

https://youtu.be/E64q4SAiHjg?t=28

LEGO Dam Breach #182 -Attack of the C-3POs

Construction Crew Surprise 11K views • 2 months ago

LEGO Dam Breach #183 -

37K views · 3 months ago

LEGO Dam Breach #181 - Will

Woody be Saved from the ...

10K views • 3 months ago

LEGO Dam Breach #180 -

47K views • 3 months ago

These are Not the Droids Yo ...

Castle Wrecked

LEGO Dam Breach #179 - A

51K views • 4 months ago

LEGO Dam Breach #178 - Toy Story Playgound

34K views • 4 months ago

LEGO Dam Breach 177 - The **Rebel Ambush**

34K views • 4 months ago

LEGO Dam Breach #176 - Toy Story Carnival

26K views · 4 months ago

LEGO Dam Breach #175 - The Fantastic T-Rex

52K views • 5 months ago

LEGO Dam Breach #174 - The A-Wing Base

36K views · 5 months ago

LEGO Dam Breach #173 -Micro Village Mudslide

69K views • 5 months ago

LEGO Dam Breach #172 -**Riding the Rapids at Camp**

134K views · 5 months ago

LEGO Dam Breach #171 -**Rebels Have the High Ground**

36K views • 5 months ago

LEGO Dam Breach #170 -Sand Castle Battle

246K views · 5 months ago

LEGO Dam Breach #169 - Will the House Survive This...

28K views · 6 months ago

HAR

LEGO Dam Breach #168 -**Dinosaur Extinction**

449K views · 6 months ago

LEGO Dam Breach #167 -Where did the Village Go?

75K views • 6 months ago

LEGO Dam Breach #166 -Sand Castle Collapse

155K views · 6 months ago

LEGO Dam Breach #165 -**Rebuild the Cabin!**

LEGO Dam Breach #164 -**Raptors in Fantastic Beasts?**

LEGO Dam Breach #163 -Piggy Farm Returns

LEGO Dam Breach #162 -Grindelwald's Escape

LEGO Slow Motion #02 -Monster Truck Crashes

LEGO Dam Breach #161 - A House Washes Away

LEGO DAM BREACH AND SAND CASTLE - TOTAL ...

6.8M views · 5 months ago

LEGO DAM BREACH - HARD FLOOD!

6.3M views · 2 years ago

- LEGO DAM BREACH NEW SAND CITY COLLAPSE

6M views • 3 months ago

- New Biggest Rebellion Of
 - LEGO Minifigures Against... 5M views • 1 year ago

LEGO CITY FIRE RESCUE. LEGO DAM BREACH FILM

CAN 30 LEGO MINIFIGURES STOP A LEGO DAM BREAC ...

3.8M views • 1 year ago

Epic Attempt Of The Lego Minifigures To Stop The Leg...

3.4M views • 1 year ago

LEGO Dam Breach: LEGO City **Explore New Big Sand Castle!**

Piramids. Dam Breach Film 2.6M views · 2 years ago

2.4M views • 1 year ago

LEGO Dam Breach - LEGO Minifigures and Sand Castle... 2.3M views • 1 year ago

LEGO DAM BREACH - LEGO **CITY POLICE TRUCK - TWO...**

6:31

2.3M views • 1 year ago

LEGO BEACH - DAM BREACH 2.2M views · 2 years ago

Rebellion Of LEGO Minifigures Against LEGO...

1.9M views • 2 years ago

LEGO DAM BREACH - MINE FLOODING AND COLLAPSE

1.8M views • 4 months ago

Lego Adventurers - Destroyed

LEGO DAM BURST, FLOODING SECRET...

1.8M views • 2 years ago

LEGO DAM BREACH - LEGO CITY FIRE RESCUE

LEGO SAND WALL BREAK 1.7M views • 2 years ago

Lego Dam Breach Airport 1.7M views • 1 year ago

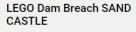
LEGO DAM BREACH -DESTRUCTION OF THE SAN...

1.3M views • 3 months ago

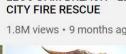
Dam Breach - LEGO **Construction Site**

1.2M views · 2 years ago

LEGO DAM BREACH - BRIDGE COLLAPSE


1.2M views • 1 year ago

LEGO Dam Breach - Dinosaur Attack LEGO Minifigures on...



LEGO DAM BREACH - CITY COLLAPSE

942K views • 4 months ago

Estimating Dam Breach Parameters

Measured Calculated

40 60 Elapsed time (min)

Stanford Gibson, PhD Sediment Specialist Hydrologic Engineering Center

NRCS Embankment Failure Research (SIMBA/WinDAMB model)

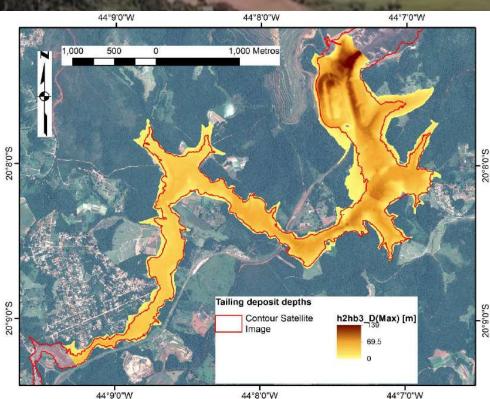
Temple, Darrel M., and Hanson, Gregory J., "Earth Dam Overtopping and Breach Outflow," Presented at the ASCE World Water & Environmental Resources Congress 2005, EWRI, Anchorage, AK, 15-19 May 2005.

Hadlock Pond Dam New York

Height = 29 ft Storage = 1,600 acre-ft Failure time: 6:15 pm Saturday, 02Jul2005 Hazard Classification: High

Taum Sauk Upper Dam, Missouri

Height = 94 ft Storage = 1,600 acre-ft Failure time: 5:20 am Wednesday, 14Dec2005 Hazard Classification: High


Guadalupe Blanco River Authority May 15, 2019 🔍 1

http://herald-zeitung.com/video_e9e0f25c-7756-11e9-b1cc-3f3ca4a52872.html

Brazil Mine Tailings Failure

Modeling by Prof Leonardo Moura University of Brasilia

Michigan dam failure caught on video

2,913,549 views • May 20, 2020

https://youtu.be/Hc3u_CHVHJ8

10K ♥ 1.2K → SHARE =+ SAVE

Three Approaches

- 1. User Entered Data -Parameter Estimation
- 2. Simplified Physical

Simplified Physical

User Entered Data

3. DL Breach

User Entered Data Simplified Physical Physical Breaching (DLBreach) Physical Breaching (DLBreach)

 \mathbf{T}

Three Approaches

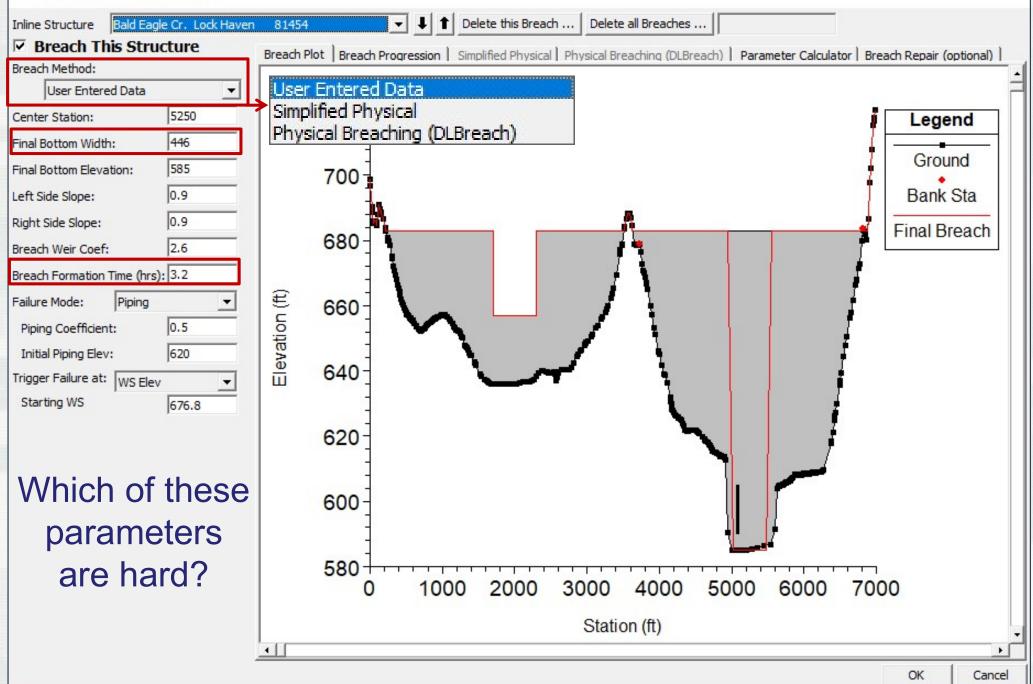
1. User Entered Data -Parameter Estimation

2. Simplified Physical

Simplified Physical

User Entered Data

3. DL Breach


User Entered Data Simplified Physical Physical Breaching (DLBreach) Physical Breaching (DLBreach)

 \mathbf{T}

HEC-RAS Breach Data

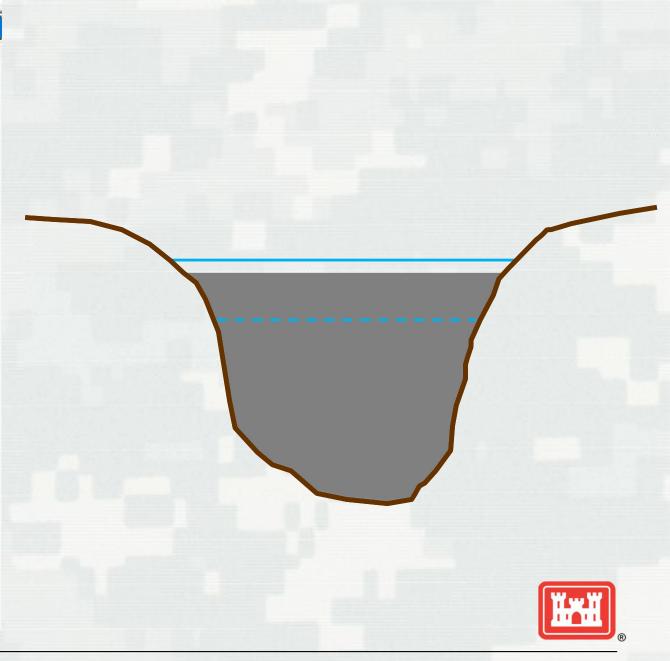
HEC-RAS Breach Data Input

- Location: Centerline of breach
- **Type**: Overtopping or Piping
- Size: Bottom elevation, width and side slopes
- **Time:** to maximum size and progression type
- Triggering situation:
 - ✓ Pool elevation
 - ✓ Pool elevation + Duration
 - ✓ Clock time

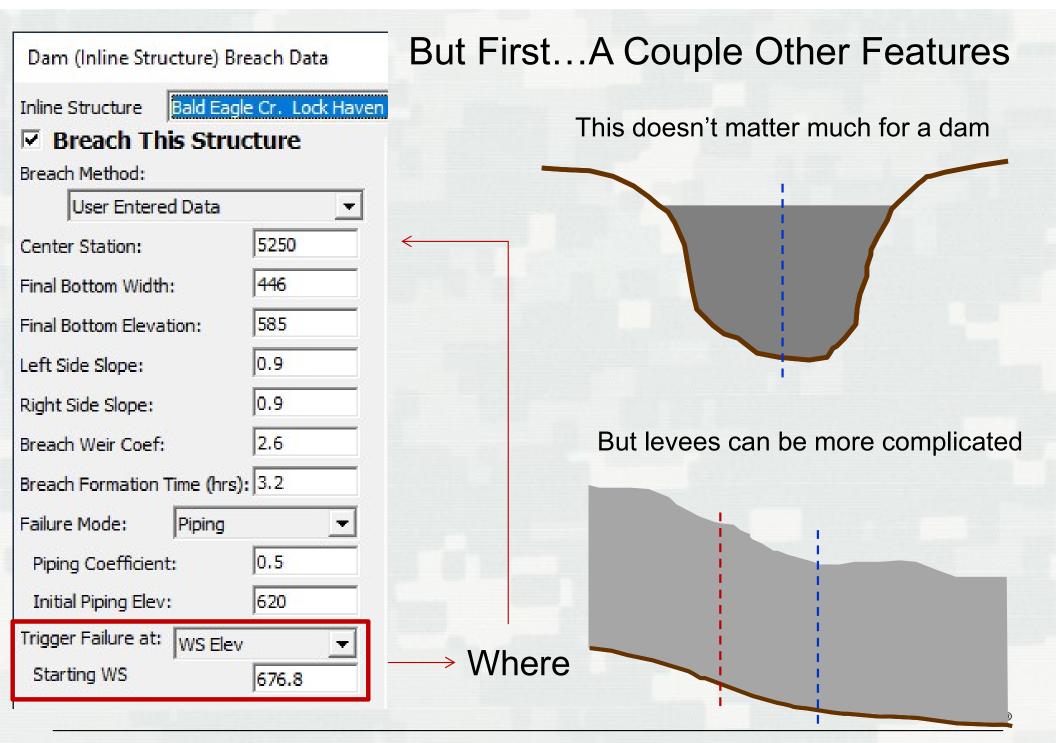
	Dam (Inline Structure) Breach Data					
	Inline Structure Bald Eagle	Cr. Lock Haver				
	Breach This Struct	ture				
	Breach Method:					
	User Entered Data	<u> </u>				
	Center Station:	5250				
	Final Bottom Width:	446				
	Final Bottom Elevation: 585					
Left Side Slope: 0.9						
	Right Side Slope:	0.9				
	Breach Weir Coef:	2.6				
	Breach Formation Time (hrs):	3.2				
	Failure Mode: Piping	•				
	Piping Coefficient:	0.5				
	Initial Piping Elev:	620				
	Trigger Failure at: WS Elev	-				
	Starting WS	676.8				

Before we get into the tough parameters... Let's take on some of these others.

Dam (Inline Structure) Breach Data


But First...A Couple Other Features

Inline Structure Bald Eagle Cr. Lock Haven


Breach This Structure

Breach Method:

User Entered Data	-		
Center Station:	5250		
Final Bottom Width:	446 585 0.9 0.9 2.6		
Final Bottom Elevation:			
Left Side Slope:			
Right Side Slope:			
Breach Weir Coef:			
Breach Formation Time (hrs):	3.2		
Failure Mode: Piping	-		
Piping Coefficient:	0.5		
Initial Piping Elev:	620		
Trigger Failure at: WS Elev	-		
Starting WS	676.8		

$\textbf{BUILDING STRONG}_{\texttt{R}}$

Three Approaches

1. User Entered Data -Parameter Estimation

2. Simplified Physical

Simplified Physical

User Entered Data

3. DL Breach

Physical Breaching (DLBreach)

 \mathbf{T}

Estimating the Breach Parameters

Literature And Guidance

- Existing COE guidance
- Prediction of embankment dam breach parameters: USBR (1998) Dam Safety Research Report

Regression Equations-

- MacDonald and Langridge-Monopolis (1984)
- ► Froehlich (1995b)
- ► Von Thun and Gillette (1990)
- ► Xu and Zhang (2009)

Technology Review (1998)

Prediction of Embankment Dam Breach Parameters

A Literature Review and Needs Assessment

DSO-98-004

Water Resources Research Laboratory

July 1998

Suggested Breach Parameters

Dam Type	Average Breach Width (B _{ave)}	Horizontal Component of Breach Side Slope (H) (H:V)	Failure Time, t _f (hours)	Agency
Earthen/Rockfill	(0.5 to 3.0) x HD (1.0 to 5.0) x HD (2.0 to 5.0) x HD (0.5 to 5.0) x HD*	0 to 1.0 0 to 1.0 0 to 1.0 (slightly larger) 0 to 1.0	0.1 to 1.0 0.1 to 1.0	FERC
Concrete Gravity	Multiple Monoliths Usually ≤ 0.5 L Usually ≤ 0.5 L Multiple Monoliths	Vertical Vertical Vertical Vertical	0.1 to 0.3 0.1 to 0.2	FERC NWS
Concrete Arch	Entire Dam Entire Dam (0.8 x L) to L (0.8 x L) to L		≤ 0.1 ≤ 0.1	
Slag/Refuse	(0.8 x L) to L (0.8 x L) to L	1.0 to 2.0	$\begin{array}{l} 0.1 \text{ to } 0.3 \\ \leq 0.1 \end{array}$	FERC NWS

*Note: Dams that have very large volumes of water, and have long dam crest lengths, will continue to erode for long durations (i.e., as long as a significant amount of water is flowing through the breach), and may therefore have longer breach widths and times than what is shown in Table 3. HD = height of the dam; L = length of the dam crest; FERC - Federal Energy Regulatory Commission; NWS - National Weather Service

Where: HD = Height of the dam.

L = Length of the dam crest.

Suggested Breach Parameters

Dam Type	Average Breach Width (B _{ave)}	Horizontal Component of Breach Side Slope (H) (H:V)	Failure Time, t _f (hours)	Agency		
	(0.5 to 3.0) x HD	0 to 1.0				
Earthen/Rockfill	You can start by trying 1h and 4 hrs and seeing if it makes a difference $ C $					
Larthen/Rockim	ROCKTIII	0.1 to 1.0				
	(0.5 to 5.0) x HD*	0 to 1.0	0.1 to 4.0*	USACE 2007		
	Multiple Monoliths	Vertical	0.1 to 0.5	USACE 1980		
Concrete Crevity	Usually $\leq 0.5 \text{ L}$	Vertical	0.1 to 0.3	FERC		
Concrete Gravity	Usually $\leq 0.5 L$	Vertical	0.1 to 0.2	NWS		
	Multiple Monoliths	Vertical	0.1 to 0.5	USACE 2007		
	Entire Dam	Valley wall slope	≤ 0.1	USACE 1980		
Comanata Anala	Entire Dam	0 to valley walls	≤ 0.1	FERC		
Concrete Arch	(0.8 x L) to L	0 to valley walls	≤ 0.1	NWS		
	(0.8 x L) to L	0 to valley walls		USACE 2007		
Slog/Defuse	(0.8 x L) to L	1.0 to 2.0	0.1 to 0.3	FERC		
Slag/Refuse	(0.8 x L) to L		≤ 0.1	NWS		

*Note: Dams that have very large volumes of water, and have long dam crest lengths, will continue to erode for long durations (i.e., as long as a significant amount of water is flowing through the breach), and may therefore have longer breach widths and times than what is shown in Table 3. HD = height of the dam; L = length of the dam crest; FERC - Federal Energy Regulatory Commission; NWS - National Weather Service

Where: HD = Height of the dam.

L = Length of the dam crest.

Breach Parameter Calculator

Inline Structure Cherry	/Creek 1	1.01	↓ ↑ Delete	this Breach De	elete all Breaches	1
✓ Breach This Struc					-	
	Entered Data 💌	Breach Plot Breach Pro	paression Simplified	d Physical Breach I	Repair (optional) F	Parameter Calculator
Center Station:	7150	Input Data Top of Dam Elevation	(ft): 5	644.5 Breach	Bottom Elevation (f	t): 5523
Final Bottom Width:	912	Pool Elevation and Fa	-	639.5 Pool Vo	olume at Fallure (acre	e-ft): 240000
Final Bottom Elevation:	5523			Failure	mode:	Overtopping 👻
Left Side Slope:	0.5	MacDonald			1	
Right Side Slope:	0.5	Dam Crest Width (ft	·		of US Dam Face Z1 (H:V): 2.6
Breach Weir Coef:	2.6	Earth Fill Type: Nor	n-homogeneous or Ro	ockfill 💌 Slope	of DS Dam Face Z2 (H:V): 2.6
Breach Formation Time (h	rs): 2.92	Xu Zhang (and Von	Thun) ith corewall		and the state of	Medium 👻
Failure Mode:	vertopping 💌	Dam Type: Dam w	Tur corewaii	Dam E	rodibility:	Medium 🔄
	0.5	A	1		Dearth	
Piping Coefficient: Initial Piping Elev:	0.5	Method	Breach Bottom Width (ft)	Side Slopes (H:V)	Breach Development Time (hrs)	
Initial Piping Elev: Trigger Failure at: W	S Elev	Method MacDonald et al		Side Slopes (H:V)	Development Time	[
Initial Piping Elev:			Width (ft)		Development Time (hrs)	Select
Initial Piping Elev: Trigger Failure at: W	S Elev	MacDonald et al	912	0.5	Development Time (hrs) 2.92	
Initial Piping Elev: Trigger Failure at:	S Elev	MacDonald et al Froehlich (1995)	Width (ft) 912 675	0.5	Development Time (hrs) 2.92 3.04	Select

* Note: the breach development time from the Xu Zhang equation includes more of the initial erosion period and post erosion than what is used in the HEC-RAS breach formation time.

NG®

Cancel

MacDonald and Langridge-Monopolis (1984)

Earthfill

 $Veroded = 0.0261 (V_{out} * h_{w})^{0.769}$

 $t_f = 0.0179 (V_{eroded})^{0.364}$

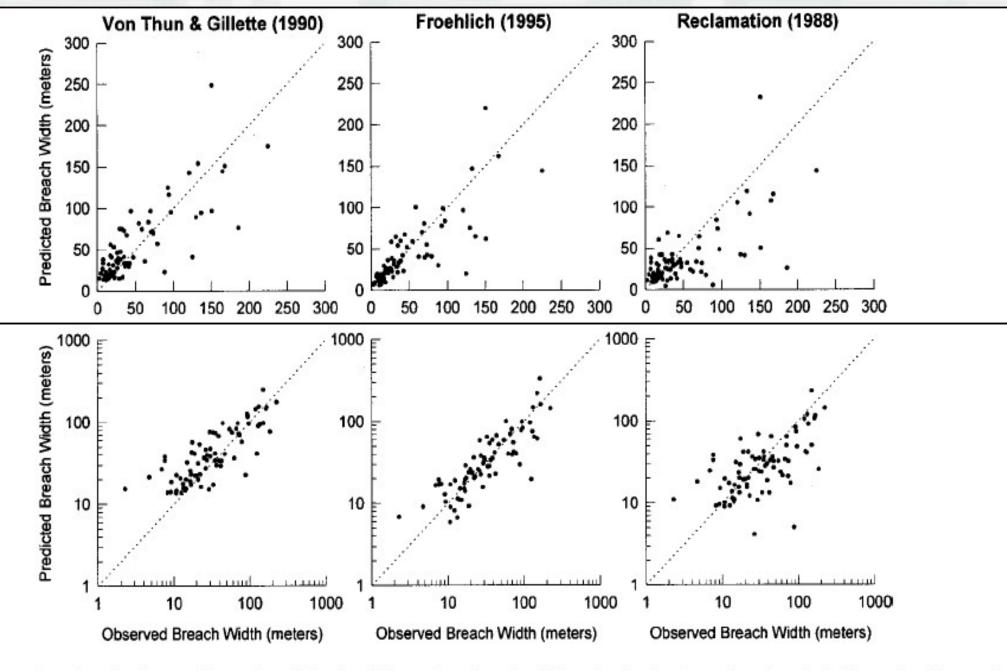
$$BREACH_{size} = f(V_{eroded})$$

Non-earthfill

$$V_{eroded} = 0.00348 (V_{out} * h_w)^{0.852}$$

Input Data 5523 5644.5 Breach Bottom Elevation (ft): Top of Dam Elevation (ft): 5639.5 240000 Pool Volume at Failure (acre-ft): Pool Elevation at Failure (ft): Overtopping Failure mode:

 h_w = Pool Elev – Breach Bottom Elev V_{out} = Pool Volume at Failure (but is total flow volume - including inflow)


Von Thun & Gillette (1990)	Reservoir Size, m ³	Cb, meters
$B_{avg} = 2.5h_w + C_b$	< 1.23*10 ⁶ 1.23*10 ⁶ - 6.17*10 ⁶ 6.17*10 ⁶ - 1.23*10 ⁷ > 1.23*10 ⁷	6.1 18.3 42.7 54.9
$t_f = 0.02h_w + 0.25$ (erosion resistant)	<u>Reservoir Size, acre-feet</u> < 1,000 1,000-5,000	<u>Съ, feet</u> 20 60
$t_f = 0.015 h_w$ (easily erodible)	5,000-10,000 >10,000	140 180
Pool Elevation at Failure (ft): 5639.5 Pool V	n Bottom Elevation (ft): olume at Failure (acre-ft): e mode:	5523 240000 rtopping -
h _w = Pool Elev – Breach V _{out} = Pool Volume at Fai		(IIII) ®

Eroehlich (1995)

$$B_{ave} = 0.1803 \text{ K}_{o} V_{w}^{0.32} h_{b}^{0.19}$$

 $t_{f} = 0.00254 V_{w}^{0.53} h_{b}^{-0.90}$
Froehlich (2008)
 $B_{ave} = 0.27 \text{ K}_{o} V_{w}^{0.32} h_{b}^{0.04}$
 $t_{f} = 20.18 V_{w}^{0.5} h_{b}^{-1.0}$
Froehlich (1995)
Froehlich (1995)
 $h_{b}^{0.00}$
 $h_{b}^{0.00}$
 $h_{b}^{0.04}$
 $h_{b}^{0.04}$
 $h_{b}^{0.04}$
 $h_{b}^{0.04}$
 $h_{b}^{0.04}$
 $h_{b}^{0.04}$

 V_w = Volume of water at h

Width Comparison

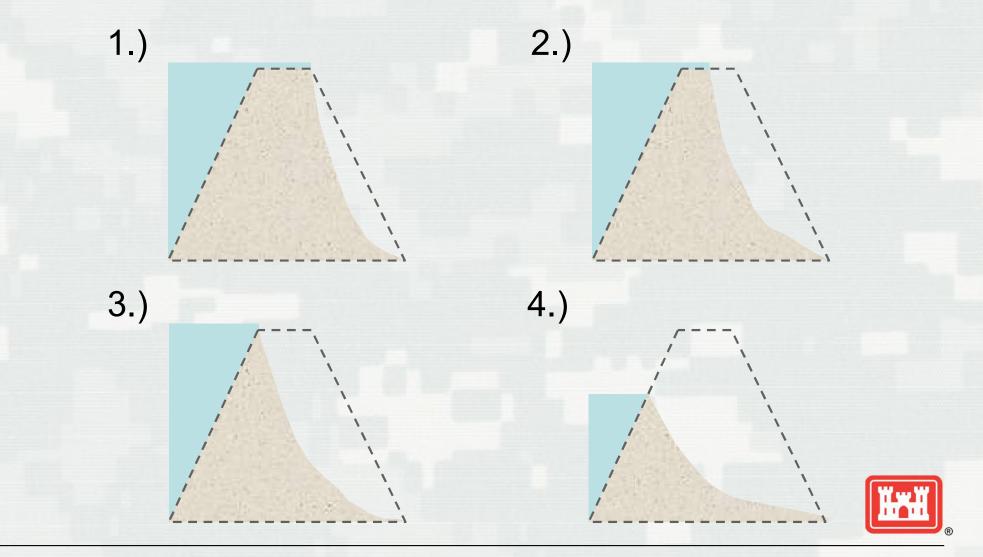
Predicted and observed breach widths (Wahl 1998), plotted arithmetically (top) and on logarithmic scales (bottom)

Four Important Ideas

1. Do not mix-and-match width and breach time.

Method	Breach Bottom Width (ft)	Side Slopes (H:V)	Breach Development Time (hrs)	
MacDonald et al	122	0.5	2.57	Select
Froehlich (1995)	628	1.4	3.44	Select
Froehlich (2008)	544	1	3.04	Select
Von Thun & Gillete	363	0.5	0.81	Select
Xu & Zhang	499	1.06	5.05 *	Select

Four Important Ideas


1. Do not mix-and-match width and breach time.

2. Xu & Zang has a different breach development time.

Method	Breach Bottom Width (ft)	Side Slopes (H:V)	Breach Development Time (hrs)	
MacDonald et al	122	0.5	2.57	Select
Froehlich (1995)	628	1.4	3.44	Select
Froehlich (2008)	544	1	3.04	Select
Von Thun & Gillete	363	0.5	0.81	Select
Xu & Zhang	499	1.06	5.05 *	Select

Thought Experiment

When does the clock start for "breach time" in HEC-RAS?

Four Important Ideas

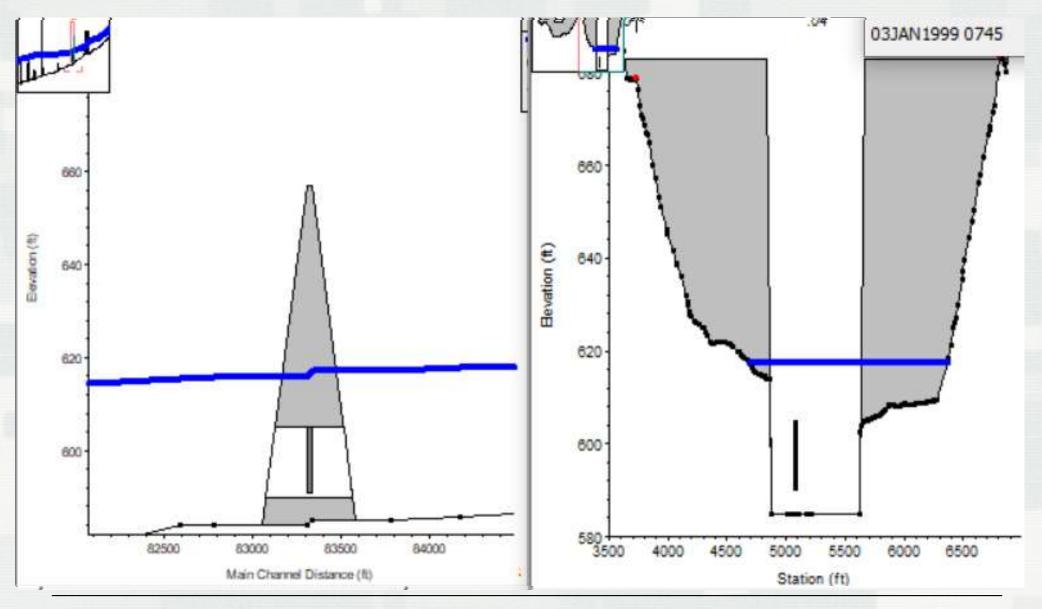
1. Do not mix-and-match width and breach time.

2. Xu & Zang has a different breach development time.

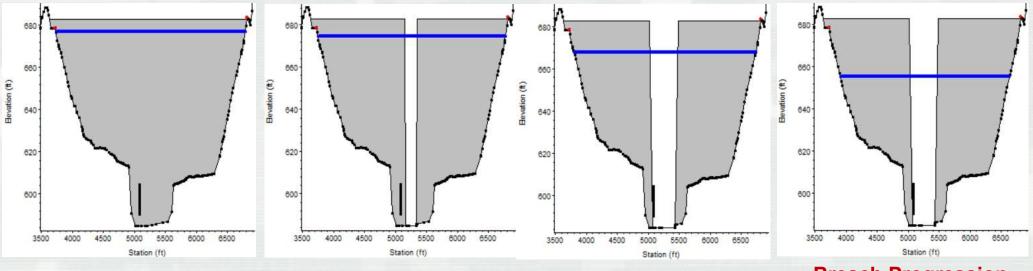
3. Does the breach progression make physical sense?

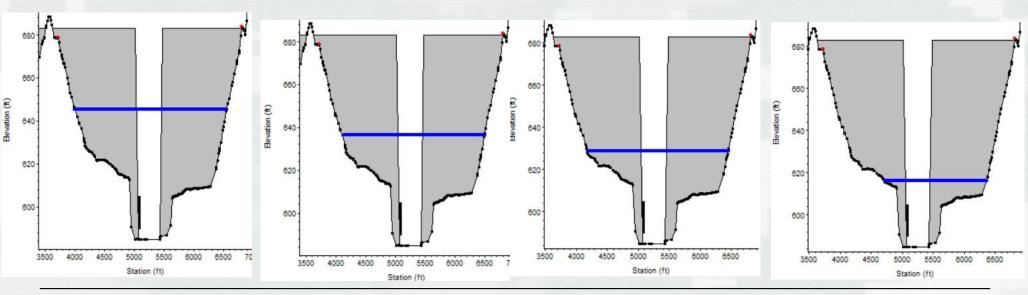
Does it keep eroding at low head?Does it stop eroding with despite high head and velocity?

Evaluate Breach Progress

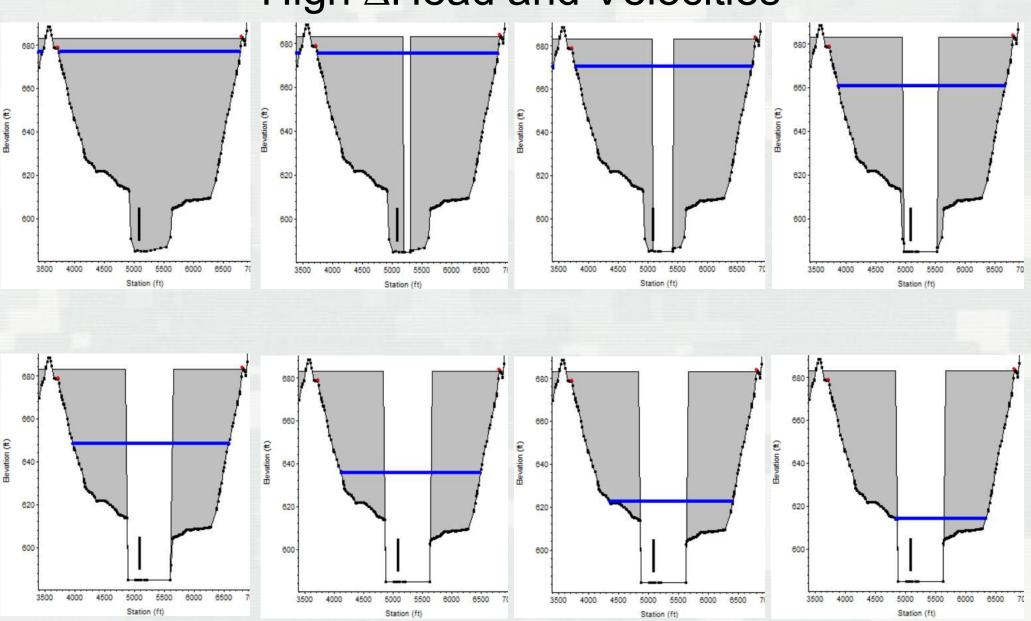

Breach parameter estimation is uncertain.

Method	Breach Bottom Width (ft)	Side Slopes (H:V)	Breach Development Time (hrs)	
MacDonald et al	122	0.5	2.57	Select
Froehlich (1995)	628	1.4	3.44	Select
Froehlich (2008)	544	1	3.04	Select
Von Thun & Gillete	363	0.5	0.81	Select
Xu & Zhang	499	1.06	5.05 *	Select


 We can use HEC-RAS hydraulic results to inform our decision on breach parameter selection.


Profile and Breach Plots

Do you have any concerns about this simulation?



Breach Progression Ends Here

∆ Head and Velocity Still High

This Simulation Continues to Widen for High ∆Head and Velocities

Widening rate in this method is not connected to hydraulics. The user must check to make sure results make physical sense.

Three Approaches

1. User Entered Data -Parameter Estimation

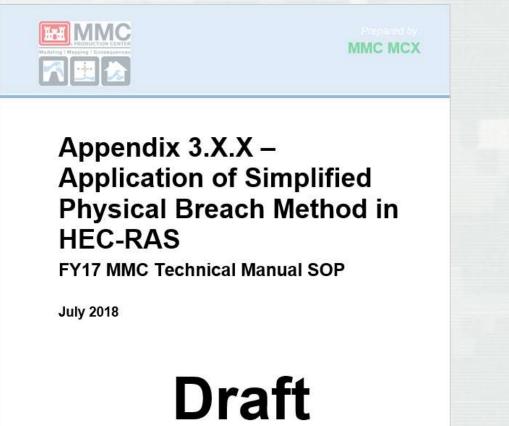
2. Simplified Physical

Simplified Physical

User Entered Data

3. DL Breach

Physical Breaching (DLBreach)

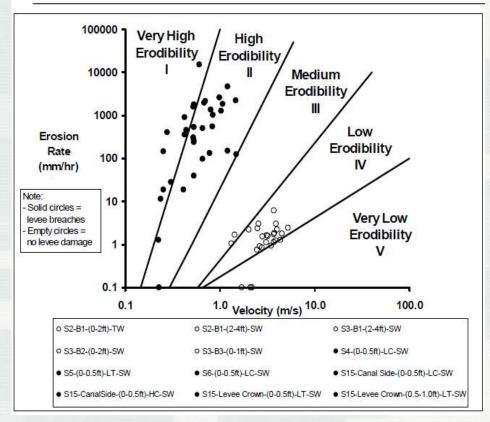


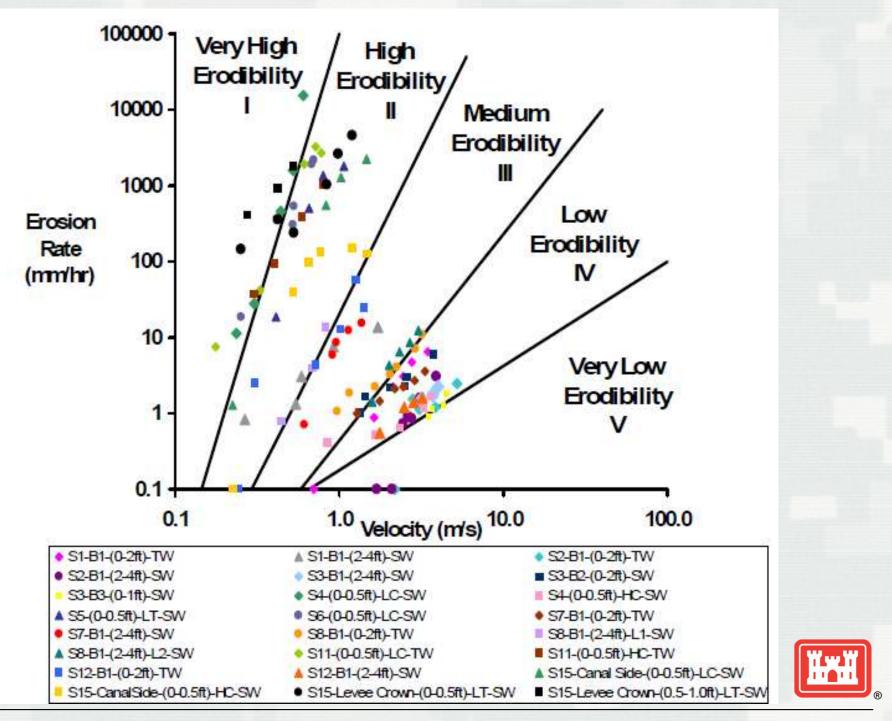
 \mathbf{T}

inline Structure Bald Eagl	e Loc Hav	81500			e this Breach	. Delete all Brea	ches
✓ Breach This Structure	e		4				
Breach Method: Simplifie	d Physical 💌		ot Breach Pi ng Downcutti		ed Physical Br	each Repair (optic Widening Relation	onal) Parameter Calculat nship
Center Station:	3900		-	wncutting Rate (ft/	Y)	Velocity (ft/s)	Widening Rate (ft/hr)
Max Possible Bottom Width:	1800	1	0		0 1	0	0
In Possible Bottom Elev:	592	2	2		0 2	2	0
eft Side Slope:	2	4	4		1 2 4	3	2
	2	5	5		5 5	5	5
Right Side Slope:		6	7		15 <u>6</u> 30 7	7	15
Breach Weir Coef:	2.6	8	20		1	10	30
Breach Formation Time (hrs)	: 1	9	30	277	50 8 00 9	20	50
ailure Mode: Pipir	ng 👻	10			10	50	100
Piping Coefficient:	0.6	11 12			11		
Initial Piping Elev:	620	12			12		
and the second		14			14		
Initial Piping Diameter:	1	15			15		
Mass Wasting Feature:		16			16		
Frigger Failure at: WS E	lev 💌	1/			17		
Starting WS	668.1	19			18		
	1	20			20		
		21			20		
		22			22		
		23			22		
		24					
		25			24		
		2.5			25		
							OK Cance

$\textbf{BUILDING STRONG}_{\texttt{R}}$

Where do these rates come from?


FOR OFFICIAL USE ONLY (FOUO)


This document is FDR OCESCIAL USE ONLY (FORCE) if uniform intermation fluctures for example horizontable release and/or the Foredam of Information Act (2007). Solid is to be exampled, stand, handfield, Foundbert, devictioned, disposed of in accordance with USACE pating relating to ECUSE information and USE notice to released to be grain descent and who do not not a stand - most is binned in formation and the relation of the subscription of the st

The guidance is under development. There are some historic values that can help.

Technical Memorandum for Record

Date:	May 31, 2013 (Revised July 2, 2013)			
From:	Chris Bahner, P.E., D. WRE			
Subject:	Updated Levee Breach Characteristics for MMC SOP			

Three Approaches

1. User Entered Data -Parameter Estimation

2. Simplified Physical

Simplified Physical

User Entered Data

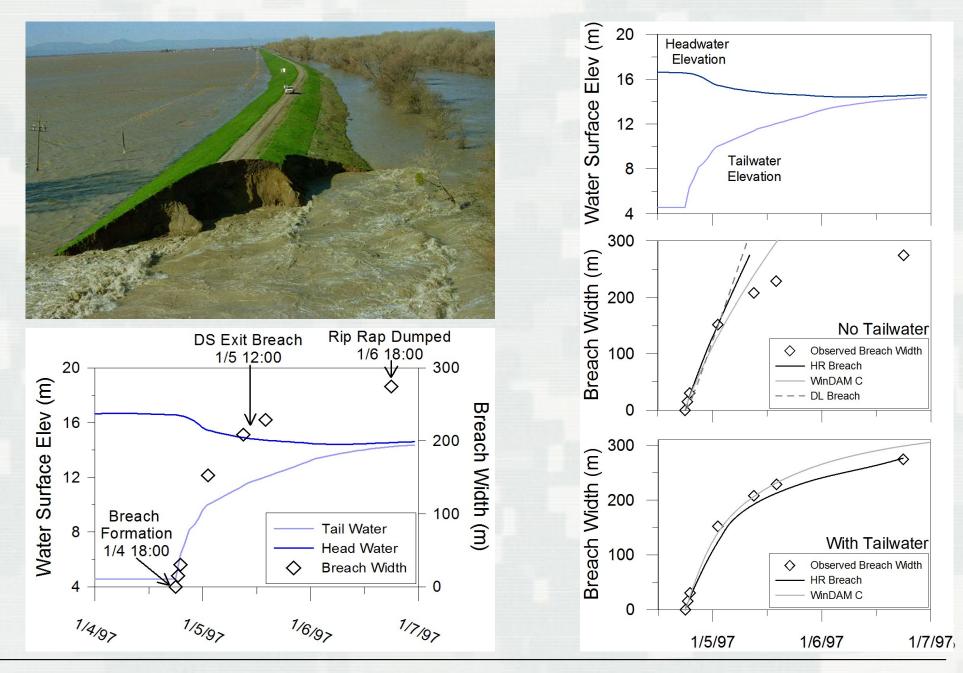
3. DL Breach

Physical Breaching (DLBreach)

 \mathbf{T}

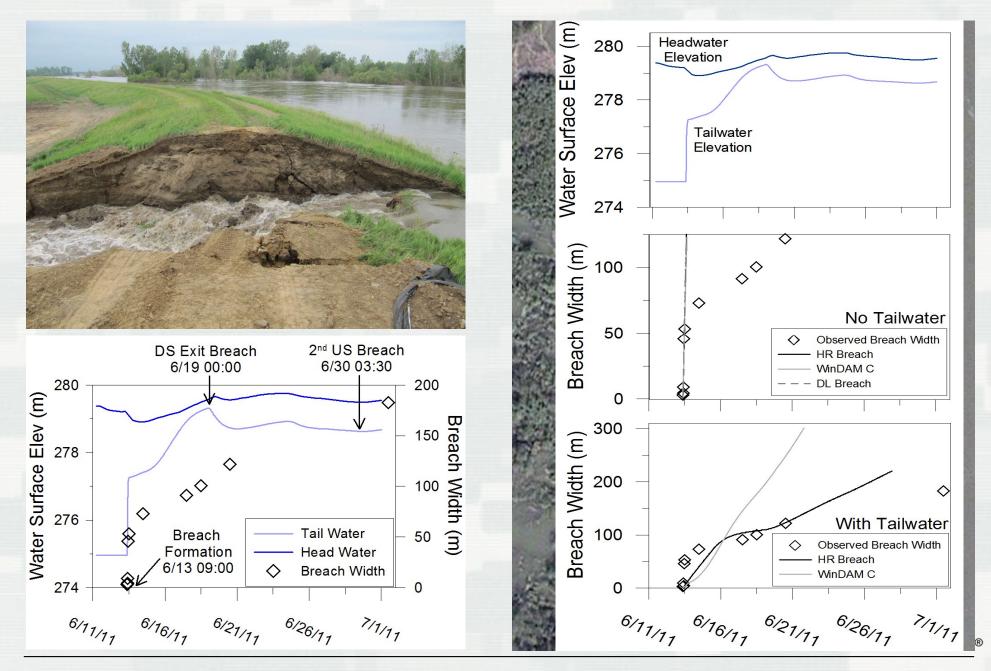
Estimating the Breach Evolution

Process Models:


ARS SIMBA/WinDAMB

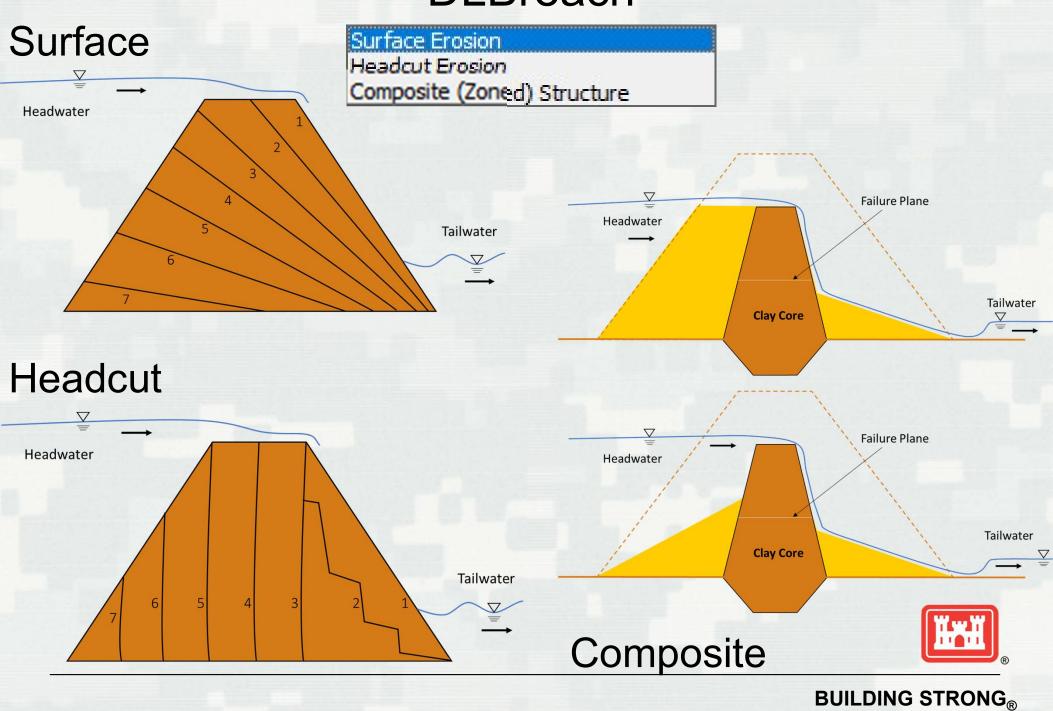
HR-BREACH (HR Wallingford)

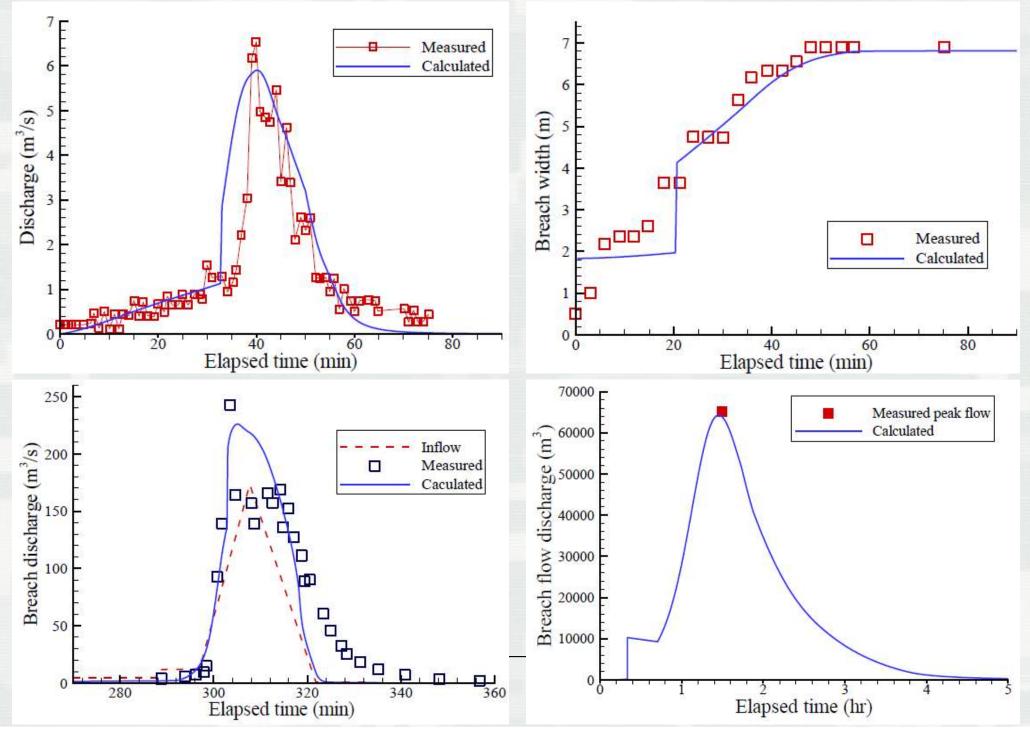
► DL Breach (Dr Weiming Wu)


Sutter Bypass Levee Breach

From: Risher, P. and Gibson, S. (2016) "Applying Mechanistic Dam Breach Models to Historic Levee Breaches," Proceedings FloodRisk 2016.

BUILDING STRONG_®


Hamburg Breach (Missouri River)


From: Risher, P. and Gibson, S. (2016) "Applying Mechanistic Dam Breach Models to Historic Levee Breaches," Proceedings FloodRisk 2016.

BUILDING STRONG_®

DLBreach

DLBreach

DLBreach

Dam (Inline Structure) Breach Data

Inline Structure Teton Rea	ach 1 2.5 ▼ ↓ ↑ Delete this Bro	each Delete all Breaches
Breach This Structure	Breach Plot Breach Progression Simplified Phys	sical Physical Breaching (DLBreach) Parameter Calculator Breach Repair (optiona
Physical Breaching (DLBreach Center Station: 1000 Max Possible Bottom Width: 250 Min Possible Bottom Elev: 0 Left Side Slope: 0 Right Side Slope: 0 Breach Weir Coef: 1.7 Breach Formation Time (hrs): 1 Failure Mode: Piping Piping Coefficient: 0.05 Initial Piping Elev: 48 Initial Piping Diameter: 0.1 Mass Wasting Feature: 0.1	Surface Erosion Surface Erosion Headcut Erosion Composite (Zoned) Structure Embankment Width: I0.5 Slope (H:B) Roughness: US Slope: 0.3333 0.016 Flat Top: 0.016 DD Slope: 0.4 0.016 Soil Parameters: Soil Type: Cohesive Sediment Diameter: 0.00003 Porosity: 0.3 Specific Gravity: 2.65 Clay Content: 0.3 Cohesion: 25000. Friction Angle: 0.65 Adaptation Length: Erodibility (kd): 8. Critical Shear Stress: 0.15	✓ Model a cover layer Clay Cover and Core Parameters: Parameters Core Height: Core Crest Width: Core US Slope: Core DS Slope: Core Center Location: Core Manning n: Soil Type: Cohesionless ♥ Sediment Diameter: Porosity: Clay Content: Cohesion: Friction Angle: Critical Shear Stress: US Slope Thickness: US Slope Thickness:
		OK Cancel

$\textbf{BUILDING STRONG}_{\texttt{R}}$

Four Important Ideas

1. Do not mix-and-match width and breach time.

2. Xu & Zang has a different breach development time.

3. Does the breach progression make physical sense?

4. Test sensitivity...on important result. (e.g. Arrival Time/Max Stage vs Breach Geometry)

-Try multiple methods

US Army Corps of Engineers Hydrologic Engineering Center

Using HEC-RAS for Dam Break Studies

August 2014

https://www.hec.usace.army.mil/publications/TrainingDocuments/TD-39.pdf

BUILDING STRONG®

Approved for Public Release. Distribution Unlimited.

TD-39

USBR Levee **Breach Lab Studies**

1.9(t*_f)-1/6

Q*peak Envelope curve

10000

100000

1.00

peak ť

0.10 10

Hydraulic Laboratory Report HL-2011-09

Physical Hydraulic Modeling of **Canal Breaches**

U.S. Department of the Interior **Bureau of Reclamation Technical Service Center** Hydraulic Investigations and Laboratory Services Group Denver, Colorado

t*,

100

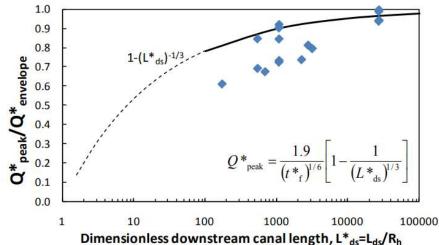


Figure 28. — Dimensionless peak discharge as a function of dimensionless breach development time.

1000

References

- ASCE/EWRI Task Committee on Dam/Levee Breaching, "Earthen Embankment Breaching", Journal of Hydraulic Engineering, December 2011.
- Colorado State Department of Natural Resources, Division of Water Resources, Office of the State Engineer, Dam Safety Branch, "Guidelines for Dam Breach Analysis,", 10 Feb. 2010.
- Colorado State University, "Predicting Peak Outflow from Breached Embankment Dams," prepared for the National Dam Safety Review Board Steering Committee on Dam Breach Equations by M.W. Pierce, C.I. Thornton and S.R. Abt, June 2010.
- FERC (1988), USA Federal Regulatory Commission Notice of Revised Emergency Action Plan Guidelines, February 22, 1988.
- Fread, D. L., (1988) (revised 1991), BREACH: An Erosion Model for Earthen Dam Failures, National Weather Service, Office of Hydrology, Silver Spring, MD.
- Froehlich, D. C. (1987), "Embankment Dam Breach Parameters," Hydraulic Engineering, Proc. 1987 ASCE National Conference on Hydraulic Engineering, New York, 570-575.
- Froehlich, D. C. (1995a), "Embankment Dam Breach Parameters Revisited," Water Resources Engineering, Proc. 1995 ASCE Conf. on Water Resources Engineering, New York, 887-891.
- Froehlich, D. C. (1995b), "Peak Outflow from Breached Embankment Dam," J. Water Resour. Plan. Management Div., ASCE 121(1), 90-97.
- Froehlich, David C. (2008), "Embankment Dam Breach Parameters and Their Uncertainties," Journal of Hydraulic Engineering, ASCE, Vol. 134, Issue 12, pp 1708-1721, Dec. 2008.
- Gee, D. Michael and Brunner, Gary W., 2007. "Comparison of Breach Predictors," Association of State Dam Safety Officials (ASDSO), Dam Safety 2007, Austin, TX, 9-13 September 2007.
- Gee, D. Michael, 2010. "Dam Breach Modeling with HEC-RAS using Embankment Erosion Process Models," World Environmental and Water Resources Congress 2010, ASCE-EWRI, Providence, R.I., 16-20 May 2010.

BUILDING STRONG_®

References

HR BREACH Model http://www.floodsite.net/html/HR_Breach_Model.htm

- MacDonald, T. C., and Langridge-Monopolis, J. (1984), "Breaching Characteristics of Dam Failures," ASCE J. Hydraulic Engineering, 110(5), 567-586,
- Temple, Darrel M., and Hanson, Gregory J., "Earth Dam Overtopping and Breach Outflow," Presented at the ASCE World Water & Environmental Resources Congress 2005, EWRI, Anchorage, AK, 15-19 May 2005.
- U.S. Army Corps of Engineers, Hydrologic Engineering Center, "Flood Emergency Plans Guidelines for Corps Dams," RD-13, June 1980.
- U.S. Army Corps of Engineers, Hydrologic Engineering Center, "Numerical Simulation of Mudflows from Hypothetical Failures fo the Castle Lake Debris Blockage near Mount St. Helens, WA", HEC-PR-14, October 1990.
- Von Thun, J. L., and Gillette, D. R. (1990), "Guidance on Breach Parameters," Internal Memorandum, U.S. Dept. of the Interior, Bureau of Reclamation, Denver, March 13, 1990, 17p.
- Wahl, Tony L., "Prediction of Embankment Dam Breach Parameters A Literature Review and Needs Assessment," DSO-98-004, Dam Safety Research Report, U.S. Department of the Interior, Bureau of Reclamation, Dam Safety Office, July 1998.
- Wahl, Tony L., "Uncertainty of Predictions of Embankment Dam Breach Parameters," ASCE Journal of Hydraulic Engineering, May 2004.
- Wahl, Tony L., et al., 2008. "Development of Next-Generation Embankment Dam Breach Models," United States Society on Dams, 28th Annual USSD Conference, Portland, OR, April 28-May 2, 2008, pp. 767-779.
- Washington State Dept. of Ecology, Dam Safety Guidelines, Tech. Note 1 Dam Break Inundation Analysis and Downstream Hazard Classification, Water Resources Program, Dam Safety Office, P.O. Box 47600, Olympia, WA 98504-7600, July 1992, <u>http://www.ecy.wa.gov/programs/wr/dams/Images/pdfs/technote_1.pdf</u>
- Xu, Y., and Zhang, L.M., 2009. "Breaching Parameters for Earth and Rockfill Dams." J. Geotech. Geoenviron. Eng. 135(12), 1957-1969.

A Brief Plug The RSM River Mechanics Podcast

River Mechanics Podcast

Includes Conversations on:

- Sediment Transport
- River Processes
- Channel Response to Engineering Measures
- Dam Removal Modeling
- River Restoration

BUILDING STRONG_®

https://www.hec.usace.army.mil/confluence/rasdocs/rastraining/latest/rsm-river-mechanics-podcast