Bridge Modeling

Alex Sanchez, Ph.D, Mark Jensen, M.S., Cameron Ackerman, P.E., D.WRE

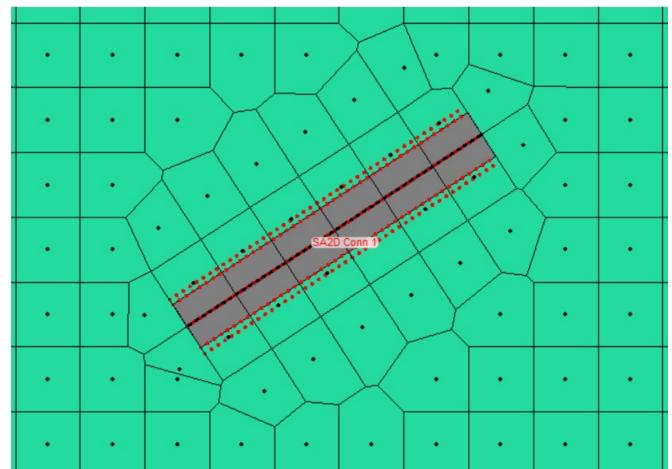
USACE, Institute for Water Resources, Hydrologic Engineering Center

Introduction

- Two Approaches for Bridge Modeling
 - Simplified 1D/2D Bridge Modeling
 - Enforces precomputed 1D bridge curves from a nested 1D bridge model
 - Can handle any flow regime
 - Cannot simulate detailed flow
 - Terrain Modifications not necessary
 - Full 2D Modeling
 - Detailed mesh and terrain modifications used to simulate detailed flow through bridge
 - Currently, cannot handle pressured flow or overtopping

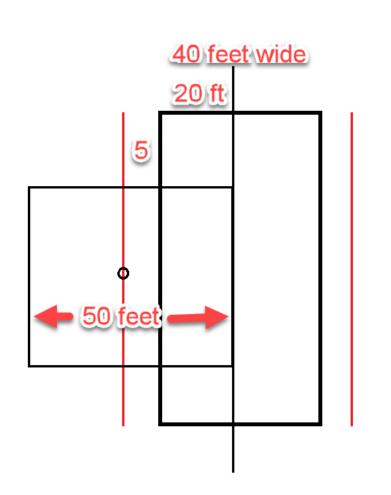
Simplified 1D/2D Bridge Hydraulics

- Utilizing existing HEC-RAS 1D Bridge Hydraulics methods inside of a 2D Flow Area
- Model complete range of Bridge Hydraulic flow regimes
 - Low flow
 - Pressure flow
 - Pressure flow and weir flow (road over topping)
 - Low flow and weir flow



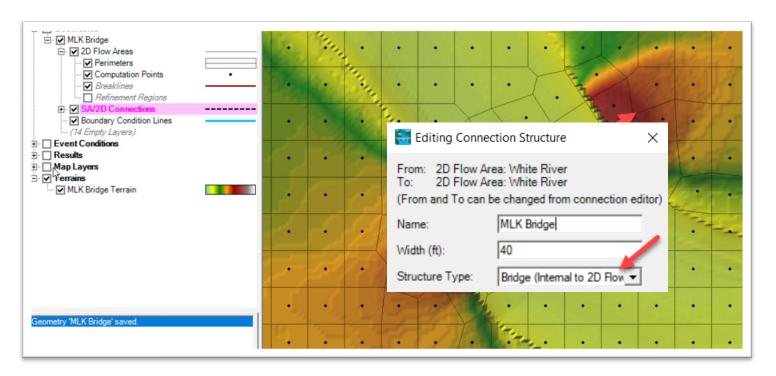
- Use HEC-RAS 1D Bridge Geometry and Cross Section Layout (automated layout) inside of 2D Flow Area
- Develop a family of Headwater/Tailwater Flow curves from RAS 1D bridge hydraulic calculations during geometry pre-processing
- Uses a special momentum equation that gets applied only at the 2D bridge centerline faces:
 - Friction loss, pressure differential, and convective acceleration forces are equated from the water surface difference in the bridge curves.
 - The forces are distributed across faces though the bridge.
 - Local acceleration is calculated on the fly, as it is not a force in curves
- Bridge faces are then solved in 2D just like all other faces
- Extremely efficient almost no increase in computations

Structure Layout

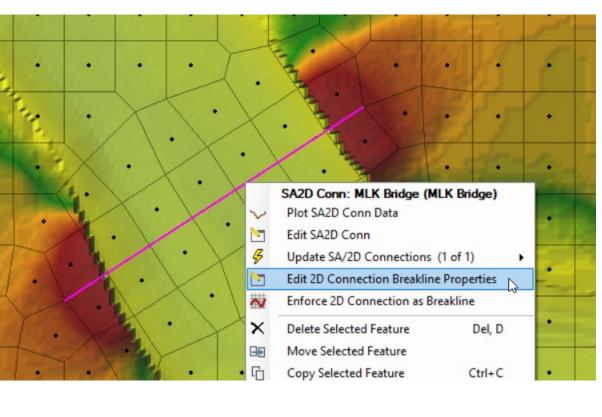

- 1D Bridge loses computed between "XS" downstream of deck through the bridge to "XS" upstream of bridge deck.
- Enforced as Breakline
- Set cells sizes (or cell US/DS length) so that the cell centers match the domain covered by 1D Bridge loses
- Model Bridge opening (not overbanks)

Example Layout

- Structure is Enforced as a Breakline
- Cell Size Considerations
 - Bridge Deck width = 40 ft and US Distance = 5 feet
 - Half deck width = 40/2 = 20 ft
 - Distance from centerline to first cell center = 20 + 5 ft
 - Row of cells needs to be 50 ft


Steps for Adding a 2D Bridge

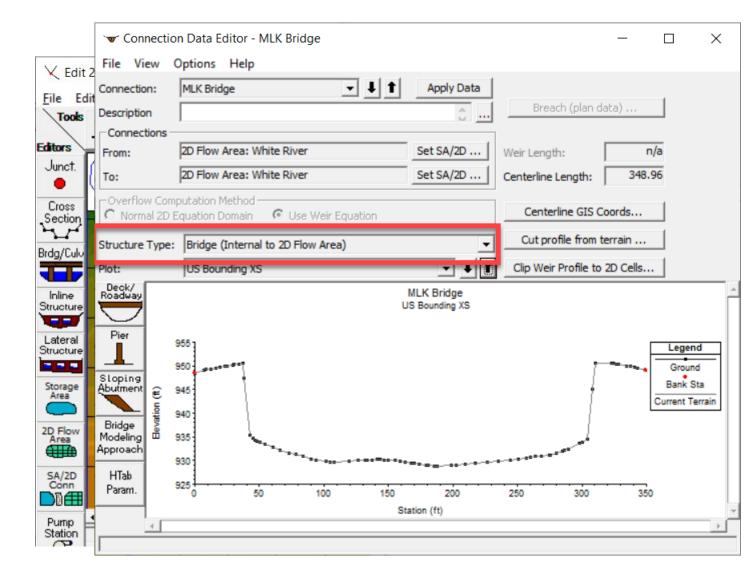
- 1) Draw a centerline for the bridge opening/embankment using the SA/2D Area Connection tool
 - Bridge centerline is drawn left to right looking downstream.
- 2) Develop an appropriate mesh (cell size and orientation) for the bridge
 - Use the structure mesh controls (cell size and enforcement). Some hand editing may be required depending on the bridge and what else is near the bridge (i.e. levee, another bridge, railroad tracks, road, etc...)
- 3) Enter the bridge data
 - Deck/roadway; distance from upstream bridge deck to outside cross section piers; abutments; bridge modeling approach; Manning's n values for the 1D bridge cross sections; and hydraulic tables controls (HTAB) into the SA/2D Area Connection editor.
- 4) Pre-process the geometry in order to create the bridge curves.
 - Review the bridge family of rating curves for hydraulic accuracy.
- 5) Run the model and review the results.
 - Make any necessary changes to the data in order to improve the results.


- Select the SA/2D Area Connection layer tool and Draw the centerline of the bridge from left to right looking downstream
- Choose Bridge Type

HEC

Bridge Centerline and Mesh Adjustments

- Edit 2D Connection Breakline Properties
 - Cell Spacing
 - Near Repeats
- Cell Spacing = deck width + u/s distance
- Enforce 2D Connection as Breakline



Bridge Data

SA/2D Conn

- Open in Geometric Data Editor
- Structure Type: Bridge

Deck and Roadway

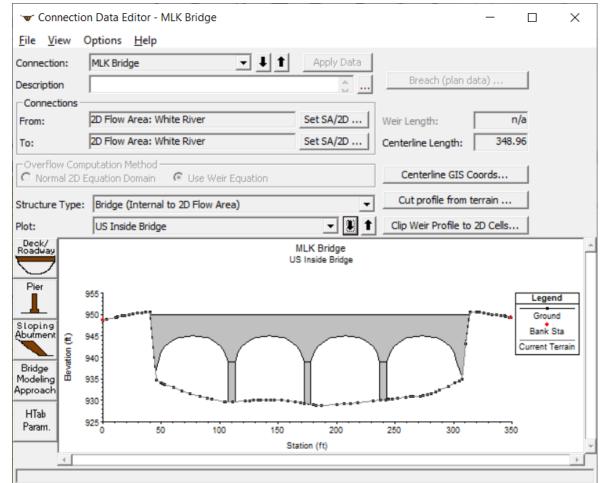
- **Distance** (this is the distance from the upstream side of the bridge deck to the cross section upstream outside of the bridge, as wells as downstream outside)
- Width of the bridge deck in the direction of flow
- Weir Coefficient for flow going over the roadway
- Station (distance from left to right along the bridge deck/roadway), High Chord, and Low Chord elevations for the upstream and downstream side of the bridge deck

	Distance	e	Wid	th	Weir Coef			
		4	D.		2.6			
Cle	ear De	Row	ns Row		Сор	y US to DS		
	U	lpstream			Downstrea	am		
	Station	high chord	low chord	Station	high chord	low chord		
1	40	950	930	40	950	930		
2	47	950	939	47 50	950 950	939 941.175		
3	50	950	941.175					
	4 53 950 5 56 950		942.45	53 56	950 950	942.45 943.2		
			943.2					
6	59	950	943.8	59	950	943.8		
7	62	950	944.25	62	950	944.25		
8	65	950	944.55	65	950	944.55		
Wei Max	Embankmer ir Data C Submerge <u>ir Crest Sha</u> Broad Cre Ogee	ence: 0.	95		nbankment S eir Flow El:	s o		
	ogee				OK	Cancel		

Automated Cross-Sections

- HEC-RAS will automatically create the four needed cross sections for preprocessing the bridge hydraulics into a family of curves.
 - **1. Upstream just outside the bridge deck**, normally at the toe of the upstream embankment. This cross section is automatically generated upstream of the bridge deck based on the user entered **Distance** field.
 - 2. Upstream just inside the bridge deck/roadway.
 - **3.** Downstream just inside the bridge deck/roadway.
 - **4. Downstream outside of the bridge deck/roadway**, normally at the toe of the downstream embankment. This cross section is automatically generated downstream of the bridge deck a distance equal to what the user entered for the upstream **Distance** field.

Piers and Abutments


- A Centerline Station for both the u/s and d/s for bridge pier.
- The pier is formed by entering pairs of elevations vs widths, starting below the ground and going up past the low chord of the bridge deck.
- This must be done for both the u/s and d/s side of bridge
- Copy Up to Down, if appropriate

A	dd Copy	Delete	Pier #	<u> </u>
-		nterline Statio nterline Statio	on Upstream on Downstream	110
A	ating Pier Del Il On All Set Wd/Ht for	<u>off</u> □	Apply floating ris Width:	debris to this p
		Deb	ris Height:	
	Upstrea		-	Instream
	Upstrea Pier Width		-	Instream
		am	Dow	1
	Pier Width	am Elevation	Dow Pier Width	Elevation
2	Pier Width 6	am Elevation 925	Dow Pier Width 6	Elevation 925
2	Pier Width 6	am Elevation 925	Dow Pier Width 6	Elevation 925
1 2 3 4 5	Pier Width 6	am Elevation 925	Dow Pier Width 6	Elevation 925
234	Pier Width 6	am Elevation 925	Dow Pier Width 6	Elevation 925

Bridge Geometry

- For the **two cross-sections inside the bridge**, they follow the edges of the deck/roadway.
- The outside cross-section locations are automated by simply creating cross sections that are parallel to the inside cross sections, and the distance upstream and downstream from the bridge deck is based on what the user entered for the Distance field in the Deck/Roadway editor.
- Note: If the user changes the Deck/roadway data (Bridge width or distance field), then the location of the 1D cross sections will change.
- The user can view each of the four cross sections, as well as the centerline from the plot by selecting the location to view.
- If the bridge data is changes, the user will see that the terrain under the current 1D cross section line is different than what they currently have entered. The user can recut any of the 1D cross sections by simply pressing the **Cut profile from terrain button** while viewing a specific cross section.

Manning's n Data for the XS's

• Options | External and Internal Bridge Cross-Sections...

	Up	ostream Outsi	de			U	pstream Insid	le			Dov	wnstream Ins	ide			Dov	Instream Out	side	
	Main Ch	hannel Bank S	Stations			Main Ch	annel Bank S	tations			Main Ch	annel Bank S	tations			Main C	hannel Bank	Stations	
	Left Bank	Sta Righ	t Bank Sta			Left Bank S	Sta Right	t Bank Sta			Left Bank	Sta Righ	t Bank Sta		Г	Left Bank	<sta rig<="" th=""><th>ht Bank Sta</th><th></th></sta>	ht Bank Sta	
Þ		348.9	6		0		348.96	5		0		348.9	6		0		348.9	96	
	Cross Se	ction X-Y Cod	ordinates			Cross Se	ction X-Y Co	ordinates			Cross Se	ction X-Y Cod	ordinates			Cross Se	ection X-Y Cod	ordinates	
	Station	Elevation	Mann n	-		Station	Elevation	Mann n	•		Station	Elevation	Mann n	-		Station	Elevation	Mann n	-
1	0	948.51	0.035		1	0	948.61	0.035		1	0	947.96	0.035		1	0	947.78	0.035	
2	7.3	949.17			2	3.37	948.91			2	0.63	948			2	3.85	948		
3	8.8	949.27			3	10.53	949.31			3	6.58	948.66			3	9.8	948.66		
4	12.42	949.33			4	11.34	949.33			4	12.52	948.97			4	15.75	948.97		
5	16.03	949.55			5	12.59	949.42			5	18.47	949.31			5	21.7	949.31		
6	19.65	949.64			6	16.48	949.62			6	24.42	949.62			6	27.65	949.62		
7	23.27	949.91			7	18.57	949.69			7	30.37	949.97			7	33.6	949.97		
8	25.15	949.97			8	22.19	949.96			8	31.64	950			8	39.55	950.28		
9	29.57	950.2			9	25.81	950.04			9	33.61	950.14			9	45.5	950.62		
0	30.5	950.27			10	29.42	950.25			10	36.32	950.28			10	50.75	935.55		
1	34.12	950.37			11	33.04	950.32			11	38.88	950.35			11	56.7	934.53		
2	37.05	950.56			12	36.66	950.56			12	42.49	950.62			12	59.64	934.17		
3	38.15	947.49			13	40.28	950.62			13	48.22	950.62			13	62.65	933.86		
4	42.3	935.27			14	45.53	934.82			14	50.63	943.49			14	68.6	933.29		
5	44.91	934.73		1	15	49.48	934.14		-1	15	53.47	934.89		-	15	72.32	932.95		
-	45 04	024 24		-	10	F4 47	20 000		-	10	FF 24	024 6		- I	10	75 04	000 61		

1D Bridge Modeling Approach

- Low flow methods:
 - Energy

HH

- Momentum
- Yarnell
- High flow methods:
 - Energy
 - Pressure/Weir flow

Conne	ection Bridge Mod	deling Ap	oroach Editor					
<u>Use</u> C	Flow Methods <u>Compute</u> For Energy (Stand	lard Step)						
0	Momentum		Coef Drag Cd					
0	Yarnell (Class	A only)	Pier Shape K	2				
•	Highest Energy Answer							
O E	High Flow Methods C Energy Only (Standard Step) Pressure and/or Weir Submerged Inlet Cd (Blank for table)							
	Submerged Inlet -	+ Outlet Co	I	0.8				
	Max Low Chord (Blank for default)							
	ОК	Cano	el	Help				
Use pr	ressure and/or weir	r method fo	r high flow					

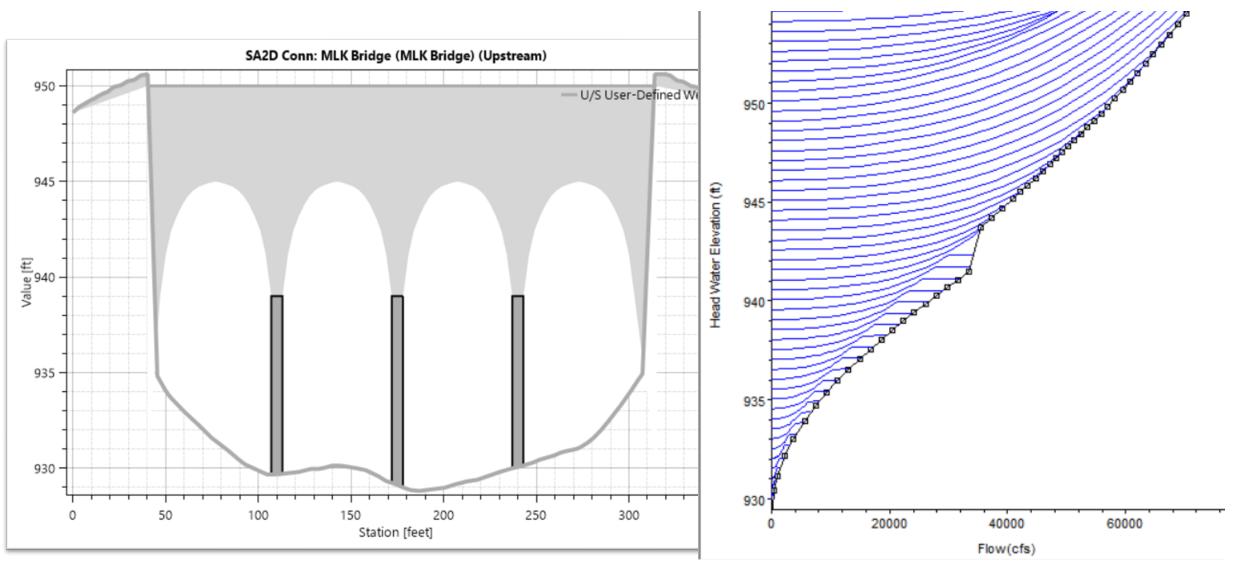
Bridge Modeling Approach

Hydraulic Table Parameters

- Number of points on free flow curve (100 max)
- Number of submerged curves (60 max)
- Number of points on each submerged curve (60 max)
- Headwater maximum elevation
- Tailwater maximum elevation is optional, as is the Maximum Flow.

Connection Hydraulic Property Table Parameters						
Number of points on free	50					
Number of submerged cu	50					
Number of points on eac	es: 20					
Apply number of points to all Connections						
Head water maximum ele	955					
Tail water maximum elevation (Optional):						
Maximum Flow (Recomm						
	Cancel					

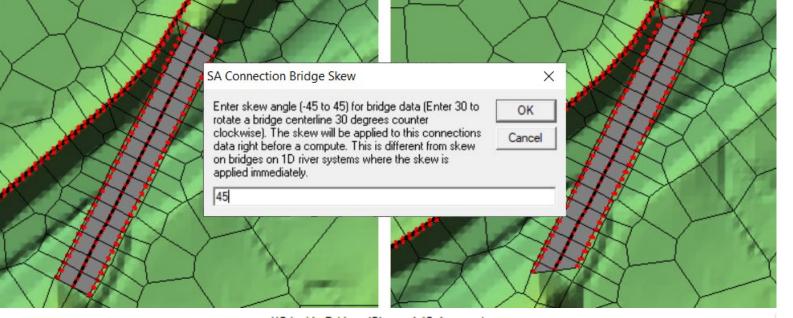
Hydraulic Table Parameters

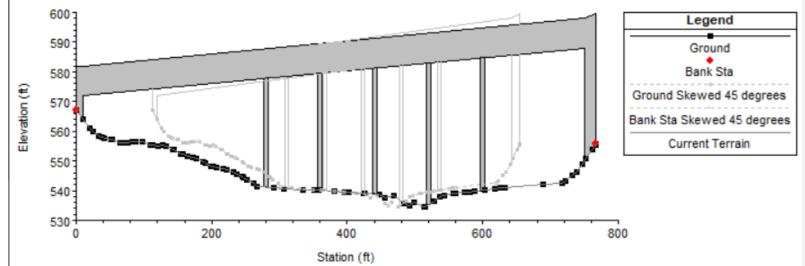


- Number of points on free flow curve (maximum is 100)
- Number of submerged curves (maximum is 60)
- Number of points on each submerged curve (maximum is 60)
- Head water maximum elevation.
- Tail water maximum **elevation** is optional, as is the Maximum Flow

Connection Hydraulic Property Table Parameters						
Number of points on free	e flow curve:	100				
Number of submerged c	60					
Number of points on each submerged curves: 60						
Apply number of points to all Connections						
Head water maximum elevation: 595						
Tail water maximum elevation (Optional):						
Maximum Flow (Recommended):						
	ОК	Cancel				

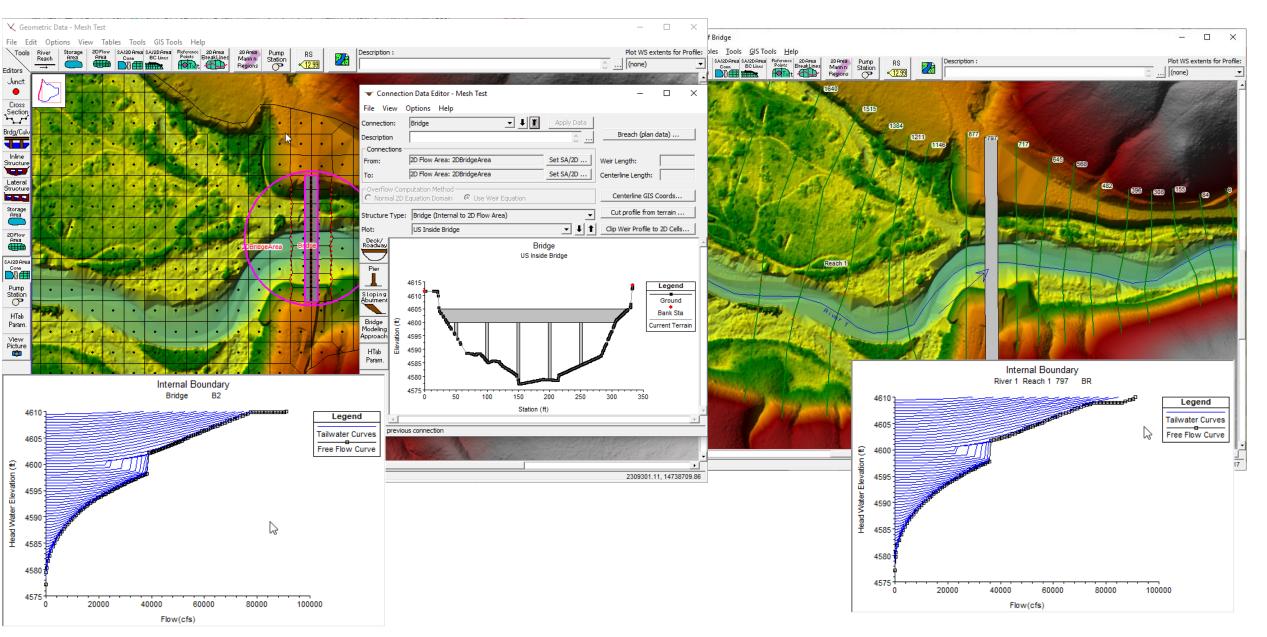
HTab – Family of Bridge Curves



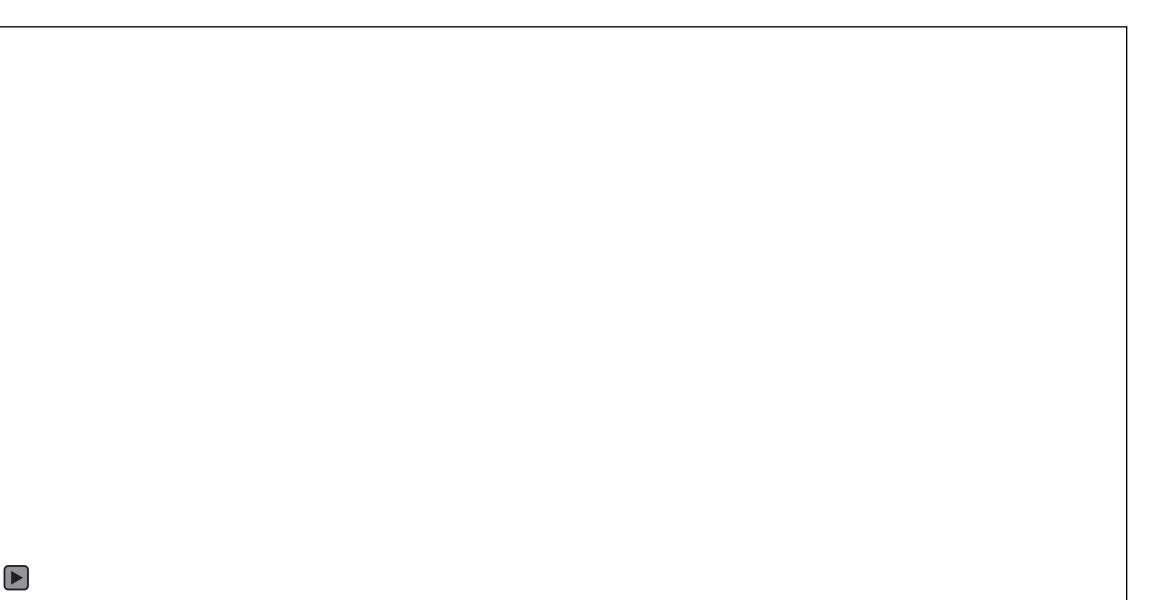


Bridge Skew

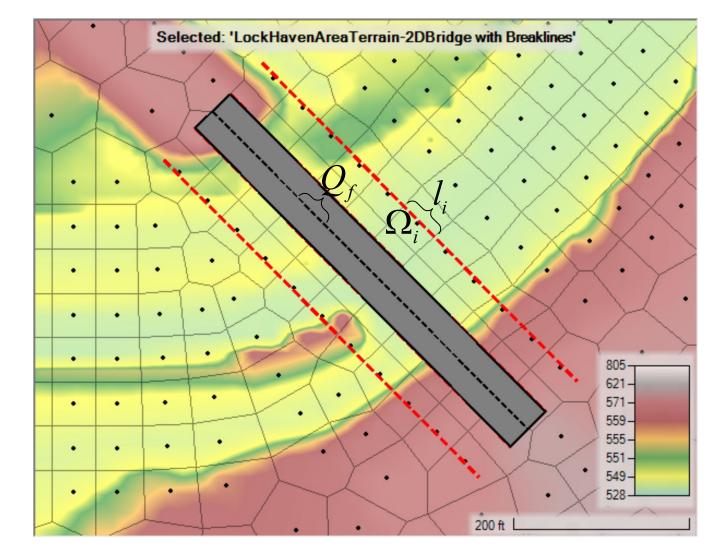
- New in 6.5
- Skew angle used to reduce the effective length of the bridge opening by projecting the internal and external bridge cross-sections
- Multiplies the stationing by the cosine of the skew angle



US Inside Bridge (Skewed 45 degrees)

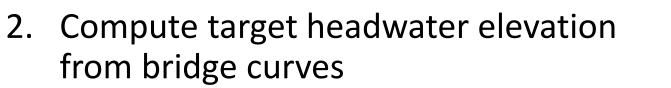

1D vs 2D Model Comparison

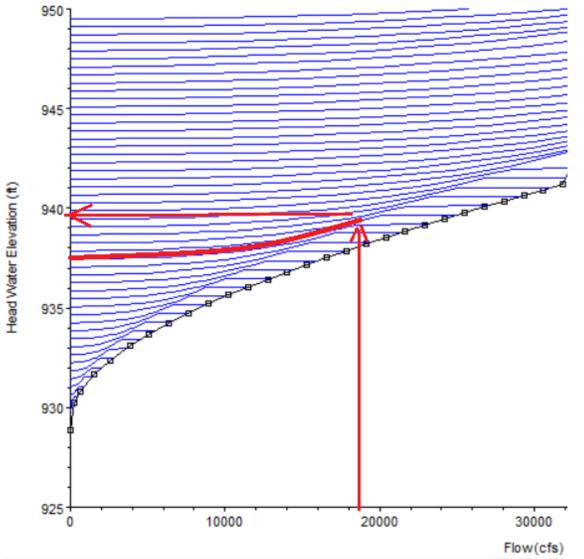
1D and 2D Comparison Animation


Computation Procedure

1. Estimate total bridge flow and tailwater elevation as

 $Q_B = \sum_{f} Q_{B,f}$ $\overline{Z}_{s,T} = \frac{\sum_{i \in T} \Omega_i l_i Z_{s,i}}{\sum_{i \in T} \Omega_i l_i}$

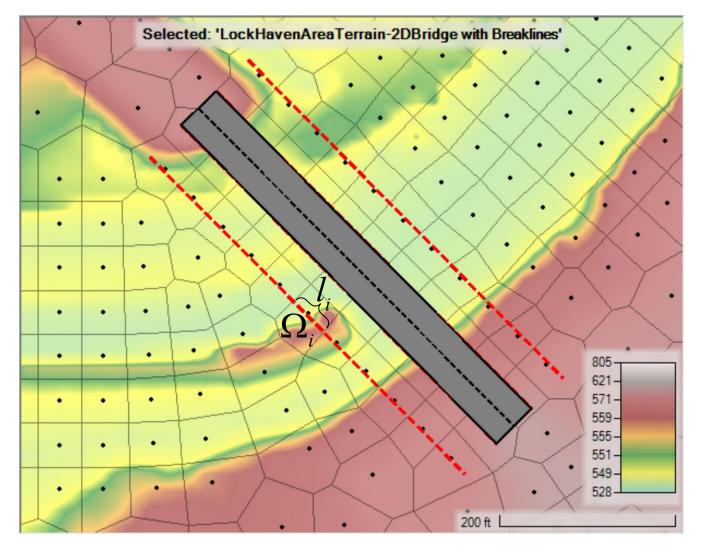

 Ω_i : XS cell volume l_i : XS length in cell



Computation Procedure

$$z_{s,H} = f(Q_B, \overline{z}_{s,T})$$

Computation Procedure

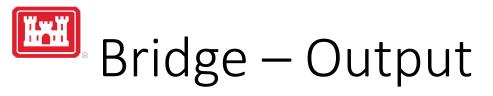


 Bridge energy losses simulated by increasing bottom shear stresses by a bridge drag factor under bridge faces

$$\boldsymbol{\tau}_{\boldsymbol{b}} = \lambda_{\boldsymbol{B}} \rho C_{\boldsymbol{D}} | \boldsymbol{V} | \boldsymbol{V} \qquad \lambda_{\boldsymbol{B}}(t) \ge 1$$

3. Proportional-Integral-Derivative Controller used to adjust bridge drag factor to impose headwater elevation

$$\frac{d\lambda_B(t)}{dt} = K_i e(t) + K_p \frac{de(t)}{dt} + K_d \frac{d^2 e(t)}{dt^2}$$
$$e(t) = z_{s,H} - \overline{z}_{s,H} \qquad \overline{z}_{s,H} = \frac{\sum_{i \in H} \Omega_i l_i z_{s,i}}{\sum_{i \in H} \Omega_i l_i}$$

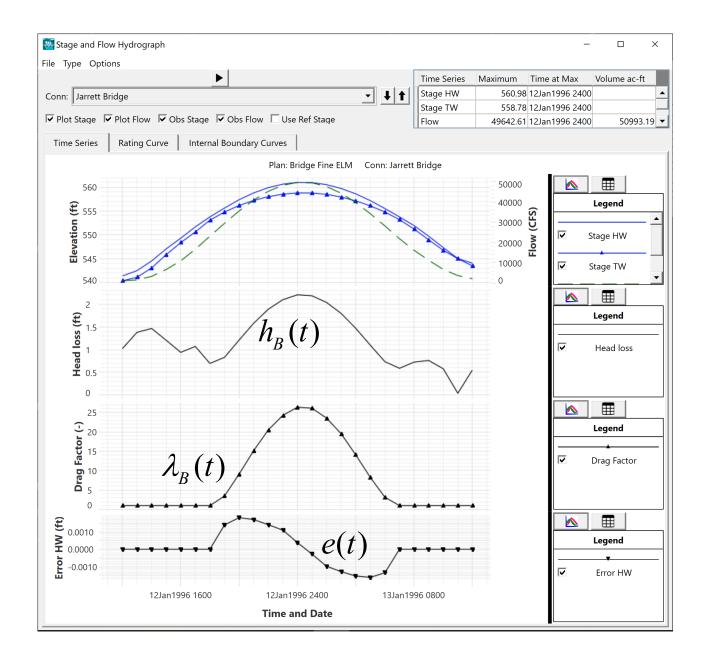


Family of Rating Curves - 2D Flow Areas

- Curves are used differently from 1D solution
- Compute US XS and DS XS are used to compute expected 1D Flow
- Friction lose terms are adjusted so that compute 2D flows match expected 1D Flow (one adjustment factor for all the bridge faces)

HEC

• Head loss through bridge

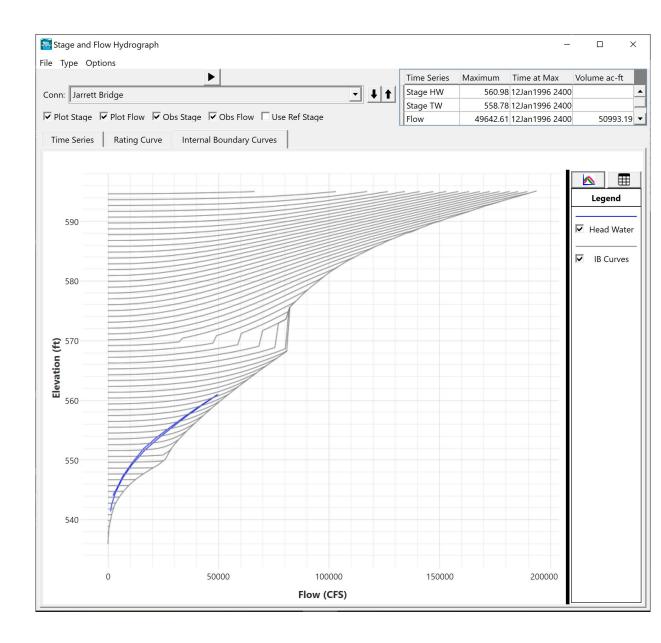

$$h_{B}=\overline{Z}_{s,H}-\overline{Z}_{s,T}$$

- Drag factor
 - Limited to 1
 - Constant under bridge

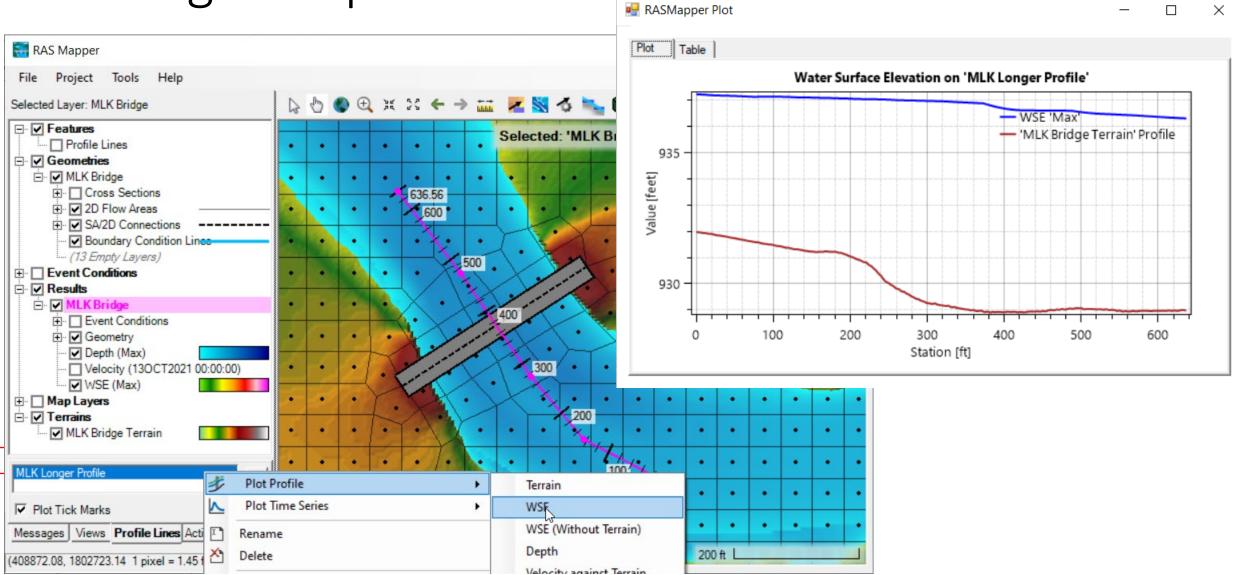
• Error

$$e(t) = z_{s,H} - \overline{z}_{s,H}$$

• Usually small but can be increase if controller has trouble especially during flow transitions

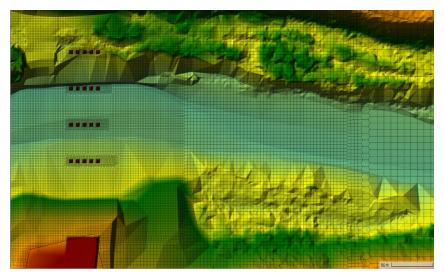


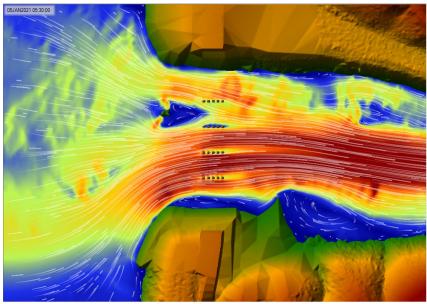
Bridge – Output


- Blue line represents actual flows and stages during simulation
- If PID Controller has trouble, the blue line can go outside of the rating curve data

Bridge Output

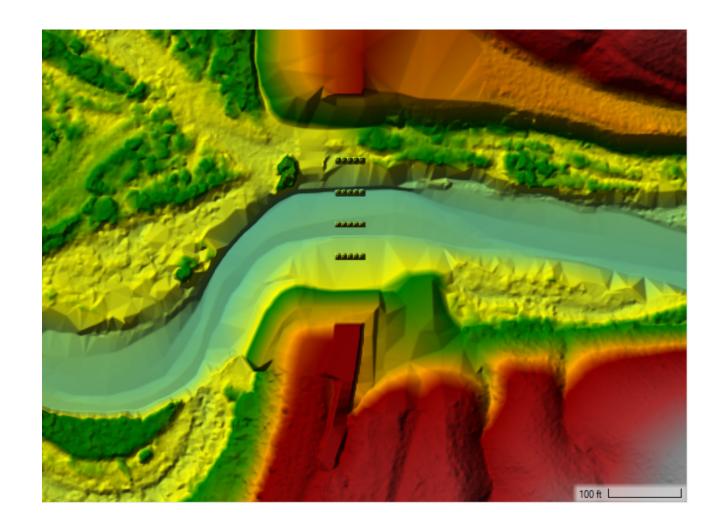
Considerations


- Spacing/cell sizes through a bridge modeled as 1D are generally larger than users would like
- Necessary to use these cell sizes so that we do not duplicate contraction and expansion losses (however small they may be) in 2D domain and in 1D curves
- Cannot tune PID controller parameters for specific applications



Detailed Bridge Modeling

- Simulating all energy loses with a high-resolution 2D model
- Requirements high-resolution terrain and mesh
- Pros
 - Physics-based
 - High-resolution results
- Cons
 - Depth-averaged assumption
 - No pressurized flow or overtopping in Versions 6.3 and earlier
 - Computationally Expensive



Terrain for Detailed Bridge Modeling

- Requirements
 - High-resolution
 - High-quality
- Terrain Modifications
 - Piers
 - Embankments
 - Bathymetry Modifications

Equation Set

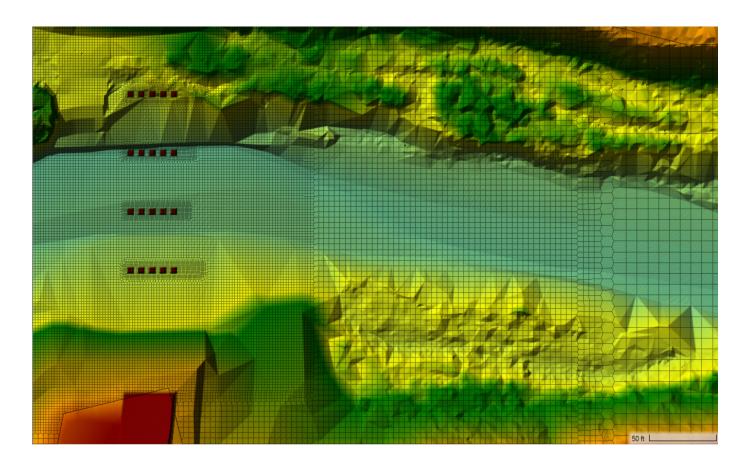
- Diffusion Wave Equation
 - For preliminary runs and/or initialization
 - Cannot simulate contraction and expansions
 - Cannot simulate mixed flow
- Shallow Water Equations
 - Production runs
 - Necessary to include Turbulence
 - SWE-EM has better momentum conservation

HEC-RAS Unsteady Computation Options and Tolerances

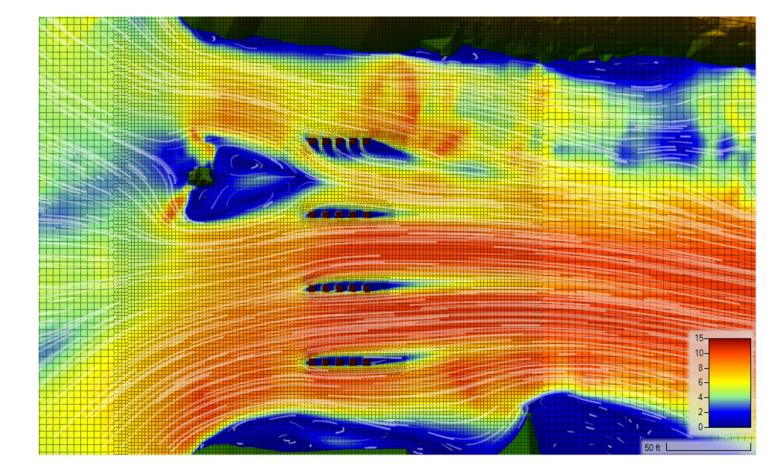
General 2D Flow Options | 1D/2D Options | Advanced Time Step Control | 1D Mixed Flow Options

 $\hfill \square$ Use Coriolis Effects (not used with Diffusion Wave equation)

Parameter	(Default)	Perimeter 1	
1 Theta (0.5-1.0)	1		1
2 Theta Warmup (0.5-1.0)	1		1
3 Water Surface Tolerance [max=0.2](ft)	0.01		0.01
4 Volume Tolerance (ft)	0.01		0.01
5 Maximum Iterations	20		20
6 Equation Set	Diffusion Wave	SWE-ELM (original/faster)	Ţ
7 Initial Conditions Time (hrs)		Diffusion Wave	
8 Initial Conditions Ramp Up Fraction (0-1)	0.1	SWE-ELM (original/faster)	
9 Number of Time Slices (Integer Value)	1	SWE-EM (stricter momentum)	
10 Turbulence Model	None		None
11 Longitudinal Mixing Coefficient	0.3		0.3
12 Transverse Mixing Coefficient	0.1		0.1
13 Smagorinsky Coefficient	0.05		0.05
14 Boundary Condition Volume Check			
15 Latitude for Coriolis (-90 to 90)			
16 Solver Cores	All Available		4 Cores
17 Matrix Solver	PARDISO (Direct)		PARDISO (Direct)
18 Convergence Tolerance			
19 Minimum Iterations	0		0
20 Maximum Iterations	0		0
21 Restart Iteration	10		10
22 Relaxation Factor	1.3		1.3
23 SOR Preconditioner Iterations	10		10
		OK	Cancel Default



Computational Mesh

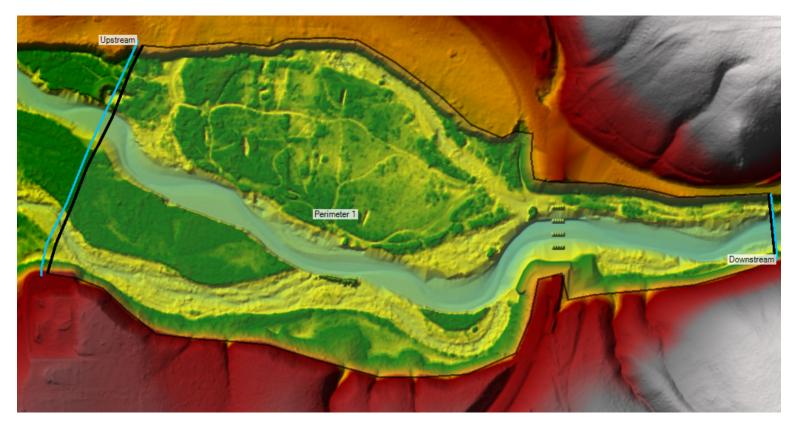

- Preliminary runs with simple coarse mesh
- Breaklines and refinement regions for high-resolution meshes
 - Minimum cell size will drive time step
- Perform grid convergence

Momentum Diffusion

• Diffusion Term

- Use Conservative Formulation!
- Eddy Viscosity Model
 - Use Parabolic-Smagorisnky
 - Calibrate if possible
 - In lieu of calibration, perform sensitivity analysis

Bottom Roughness


- Use spatially variable Manning's n
- Different flows may require different bottom roughness

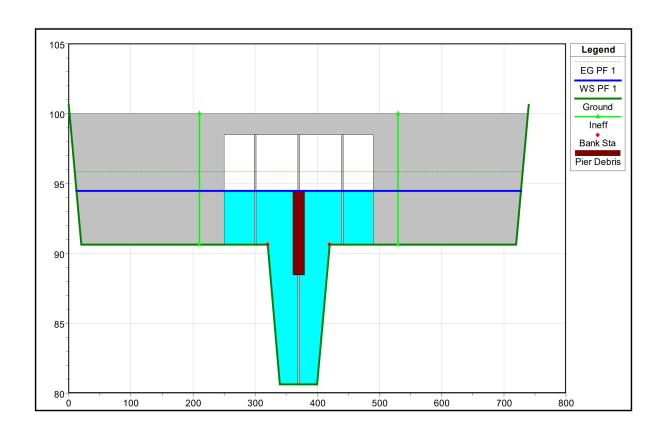
Boundary Conditions

- Tempting to place them very close to the bridge but don't
- Perform sensitivity on boundary placement and boundary values (such as friction slope)
- Place boundaries in areas with 1D flow (i.e. no recirculation, or sharp contracts and expansions)

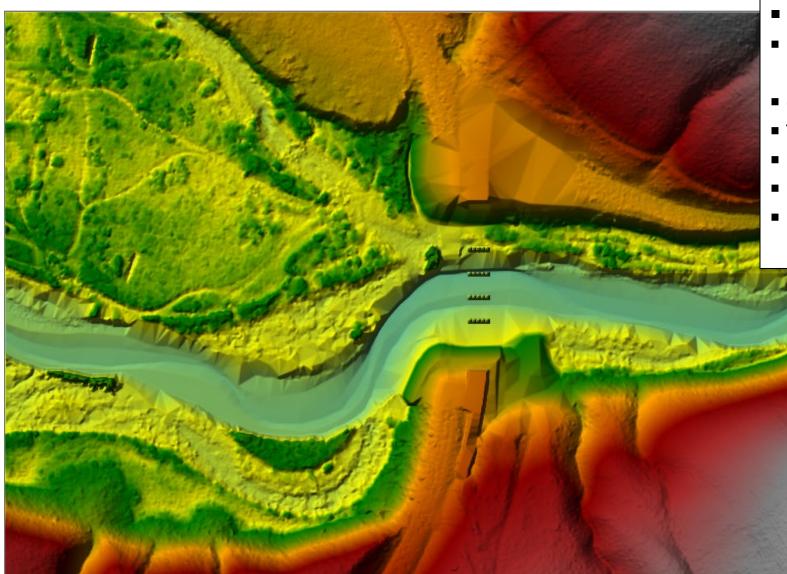
Advanced Computational Parameters and Options

• Time Step

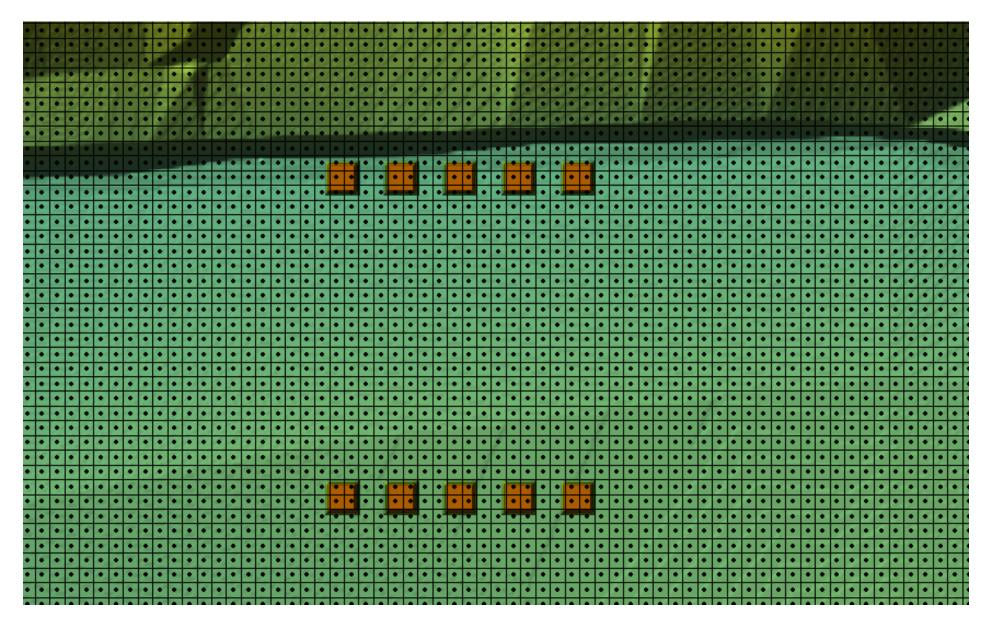
- Variable time step algorithm
- Hand calculations of Courant
- Model stability
- Implicit Weighting Factor
 - 1.0 for preliminary runs
 - 0.5-0.6 for production unsteady flow runs
 - Not important for steady flow



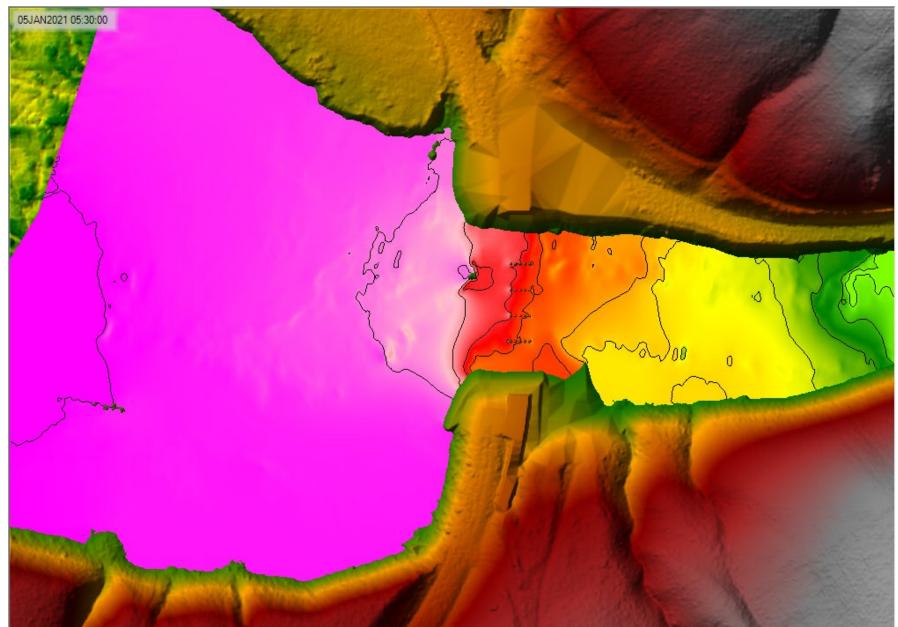
Limitations


- Flow must be below bridge deck
 - No pressured flow
 - No flow overtopping
- 2D Flow Assumption
 - Breaks down when cell resolution is much finer than depth
- Hydrostatic Pressure Assumption
- Cannot simulate
 - Bridge openings such as culverts
 - Debris (can be done in 1D)
 - Ice (can be done in 1D)
 - Waves

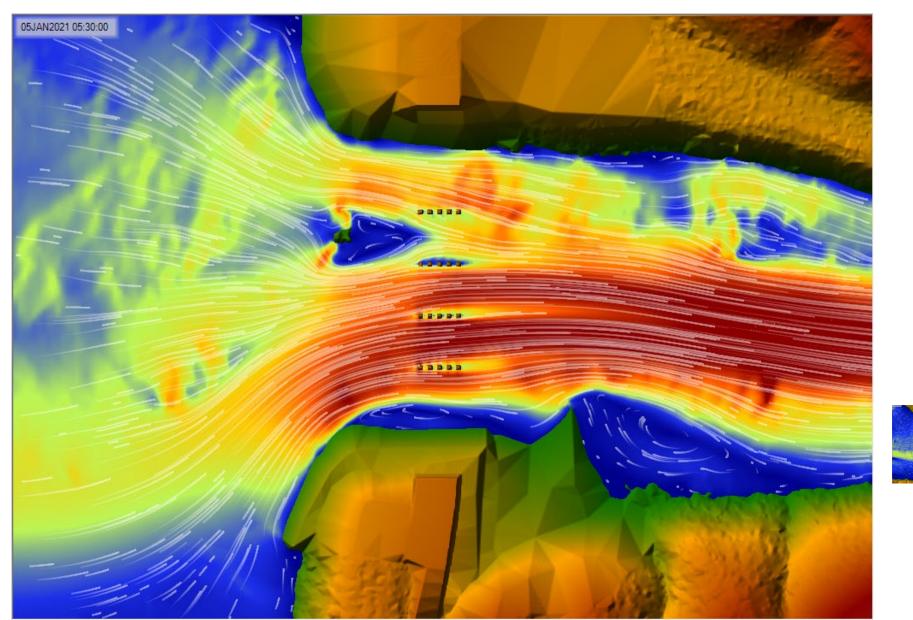
Detailed Bridge Modeling



- Equation set = SWE-ELM
- Eddie Viscosity Coefficient
 - •Conservative D_L and $D_T = 0.5$
- Grid Size = 2x2 ft up to 8x8 ft
- Time step = 0.2 seconds
- No. Cells = 45,000
- Event Duration = 20 min. Steady Flow
- Run Time = 3min 39s



Detailed Bridge Modeling



Detailed Bridge Animation

Questions?

