Equation Selection: Diffusion Wave vs Shallow Water Equations

Alex Sánchez, PhD

Senior Hydraulic Engineer

USACE, Institute for Water Resources, Hydrologic Engineering Center

GWB

Objectives

- Overview of the Diffusion Wave and Shallow Water Equations
- Learn the positive and negative attributes of
 - Diffusion Wave Equations
 - Shallow Water Equations
- Understand the impacts through examples

Hydraulic Equations

Shallow Water Equations

- Mass Conservation (Continuity)
- Momentum Equation
 - Friction
 - Pressure gradient
 - Accelerations (local and advective)
 - Diffusion (optional)
 - Coriolis term (optional)
 - Wind Forces (optional)

$$\frac{\partial h}{\partial t} + \nabla \cdot (hV) = q$$

$$\frac{\partial V}{\partial t} + (V \cdot \nabla)V + f_c k \times V = -g \nabla z_s$$

$$+ \frac{1}{h} \nabla \cdot (v_t h \nabla V) - \frac{\tau_b}{\rho R} + \frac{\tau_s}{\rho h}$$

• Diffusion Wave Equation

- Mass Conservation (Continuity)
- Momentum Equation
 - Friction
 - Pressure gradient

$$\frac{\partial h}{\partial t} = \nabla \cdot (\beta \nabla z_s) + q$$

Diffusion Wave Positive Attributes

- Flow is mainly driven by gravity and friction
 - Good for steep to moderate sloping streams (S > 2 ft/mi)
 - Hydrographs that rise and fall slowly
- Very Stable Computationally
 - Can handle larger time step Courant C > 2 (C = 5 max)
- Good for computing rough global estimates, such as flood extent
- Good for assessing rough effects of dam breaks
- Good for assessing interior areas due to levee breeches
- Good for quick estimations before a SWE run
 - · Often used to get model up and running stable before use SWE

Diffusion Wave Negative Attributes

- Not as good for fast rising and falling flood waves due to lack of acceleration terms (Dam break or flash floods)
- Not good for sharp contractions and expansions
 - Will generally under compute water surface upstream due to no contraction force
 - · Will not accurately predict expansion zones and recirculation patterns
- Can't handle tidal boundary conditions accurately
 - No wave propagation up stream (This requires acceleration terms)
- Not good for sharp bends can't predict any super elevation
- Note good for predicting detailed velocity distributions in channels or around objects.
- · Does not work well for mixed flow regimes and hydraulic jumps

.

Shallow Water Equations Applications

- Highly Dynamic Flood Waves Rapidly rising and falling flood waves (dam break, flash floods, etc..)
- **Abrupt Contractions and Expansions** flow with high velocities, as well as flow approaching structures on an angle.
- Flat Sloping River Systems: Slopes less than 2 ft/mile
- Detailed Velocities and Water Surface Elevations: (natural channels and around structurers)
- Mixed Flow Regime: sub to supercritical flow transitions, and hydraulic jumps (super to subcritical)
- Tidal boundary conditions (wave propagation upstream)
- Super elevation around bends
- **General Wave Propagation**: If the user needs to model wave propagation due to rapidly opening or closing of gated structures, or wave run-up on a wall or around an object
- · Simulations influenced by turbulence, wind, or Coriolis effects
- River Morphodynamics

Ь

Testing if Diffusion Wave is Appropriate?

- 1. Create two Plans: Diffusion Wave and Shallow Water
- 2. Run both
- 3. Compare the Water surface, velocities, and flow rates
- 4. Where differences are significant, means you should be using the SWE

Animation is from SWE

Local Inertia Approximation to Shallow Water Equations

- Shallow Water Equations
 - Mass Conservation (Continuity)
 - Momentum Equation
 - Friction
 - Pressure gradient
 - Local acceleration
 - Coriolis term (optional)
 - Wind Forces (optional)
- Ignoring advection and turbulence
 - Simplifies model
 - Reduces computational costs
 - Allows for larger time steps
 - Faster run times

$$\frac{\partial h}{\partial t} + \nabla \cdot (hV) = q$$

$$\frac{\partial V}{\partial t} + (V \cdot \nabla)V + f_c k \times V = -g \nabla z_s$$

$$+ \frac{1}{h} \nabla \cdot (v_t h \nabla V) - \frac{\tau_b}{\rho R} + \frac{\tau_s}{\rho h}$$

Coming soon for V6.3

Questions?

