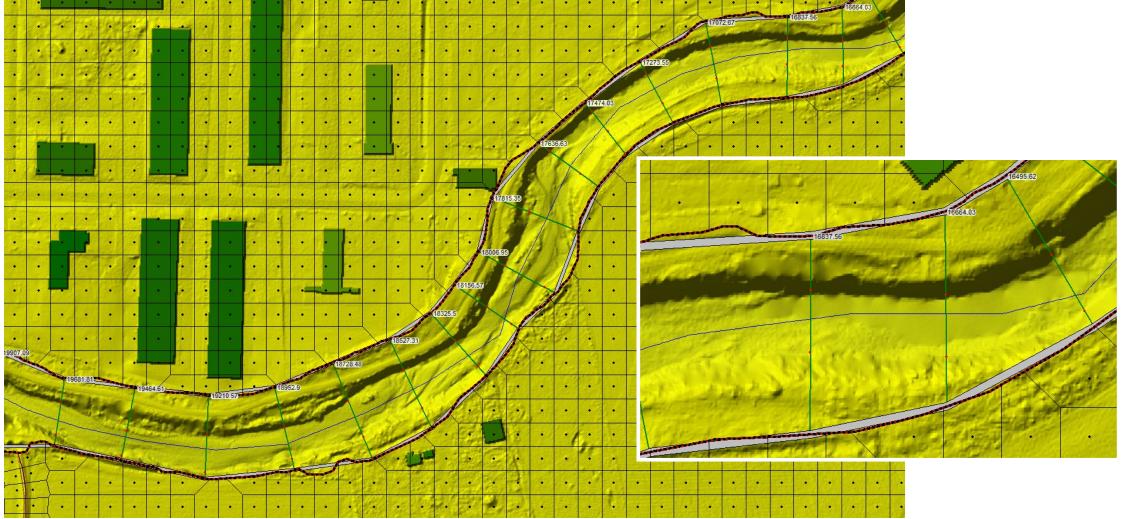
Creating a RAS Terrain for 2D Modeling

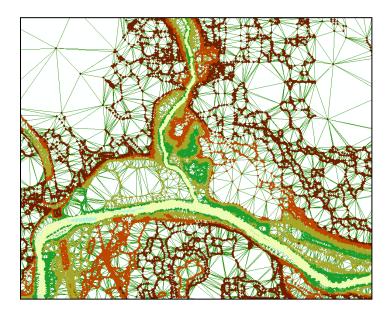
Cameron Ackerman, PE, D.WRE

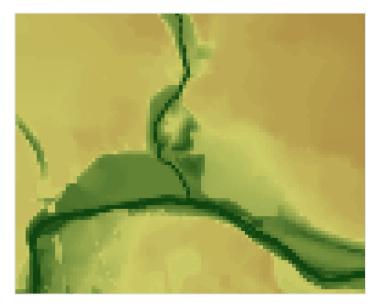
USACE, Institute for Water Resources, Hydrologic Engineering Center


Overview

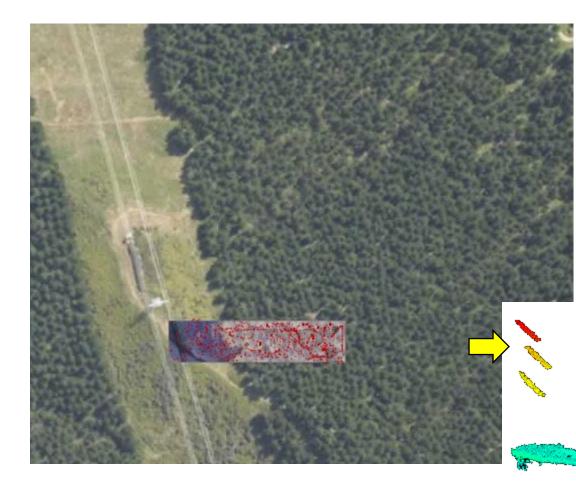
- Types of Terrain Models
- Building a Terrain Model
- Key Feature Considerations
- Cell Size Considerations
- Importing Terrain Information to RAS

A good model starts with **good** terrain ...





Terrain Model Types

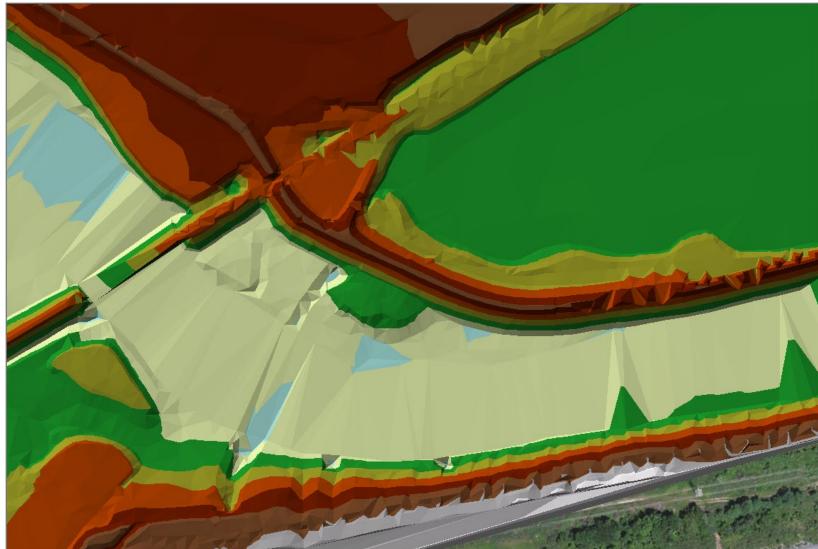

- Triangulated Irregular Network (TIN)
- Triangulated points define surface allows Single value at regular intervals. Cell for higher density in important areas.
- Grid
 - size determines surface resolution.
- User-defined triangulation through points
 Fast mathematical computations and break lines

Building a Terrain Model Verify and Process Points

- Start with raw data
- Remove 1st return data for vegetation, power lines, cows, etc.
- Bare earth terrain

Building a Terrain Model Verify and Process Points

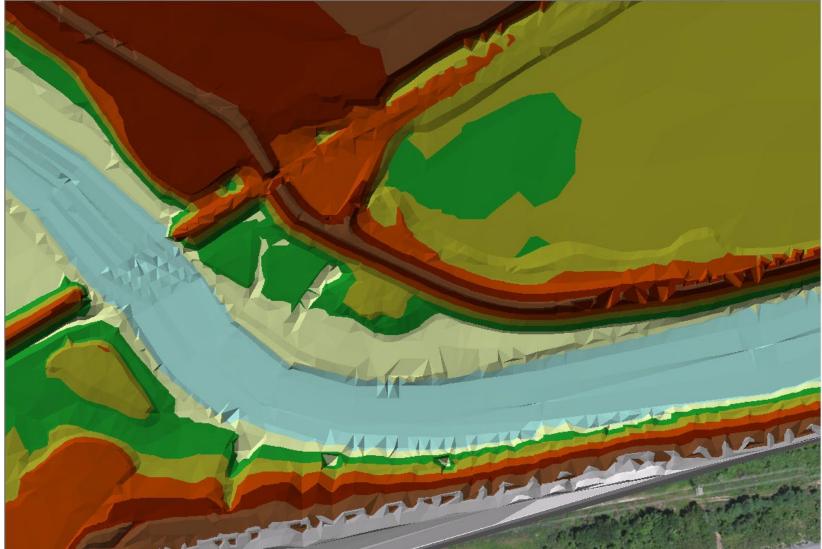
- Remove of points that are not necessary/incorrect in representing the ground surface
 - Redundant points (more points = more processing)
 - Bridge deck elevations
- Make sure to add important features
 - Top of roads
 - Top of levees
 - Top of floodwalls
 - Bridge approaches
 - Hydraulic structures
- Replace over-water returns with bathymetric data



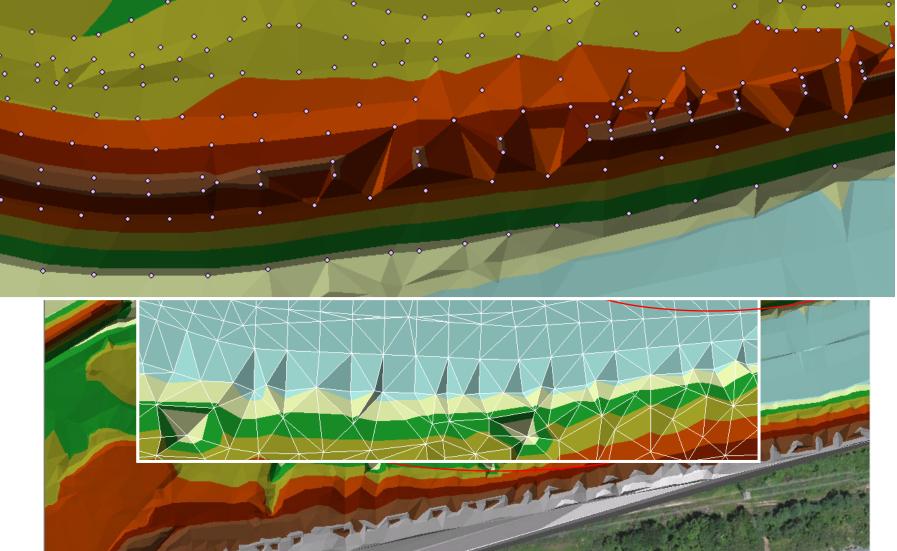
Building a Terrain Model Bare Earth Points

Building a Terrain Model Bare Earth Points

Building a Terrain Model Bathymetry Points

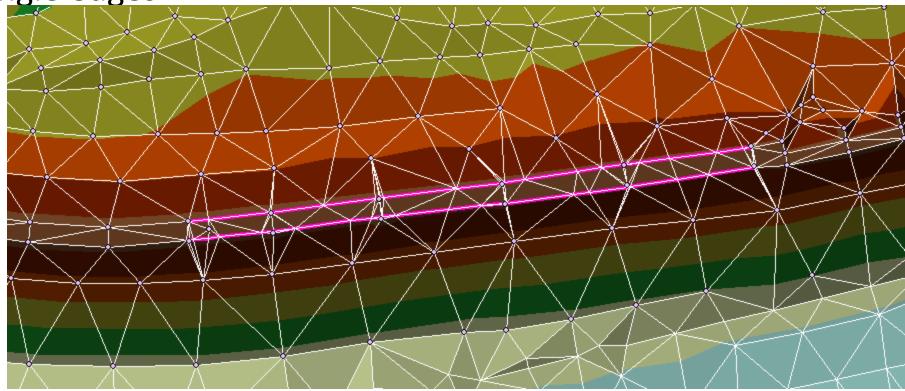


10

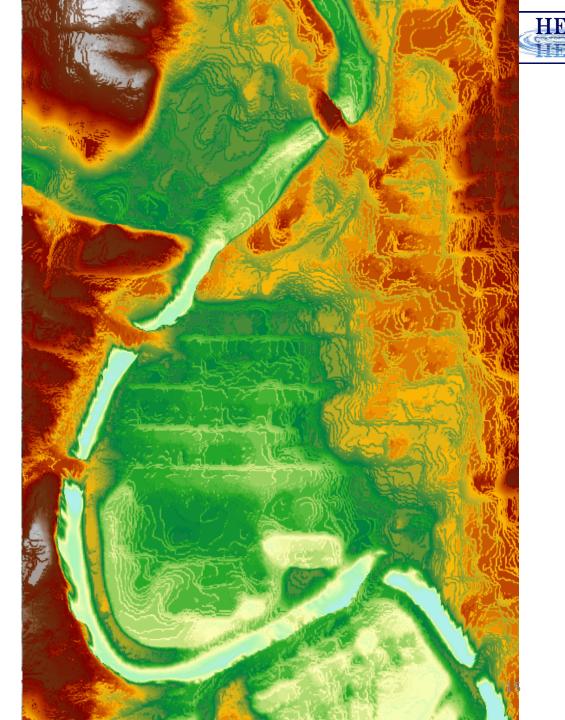

Building a Terrain Model Bathymetric Data Added

Building a Terrain Model Problems?

Building a Terrain Model Breaklines

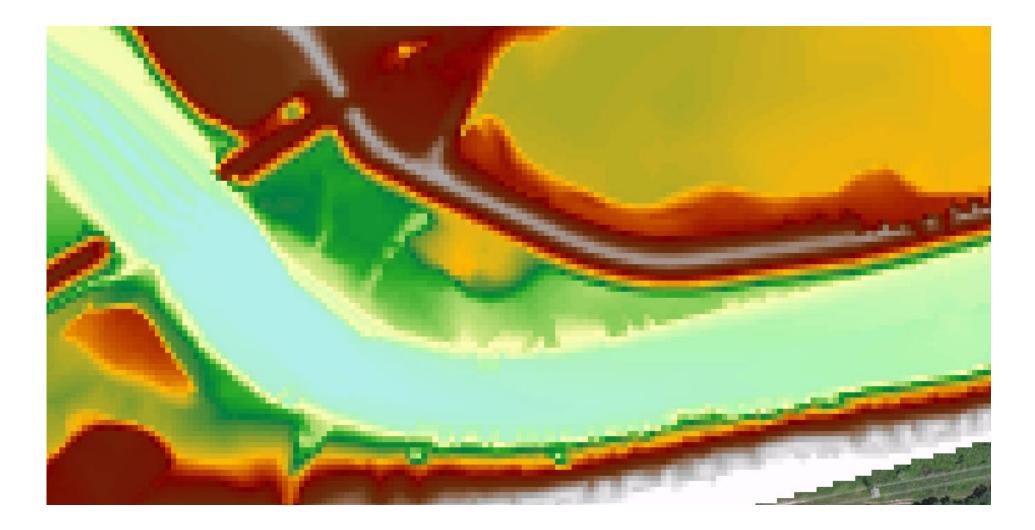

- Breaklines are used to enforce triangle edges and elevations. They ensure that interpolation is done "correctly" along linear features.
 - Channel banks
 - Steep drops (drop structures, waterfalls)
 - Roadways
 - Levees
 - Bathymetry points

Building a Terrain Model Breaklines

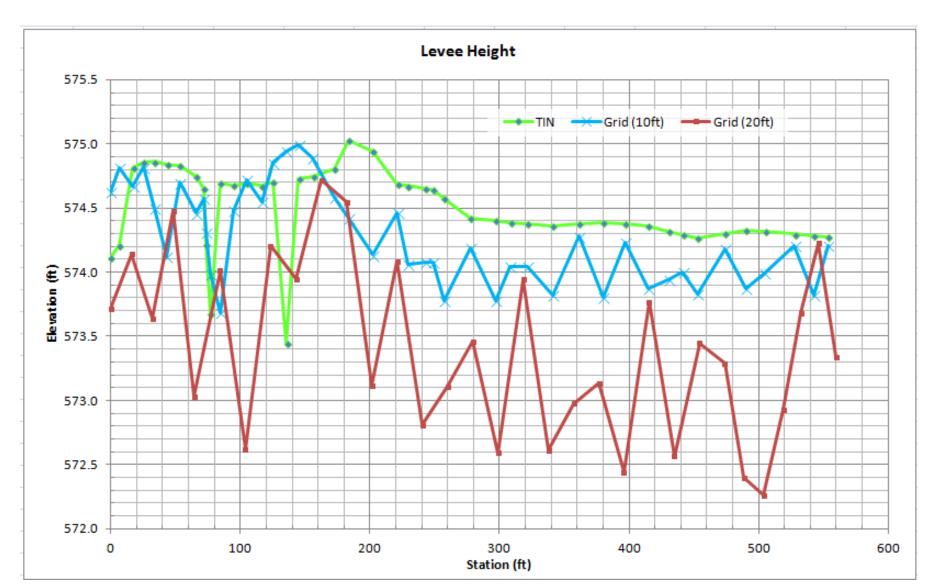

 Breaklines with elevations insert points to enforce elevations and triangle edges

Bridges

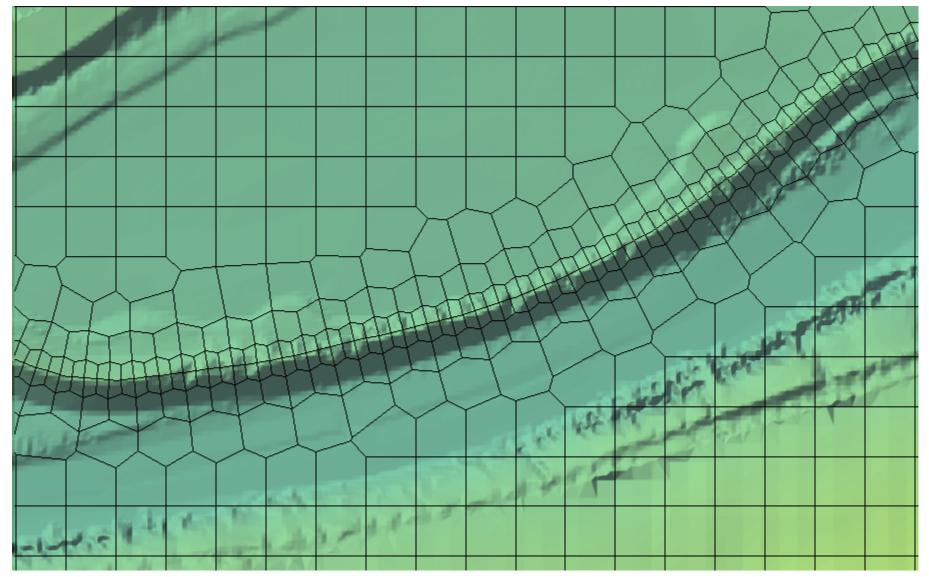
- Removal of bridges from terrain data is important for 2D modeling.
- High ground directs flow determined directly from ground surface model.
- 1D modeling place cross sections at appropriate locations as work around.


Terrain Cell Size Considerations

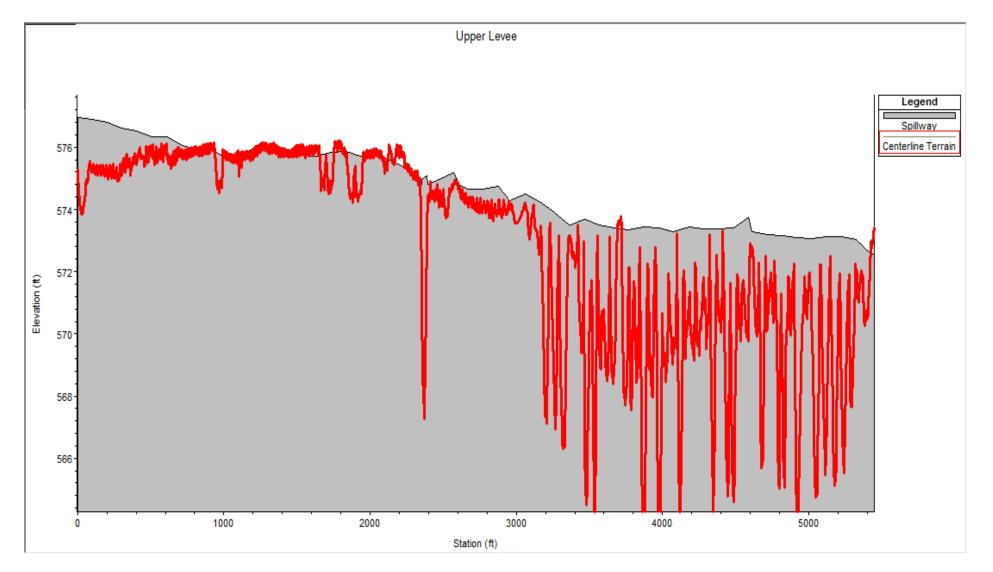
- Purpose scale of model
 - Detailed bridge analysis requires piers be represented
 - Riverine model requires flow opening is represented
- Small enough to represent the land surface accurately, NOT any smaller
- Terrain model needs to accurately reflect linear features that direct flow. HEC-RAS uses a 2D computational grid as the underlying representation of terrain. 2D cell faces should be aligned with linear feature in the terrain.


Raster Cell Size

Raster Cell Size

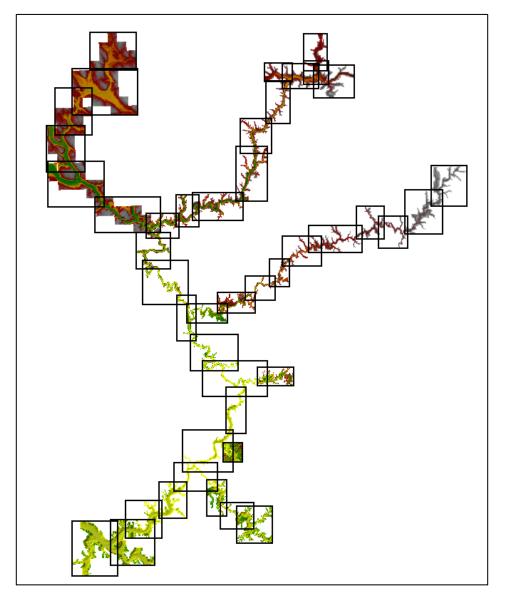


18


HEC-RAS Terrain Fixes

Hydraulic Structure Elevations

Terrain Model Development Summary


- Terrain models are developed as TINs
- Model is typically exported to a Grid for visualization and analysis
 - TINs are more difficult to render
 - TINs are more expensive to store
 - Calculations with TINs more difficult than with rasters
- Grid-cell size determines the effective accuracy of the resulting terrain model
 - How are you going to represent a levee in a raster with a 20ft grid cell?

Terrain in RAS Mapper

- Uses GeoTIFF format
 - Tiled data for more efficient storage
 - Compressed data for efficient storage
 - Pyramided data for fast visualization
 - Allows for on-the-fly inundation mapping
- One Layer for Multiple Terrain Models
- No file size limitations BigTiFF supported

Terrain in RAS Mapper

- Various formats are supported
 - Binary Floating Point Raster (FLT)
 - Esri Arc/Info Grid format
 - GeoTIFF (still rounds and compresses)
 - Others (e.g. USGS DEM, etc)
- Imported data is rounded to based on precision selected
 - Default is 1/32 (~0.03 ft) (1/128 for metric)
- Recommended that a projection is defined for the RAS Mapper project first.

Projection

- Data used in RAS Mapper must be a common coordinate system.
- Projection will be used to reproject Terrain data that is imported into RAS Mapper.
 - Defined using esri PRJ file.
- Web Imagery will be projected on-the-fly to RAS Mapper coordinate system.

🚟 RAS Mapper Options		×
Project Settings	Coordinate Reference System	
Projection	Projection File: C:\Temp\Baxter2D\projection.prj	1 🖂
General	Definition:	
Render Mode	PROJCS["NAD_1983_StatePlane_California_III_FIPS_0403_Feet",GEOGCS	
Mesh Tolerances	["GCS_North_American_1983",DATUM["D_North_American_1983",SPHEROID ["GRS_1980",6378137,298.257222101]],PRIMEM["Greenwich",0],UNIT ["Degree".0.0174532925199432955]],PROJECTION	
Global Settings	["Lambert_Conformal_Conic"],PARAMETER ["Halse Easting",6561666.66666666],PARAMETER	
General	["False_Northing", 1640416.666666667], PARAMETER["Central_Meridian",- [120.5], PARAMETER["Standard Parallel 1", 37.066666666666666667], PARAMETER	
RAS Layers		

Projection Files

- Not all PRJ files are the same
 - PROJCS["NAD_1983_StatePlane_Pennsylvania_South_FIPS_3702_Feet", GEOGCS["GCS_North_American_1983", DATUM["D_North_American_1983", SPHEROID["GRS_1980",6378137,298.257222101]], PRIMEM["Greenwich",0], UNIT["Degree",0.017453292519943295]], PROJECTION["Lambert_Conformal_Conic"], PARAMETER["False_Easting",1968500], PARAMETER["False_Northing",0], PARAMETER["False_Northing",0], PARAMETER["Central_Meridian",-77.75], PARAMETER["Standard_Parallel_1",39.9333333333333], PARAMETER["Standard_Parallel_2",40.966666666666667], PARAMETER["Latitude_Of_Origin",39.33333333333333], UNIT["Foot_US",0.30480060960121924]]
- PROJCS["NAD 1983 StatePlane Pennsylvania South FIPS 3702 Feet", GEOGCS["GCS North American 1983", DATUM["D North American 1983", SPHEROID["GRS 1980",6378137.0,298.257222101]], PRIMEM["Greenwich",0.0], UNIT["Degree",0.0174532925199433]], PROJECTION["Lambert_Conformal_Conic"], PARAMETER["False_Easting",1968500.0], PARAMETER["False_Northing",0.0], PARAMETER["Central Meridian", -77.75], PARAMETER["Standard Parallel 1", 39.93333333333333], PARAMETER["Standard_Parallel_2",40.96666666666667], PARAMETER["Latitude Of Origin", 39.333333333333333], UNIT["Foot US",0.3048006096012192]], VERTCS["NAVD_1988", VDATUM["North_American_Vertical_Datum_1988" PARAMETER["Vertical_Shift",0 0], PARAMETER["Direction ,1.0], UNIT["Foot US",0.3048006096012192]]

Terrain Importer

- Add files allows user to select rasters for import
- Order raster files based on Priority on what cell value should be used if there is overlap by the terrain models.
 - Highest Priority to the top

New Terrain Layer					
Set SRS					
Input Terrain Files					
+ Filename		Projection	Cell Size	Rounding	Info
				None	i
muncie_base f	fit		7.77160527153095	(na)	i
Output Terrain File					
Rounding (Precision):	1/32 Create Stitches		Merge Inputs to Sing	le Raster	
Vertical Conversion:	Use Input File (Default)				
Filename:	C:\Temp\2D RAS\1.5 WS - DTM and 2D Mesh\RAS_M	odel\Terrain\Wit	hChannel.hdf		
			C	reate	Cancel

Terrain Importer

- Rounding Precision which data is stored
- Terrain Filename and Folder
 - name.tilename.tif file for each imported terrain tile
 - name.hdf file contains "stitch" information for data gaps
 - name.vrt file contains statistics info and color ramp info

ew Terrain Layer						
Set SRS Input Terrain Files]					
+ Filename			Projection	Cell Size	Rounding	Info
+ Filename Channel.tif				5	None	i
muncie_base.flt	t			7.77160527153095	(na)	i
• Output Terrain File						
Rounding (Precision):	1/32	Create Stitches		Merge Inputs to Sing	le Raster	
Verial Commission						
Vertical Conversion:	Use Input File (Default)	▼				
	Use Input File (Default) C:\Temp\2D RAS\1.5 WS - DT		odel\Terrain\Wit	hChannel.hdf		- 📝

Terrain Importer

- Data is projected (translated) and rounded for all data
- Data is pyramided and compressed
- TIN is created for overlapping regions
- Terrain.hdf is the single layer loaded to RAS Mapper

Transition 1 of 0, DFC 20ft fit		
Importing 1 of 2: BEC_20ft.flt Step 1 of 4: Translating to GeoTiff with SRS	1 1	
Step 2 of 4: Rounding and/or Generating Statistics	1 7	
Step 3 of 4: Generating Histogram	/	
step 4 of 4: Adding Overlays	2	
BEC 20ft.flt Import Complete.	14	
sec_20mt.mit import complete.	14	
Importing 2 of 2: BEC_DEM.flt		
Step 1 of 4: Translating to GeoTiff and reprojecting	26	
Step 2 of 4: Rounding and/or Generating Statistics	1:05	
Step 3 of 4: Generating Histogram	11	
step 4 of 4: Adding Overlays	13	
BEC DEM.flt Import Complete.	1:56	
sec_bem.fit import compilete.	1.50	
Final Processing: Terrain.hdf		
Step 1 of 3: Creating Terrain.vrt	0	
Step 2 of 3: Creating Terrain.hdf	1:17	
Step 3 of 3: Creating Stitch-TIN for merging rasters	6	
Terrain Complete	3:34	

Close

28

Questions?

US Army Corps of Engineers ®

