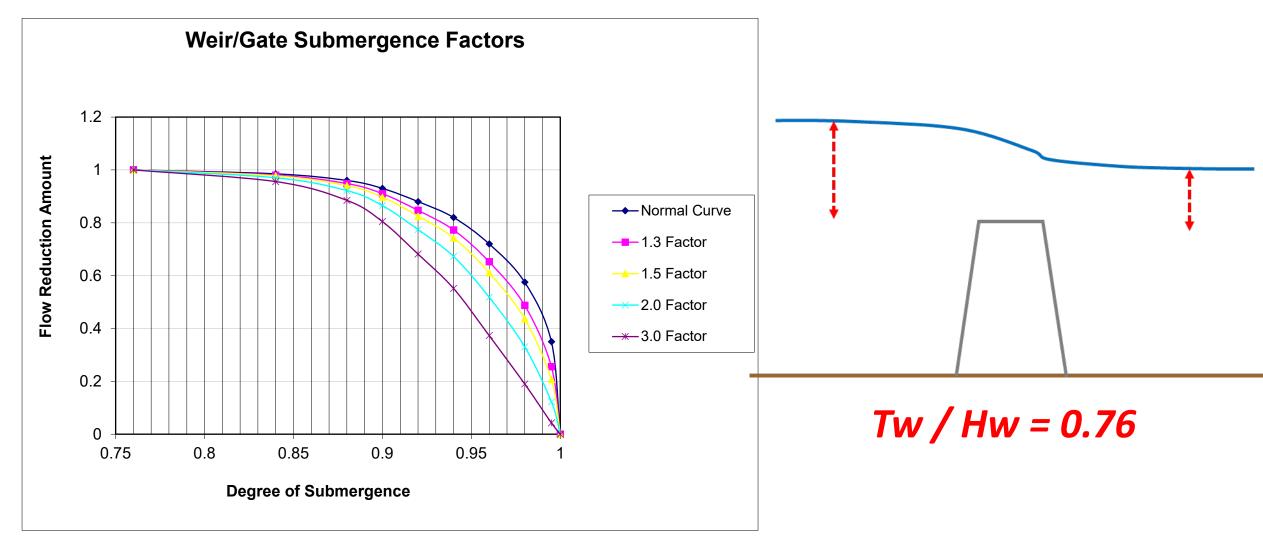
Tw / Hw = 0.25

Will Weir Submerge?



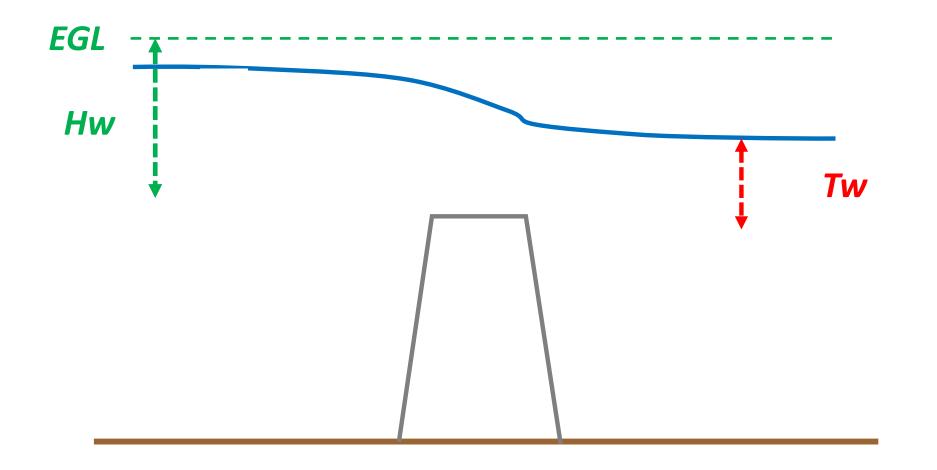
Tw / Hw = 0.5

Will Weir Submerge?



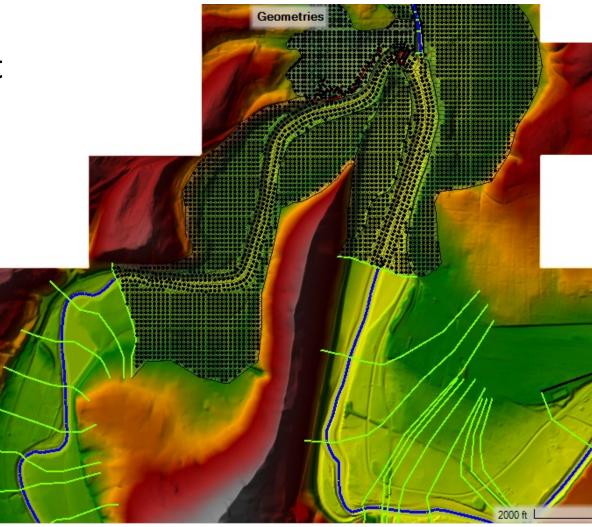
Tw / Hw = 0.75

Weir Submergence Curves


Lateral Structure Computational Options

HEC-RAS Unsteady Computation Options and Tolerances	
General 2D Flow Options 1D/2D Options Advanced Time	ne Step Control 1D Mixed Flow Options
1D Unsteady Flow Options Theta [implicit weighting factor] (0.6-1.0): Theta for warm up [implicit weighting factor] (0.6-1.0): Water surface calculation tolerance [max=0.2](ft): Storage Area elevation tolerance [max=0.2](ft): Flow calculation tolerance [optional] (cfs): Max error in water surface solution (Abort Tolerance)(ft): Maximum number of iterations (0-40): Maximum iterations without improvement (0-40):	1.1D/2D Unsteady Flow Options1.Number of warm up time steps (0 - 100,000):1.Time step during warm up period (hrs):0.02Minimum time step for time slicing (hrs):0.05Maximum number of time slices:100.Lateral Structure flow stability factor (1.0-3.0):100.Inline Structure flow stability factor (1.0-3.0):20Weir flow submergence decay exponent (1.0-3.0):20Gate flow submergence decay exponent (1.0-3.0):DSS Messaging Level (1 to 10, Default = 4)4
Geometry Preprocessor Options Family of Rating Curves for Internal Boundaries © Use existing internal boundary tables when possible. © Recompute at all internal boundaries	1D Numerical Solution Finite Difference (classic HEC-RAS methodology) Finite Difference Matrix Solver Skyline/Gaussian (Default: faster for dendritic systems) Pardiso (Optional: may be faster for large interconnected systems) Finite Volume (new approach) Number of cores to use with Pardiso solver: All Available
	OK Cancel Defaults

Hw : EGL or WSEL?



1D/2D Iterations Option

- Monitors WSEL and Flow Tolerance at boundaries
- Iterates the 1D and 2D domain until tolerances are met
- Off by default (0 iterations)

HEC-RAS Unsteady Computation Options and Tolerance	25
General 2D Flow Options 1D/2D Options Advanced Tim	ne Step Control 1D Mixed Flow Options
Maximum iterations between 1D and 2D (0=off, 1 to 20): Water surface tolerance (ft): Flow Tolerance (%) Minimum flow tolerance (cfs):	0 0.01 0.1 1.

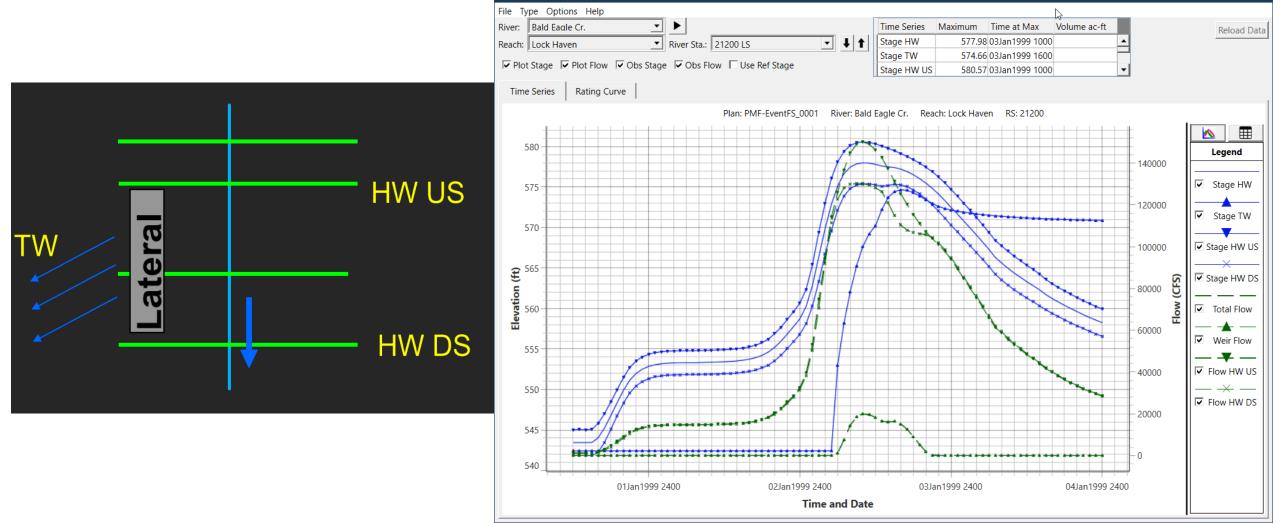
1D/2D Modeling Computational Time Step

26

2D Time Slicing

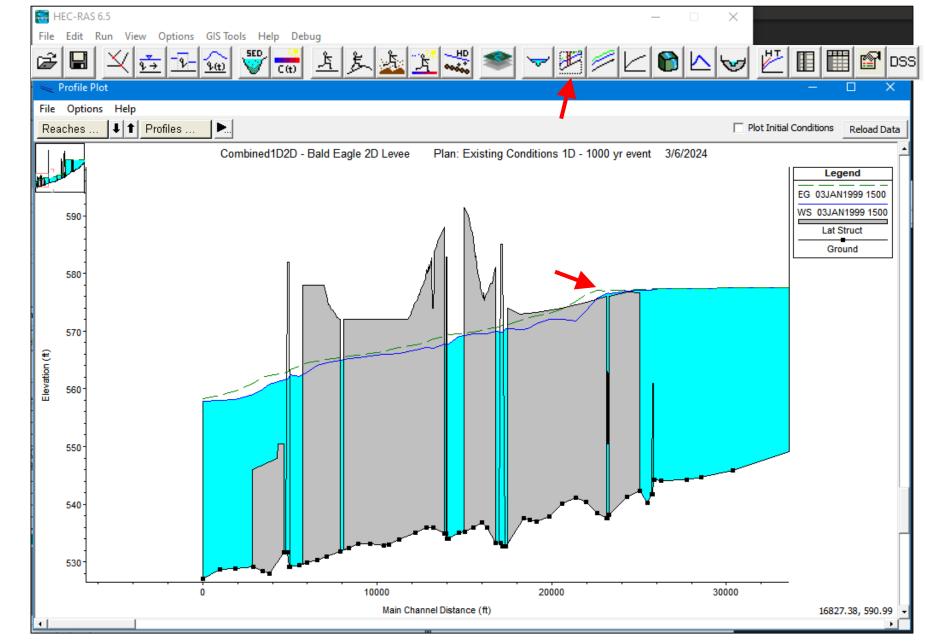
 Use fraction of computation interval HEC-RAS Unsteady Computation Options and Tolerances

General 2D Flow Options | 1D/2D Options | Advanced Time Step Control | 1D Mixed Flow Options |

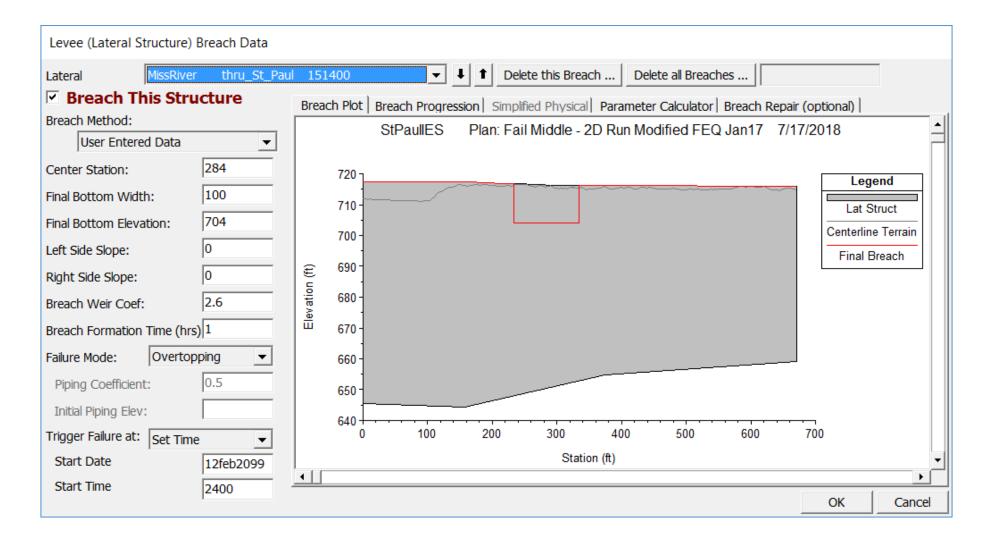

Use Coriolis Effects (not used with Diffusion Wave equation)

tion interval	Parameter	(Default)	BaldEagleCr
	1 Theta (0.6-1.0)	1	1
	2 Theta Warmup (0.6-1.0)	1	1
	3 Water Surface Tolerance [max=0.2](ft)	0.01	0.01
	4 Volume Tolerance (ft)	0.01	0.01
	5 Maximum Iterations	20	20
	6 Equation Set	Diffusion Wave	Diffusion Wave
	7 Initial Conditions Time (hrs)		4
	O Jaifal Castificas Dens Us Frantiss (0.1)	0.5	0.5
	9 Number of Time Slices (Integer Value)	1	1
	10 Turbulence Model	won-conservative (original)	Non-Conservative (original)
	11 Longitudinal Mixing Coefficient		
	12 Transverse Mixing Coefficient		
	13 Smagorinsky Coefficient	0	O
Computation Settings	· · · · · · · · · · · · · · · · · · ·		
Computation Interval: 30 Second 🔽	Hydrograph Output Interval: 30 Minute 💌		
Mapping Output Interval: 30 Minute 🔻	Detailed Output Interval:	6 Cores	6 Cores
		PARDISO (Direct)	PARDISO (Direct)
Project DSS Filename: 💽 C:\Computational	Investigations\Testing\Upper Chickasawha 📴 🔀		
	19 Minimum Iterations		
	20 Maximum Iterations		
	21 Restart Iteration	10	10
	22 Relaxation Factor	1.3	1.3
	23 SOR Preconditioner Iterations	10	10

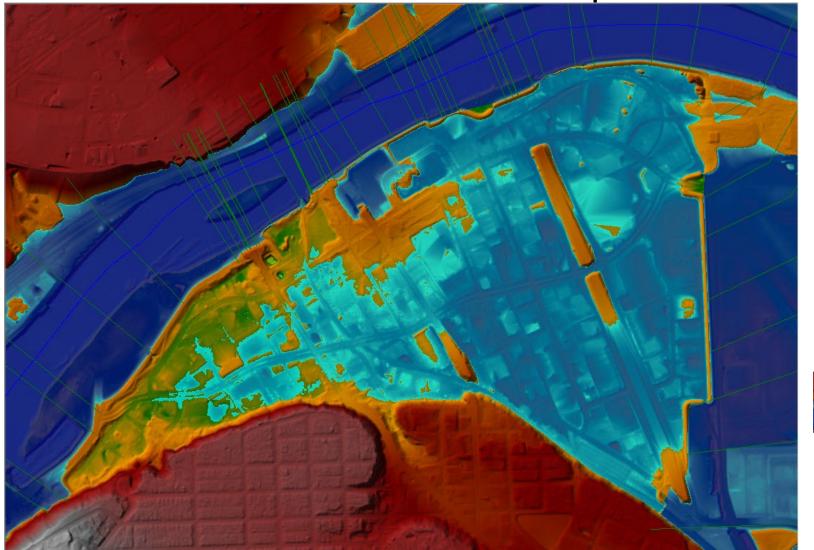
Hydrograph – Lateral Structure


🚟 Stage and Flow Hydrograph

Profile Plot


Lateral Structure Detailed Output

uver. j	iver: MissRiver 💌		Profile:	13FEB2099 060					
Reach	thru_St_Paul	_	RS:	151400			2D Run Mo		
	Plan: 2D Run Modifie	d Mi	ssRiver t	hru_St_Paul_RS	: 151400 Lateral S	tructure	Profile: 13F	EB2099 0600	
E.G. US				716.10	Weir Sta US (ft)			5750.00	
W.S. US. (ft)			715.28		Weir Sta DS (ft)			5850.00	
E.G. DS (ft)			716.08		Min El Weir Flow (ft)		704.00		
W.S. DS (ft)			714.80		Wr Top Wdth (ft)		100.00		
Q US (cfs)					Weir Max Depth (ft)		11.22		
Q Leaving Total (cfs)			4332.12		Weir Avg Depth (ft)		11.14		
Q DS (cfs)			277159.10		Weir Flow Area (sq ft)		1113.82		
Perc Q Leaving				1.54	Weir Coef (ft^1/2)			2.600	
Q Weir (cfs)			4332.12		Weir Submerg			0.95	
Q Gates (cfs)					Q Gate Group (cfs)				
Q Culv (cfs)					Gate Open Ht (ft)				
Q Lat RC (cfs)					Gate #Open				
Q Outlet TS (cfs)				0.00	Gate Area (sq ft)				
Q Breach (cfs)				4332.12	Gate Submerg				
Breach Avg Velocity (ft/s)				3.89	Gate Invert (ft)				
Breach Flow Area (sq ft)				1113.82	Gate Weir Coef				
Breach WD (ft)				100.00					
Breach	Top El (ft)								
Breach Bottom El (ft)				704.00					
Breach SSL (ft)				0.00					
Breach	SSR (ft)			0.00					
				Errors, Warni	ngs and Notes				


Levee Breaching

Saint Paul Levee Breach Example

Questions?

US Army Corps of Engineers ®

