Combined 1D River and 2D Floodplain/Levee Areas

Mark Jensen

USACE, Institute for Water Resources, Hydrologic Engineering Center

Overview

- Using a 2D Flow Area to model inside of Levees
 - Saint Paul Levee Breach Example
- Using 2D Flow Areas to model overbank areas (i.e. 1D Channels and 2D Floodplains)
 - Carson River Example

Using a 2D Flow Area to model inside of a Levee system

- Bring in terrain and background map layers into RAS Mapper
- Draw a Polygon for the 2D Flow Area Boundary Inside of the Levee
- Create the 2D Computational Mesh
- View the Mesh Boundary Cells to ensure there are no Mesh Problems
- Modify The Mesh if Needed (add break lines for roads, high ground, etc. Use mesh refinement regions to refine or coarsen areas of the mesh)
- Hook up the 2D Flow Area to a 1D River Reach with Lateral Structures
- Weir Coefficients for Lateral Structures
- Levee Breaching
- Weir and Levee Breach Submergence Issues

From HEC-RAS Mapper Create a Terrain Model and Map Layers

^b Draw a Polygon for the 2D Flow Area Boundary Inside of the Levee

Create the 2D Computational Mesh using the 2D Flow Area Editor

📰 2D Flow Area Editor	—		×
2D Flow Area: ZDArea	Ν		
Cell Properties	45		
Computation Points			
Points Spacing (ft) DX: 100 DY: 100 Mesh State =	Complete		^
Include Shift (ft) Include Shift (ft) Average Face Average Cell Maximum Cell Minimum Cell	lls = 2483 e Length = 101 Size = 10,282 I Size = 17,860 Size = 5,982		
Generate Computation Points 🔊 Mesh Status =	Success: Exis	ting mesh	~
Hydraulic Cell/Face Properties			
Default Manning's n Value: 0.06	Compute Prop	erty Tables	
Force Mesh Recomputation		Clo	se

[•] View the Mesh to ensure there are no Mesh Problems

Modify The Mesh as Needed

[•] Hooking up a 2D Flow Area to a 1D River Reach with Lateral Structures

Lateral Structure editor

🐨 Late	ral Structure Editor - St Paul 2D Geometry - Modified	_	
<u>F</u> ile <u>V</u> ie	w <u>O</u> ptions <u>H</u> elp		
River:	Apply Data + 🗰		
Reach:	hru_St_Paul HW RS: 151400 ↓		
Descriptio	n 🚺		
HW Posit	on: Right overbank Plan Data Optimization Breach		
Tailwate	r Connection		
Type:	Storage Area/2D Flow Area		
SA/2DFA	: 2D flow area: 2DAreaSet SA/2DFA	Weir Length:	671.42
	I	Centerline Lengtl	h: 671.42
Overflo	v Computation Method 2D Boundary		
O Norm	al 2D Equation Domain . Use Weir Equation 🗌 🗌 Use Velocity	Centerline GIS	Coords
All Culver	s: No Flap Gates 💌	Terrain Pr	ofile
Structure	Type Weir/Gates/Culverts/Diversion Rating Curves	Clip Weir Profile	to 2D Cells
Weir / Embaikment	HW and TW Connections Determined Geo-Spatially		A
	151479 4 451004 4 4500	54.0	
1			Legend
W Culvert	710		Lat Struct
	700		Ground
Diversion	680		Bank Sta
	870		LS Terrain
Outlet TS	660		
	650		
	-200 0 200 400 600 80	0 1000	
	Station (ft)		▼
Edit latera	I structure description		
,			

Using Geospatial Coordinates for Lateral Structures

Lateral Weir/Embankment Editor

Lateral Weir Embankment				
Weir Data	- Embar Inser	hkment Station/	Elevation Table	1
Weir Width				
Weir Computations: Standard Weir Eqn 💌		Station	Elevation	
Standard Weir Equation Parameters	1	0	/1/.52	
Weir flow reference: Water Surface 👻	2	160.9	/1/.328	
	3	217.23	716.001	
Weir Coefficient (Cd)	5	297.36	716.253	
	6	477.08	716,183	
	7	556.99	716.042	
Weir Crest Shape: Broad Crested	8	671.42	716.046	
Weir Crest Shape. broad Crested	9			
	10			
	11			
	12			
	13			
	14			
Weir Stationing Reference	15			
	16			
HW - Distance to Upstream XS: 23.	17			
	18			
	19			
	20			
HW Connections TW Connections	21			-
			OK Canc	:el

Lateral Weir Headwater Connections (HW)

• •	Computed Defa	ult Weir Stationing		0	Us	er Defined Weir	Stationing	
D	efault Comput	ed Weir Stationing				User Defined V	Veir Stationing	
	XS RSs	Weir Station				XS RSs	Weir Station	*
1	151436.4	-22.92			1	151354.9	5692	
2	151354.9	156.84			2	151084.4	5909	
3	151084.4	373.92			3	150654.0	6435	
4	150654.0	803.62			4			
5					5			
6					6			
7					7	User Specified C	onnections	
8					8	Option will not b	e used	
9					9	because the late	eral structure	
10				1	0	has a geo-refere	enced	
11				1	1	centenine.		
12				1	2			
13				1	3			
14				1	4			
15				1	5			
16				1	6			
17				1	7			
18				1	8			
19			-	1	9			▼

Lateral Weir Tailwater Connections (TW)

TW Lateral Structure Connections

	Default Computed	Weir Stationing			User Defined We	eir Stationing	
	2D Face Points	Weir Station			2D Face Points	Weir Static	
1	456	-34.3083		1	454	5470.	
2	412	28.59606		2	411	5532	
3	368	174.9681		3	368	5703.	
4	319	314.8326		4	319	5861.	
5	322	479.7218		5	322	6048.	
6	325	521.3957		6	325	6095.	
7	2408	663.5559		7	User Specified Cor	nnections	
8	239	725.6677		8	Option will not be used		
9				9	because the lateral structure		
10				10	has a geo-referen	ced	
11				11	centerine.		
12				12			
13				13			
14				14			
15				15			
16				16			
17				17			
18				18			
19			•	19			

Connected 1D River to 2D Flow Area with Lateral Structure

Weir Coefficients for Lateral Structures

What is being modeled with the Lateral Structure	Description	Range of Weir Coefficients
Levee/Roadway – 3ft or higher above natural ground Levee/Roadway – 1 to 3 ft elevated above ground	Broad crested weir shape, flow over Levee/road acts like weir flow Broad Crested weir shape, flow over levee/road acts like weir flow, but becomes submerged easily.	 1.5 to 2.6 (2.0 default) SI Units: 0.83 to 1.43 1.0 to 2.0 SI Units: 0.55 to 1.1
Natural high ground barrier – 1 to 3 ft high	Does not really act like a weir, but water must flow over high ground to get into 2D area.	0.5 to 1.0 SI Units: 0.28 to 0.55
Non elevated overbank terrain. Lat Structure not elevated above ground	Overland flow escaping the main river.	0.2 to 0.5 SI Units: 0.11 to 0.28

Levee Breaching

Simplified Physical Breaching

Velocity vs. Downcutting and Widening

Levee (Lateral Structure) Br	each Data							
Lateral Structure Beaver Cr	eek Kentwood	5.4	- 1	Delete this Brea	ach 🛛 🖸	elete all Brea	ches	
Breach This Structure	e			Circuit for all Dhurrison			nin i c	
Breach Method: Simplified	Physical 💌	Breach Plot	Breach Progressio	on	al.ij Breach	Repair (optio	onal) Parameter C	alculator
Center Station:	800	Veloci	Downcutting	an Pate (ft/br)	VVIO	ening Relation	nsnip	
Max Possible Bottom Width:	1400	1	0		1 Vel	ocity (ft/s) 0	Widening Rate (ft,	(hr) 0
Min Possible Bottom Flev:	210	2	2	0	2	2		0
Loft Side Sleper	1	4	3	10	3	3		20
Left side slope:	-	5	5	20	5	5		100
Right Side Slope:	1	6	7	30	6	- 7		150
Breach Weir Coef:	2.6	7	10	40	7	10		200
Breach Formation Time (hrs):	2	8	20	50	8	20		300
Failure Mode: Over	topping 💌	10			10			
Piping Coefficient:	0.5	11			11			
Initial Piping Elev:	214	13			12			
Starting Notch Width:	2	14			14			
Mass Wasting Feature:	,	16			15			
Width:	20	17			17			
Duration (hrs):	0.16667	19			18			_
Final Bottom Fley	212	20			20			
(Optional):		21			21			
Trigger Failure at: WS El	ev 🔻	23			22			
Starting WS	218.5	24			24			
		25			25			
	-				_		ОК	Cancel
		_						

Weir and Levee Breach Submergence Issues

• When a lateral structure gets highly submerged, HEC-RAS uses a weir submergence curve to compute the flow reduction over the weir. The curve is very steep (i.e. the flow reduction changes dramatically) between 95% and 100% submergence. This can cause oscillations and possible model stability issues. To reduce these oscillations, user can have HEC-RAS use a milder sloping submergence curve by going to the 1D "Computational Options and Tolerances" and setting the field labeled "Weir flow submergence decay exponent" to 3.0.

Weir Submergence Curves

Unsteady Flow Computational Options and Tolerances

HEC-RAS Unsteady Computation Options and Tolerances			
General 2D Flow Options 1D/2D Options Advanced Tim	e Step Control	1D Mixed Flow Options	
1D Unsteady Flow Options Theta [implicit weighting factor] (0.6-1.0): Theta for warm up [implicit weighting factor] (0.6-1.0): Water surface calculation tolerance [max=0.2](ft): Storage Area elevation tolerance [max=0.2](ft): Flow calculation tolerance [optional] (cfs): Max error in water surface solution (Abort Tolerance)(ft): Maximum number of iterations (0-40): Maximum iterations without improvement (0-40):	1. 1. 0.02 0.05 100. 20	1D/2D Unsteady Flow Options Number of warm up time steps (0 - 100,000): Time step during warm up period (hrs): Minimum time step for time slicing (hrs): Maximum number of time slices: Lateral Structure flow stability factor (1.0-3.0): Inline Structure flow stability factor (1.0-3.0): Weir flow submergence decay exponent (1.0-3.0): Gate flow submergence decay exponent (1.0-3.0): DSS Messaging Level (1 to 10, Default = 4)	0 0.05 0 20 3. 1. 3. 1. 4
Geometry Preprocessor Options Family of Rating Curves for Internal Boundaries © Use existing internal boundary tables when possible. © Recompute at all internal boundaries		1D Numerical Solution Finite Difference (classic HEC-RAS methodology) Finite Difference Matrix Solver Skyline/Gaussian (Default: faster for dendritic syst Pardiso (Optional: may be faster for large intercor Finite Volume (new approach) Number of cores to use with Pardiso solver:	ems) Inected systems) All Available 🗨
		OK Can	cel Defaults

[®] Using RAS Mapper Associate the Terrain to the Geometry

RAS Mapper				-	-	
Selected Layer: St Paul 2D Geometry - Modified	} 👆 🌑 ⊕ 💥 53 ← → 📷	🛛 📉 🍝 Max Min 🔳)
	Modeling(StPaul(StPaulIES.g03.hdf ified StPaul(StPaulIES.g03.hdf etry Manage Associations	Selected: 'St Paul 2D Geom	etry - Modified			
Cross Sections: 207 Bank Lines: 8 Edge Lines: 8 Flow Path Lines: 0 Storage Areas: 0 2D Flow Areas: 1 Breaklines: 2 Structures: 12 Culvet (Foups: 0	Type RAS Geometry Layers Geom IES_Study_Geometry Geom St Paul 2D Geometry - Modified Geom St Paul 2D Geometry - New Geom St Paul 2D Geometry - 200 ft cells	Terrain Ma Terrain50 (No Terrain50 (No Terrain50 (No Terrain50 (No Terrain50 (No Terrain50 (No	nning's n ne) ne) ne) ne) r			
Culvert Barrels: 0 Gate Groups: 0			Close			
I Highlight entire hydraulic model lim				122		
Messages Views Profile Lines Active Features						

RAS-Mapper Running the 2D Pre-Processor

Run the Model and View the Results

と、Unsteady Flow Analysis	×
<u>File Options Help</u>	
Plan : Fail Middle - 2D Run Modified FEQ Jan17	Short ID: 2D Run FEQ Jan17
Geometry File : St Paul 2D Geor	metry - Modified 📃 💌
Unsteady Flow File : TopOfLevee	~
Programs to Run Plan Description ✓ Geometry Preprocessor Unsteady Flow Simulation ✓ Unsteady Flow Simulation Sediment ✓ Post Processor Floodplain Mapping	n
Simulation Time Window Starting Date: 02feb2099 Ending Date: 18feb2099	Starting Time:0000Ending Time:0000
Computation Settings Computation Interval: 30 Second	Hydrograph Output Interval: 5 Minute Detailed Output Interval: 6 Hour
1 Levee (Lateral Structure) with breach data. 1 set	t to breach.
Com	pute

Saint Paul Levee Breach Example

Lateral Structure Time Series Output

Lateral Structure Detailed Output

liver: MissRiver	Profile:	13FEB2099 060	0	-	Lateral Strue	cture
each thru_St_Paul	RS:	151400	-	↓ ↑ Plan:	2D Run Mod	ified
Plan: 2D Run Modified	MissRiver t	thru_St_Paul_RS	:151400 La	teral Structure	Profile: 13Ft	EB2099 0600
E.G. US. (ft)		716.10	Weir Sta US	6 (ft)		5750.00
W.S. US. (ft)		715.28	Weir Sta DS	6 (ft)		5850.00
E.G. DS (ft)		716.08	Min El Weir	Flow (ft)		704.00
W.S. DS (ft)		714.80	Wr Top Wd	th (ft)		100.00
Q US (cfs)		281458.70	Weir Max D	epth (ft)		11.22
Q Leaving Total (cfs)		4332.12	Weir Avg D	epth (ft)		11.14
Q DS (cfs)		277159.10	Weir Flow A	vrea (sq ft)		1113.82
Perc Q Leaving		1.54	Weir Coef (ft^1/2)		2.60
Q Weir (cfs)		4332.12	Weir Subme	erg		0.9
Q Gates (cfs)			Q Gate Gro	up (cfs)		
Q Culv (cfs)			Gate Open	Ht (ft)		
Q Lat RC (cfs)			Gate #Ope	n		
Q Outlet TS (cfs)		0.00	Gate Area ((sq ft)		
Q Breach (cfs)		4332.12	Gate Subme	erg		
Breach Avg Velocity (ft/s)		3.89	Gate Invert	: (ft)		
Breach Flow Area (sq ft)		1113.82	Gate Weir G	Coef		
Breach WD (ft)		100.00				
Breach Top El (ft)						
Breach Bottom El (ft)		704.00				
Breach SSL (ft)		0.00				
Breach SSR (ft)		0.00				
		Errors, Warni	ngs and Note	s		

Stage Hydrograph Plots from RAS Mapper

Velocity Hydrograph Plots from RAS-Mapper

Using 2D Flow Areas to model Overbank Areas (floodplains)

- Draw a Polygon for the Overbank/Floodplain Area
 - The 2D Flow Area boundary should be drawn at a High Ground Separation between the 1D Main Channel and 2D Floodplain
- Create the 2D Computational Mesh
- View the Mesh to ensure there are no Mesh Problems
- Modify The Mesh if Needed (add break lines, points, etc...)
- Hooking up a 2D Flow Area to a 1D River Reach with Lateral Structures
- Overflow Computation Method
- Weir Coefficients for Lateral Structures
- Weir Submergence Issues

1D Channel to 2D Interface Should be at High Ground Separating the **two**

Terrain Contours

Lateral Structure to connect 1D river to 2D overbank areas

	RightOverbank • • • • • •
	unction
이 지수는 것 같은 것 같은 것은 것은 것은 것은 것은 것은 것은 것은 것이 없는 것은 것이 없는 것이 없는 것이 없다.	

Overflow Computation Method

Tateral Structure Editor - De	tailed 1D-2D Stage to Stage		- 🗆 ×
River: BoiseRiver Reach: Lower Description HW Position: Left overbank Tailwater Connection	Apply Data Apply Data HW RS: 3749 3749 LS Plan Data Optimization E	+ 1 1	
SA/2DFA: 2D flow area: LeftOv	erbank Set S	A/2DFA Weir Length: Centerline Leng	3388.30 gth: 3388.30
Overflow Computation Method Normal 2D Equation Domain All Culverts: No Flap Gates Structure Type Weir/Gates/Culvert	2D Bounda	Centerline	GIS Coords Profile
Gate 1 ↓ 2690	HW and TW Connections Dete 2861.84* 2072.37*	rmined Geo-Spatially 1282.90*	296.05*
Culvert PC Nuersion PC Outlet TS 2650 2660 2660 2660 2660			Lat Struct Ground Bank Sta TW Cell Min Elev LS Terrain
2630	500 1000 1500 Station (ft)	2000 2500 30	000 3500

Weir Coefficients for Lateral Structures

What is being modeled with the Lateral Structure	Description	Range of Weir Coefficients
Levee/Roadway – 3ft or higher above natural ground Levee/Roadway – 1 to 3 ft elevated above ground	Broad crested weir shape, flow over Levee/road acts like weir flow Broad Crested weir shape, flow over levee/road acts like weir flow, but becomes submerged easily.	1.5 to 2.6 (2.0 default) SI Units: 0.83 to 1.43 1.0 to 2.0 SI Units: 0.55 to 1.1
Natural high ground barrier – 1 to 3 ft high	Does not really act like a weir, but water must flow over high ground to get into 2D area.	0.5 to 1.0 SI Units: 0.28 to 0.55
Non elevated overbank terrain. Lat Structure not elevated above ground	Overland flow escaping the main river.	0.2 to 0.5 SI Units: 0.11 to 0.28

Questions?

US Army Corps of Engineers ®

