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Hydraulic Modeling

Formal Framework: Computational Concepts:
* Mass Conservation * Computational Mesh
« Momentum Conservation * Numerical Methods
* Empirical Equations - * Subgrid Bathymetry
’ ¢
HEC-RAS

o _L\/
Data: Engineering Problems:
* Topography, Maps, LIDAR * Project Planning & Design
 Historical Information * Dam and Levee Breaks
* Modeler Experience * Overland Flows, Floods
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Hydraulic Modeling is a multidisciplinary field concerned with fluid flow and hydraulic

behavior.

As a Hydraulic Modeling software. HEC-RAS is involved with aspects of other areas such as
Fluid Mechanics, Data Processing, and Engineering.

This presentation will cover the conceptual framework of HEC-RAS, emphasizing
hydrodynamic concepts like mass and momentum balance, friction, and turbulence.
Computational concepts including the mesh, numerical methods, and subgrid bathymetry
will are covered in detail.




Outline

* Mass Conservation (Continuity)

* Momentum Conservation (Depth-Averaged)
* Acceleration
* Coriolis term
* Hydrostatic pressure
* Turbulent mixing
* Friction

* Diffusion Wave Equation
* Numerical Methods
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Mass Conservation l—l

* Assuming a constant water density h:Water depth
q : Water souce/sink
oh
—+V-(hV)=¢q Q : Cell water volume
al‘ —_— Y !
—~— Flow Sourced 4, :Face area

Storage Divergence and sinks .
V. :Face velocity

* Integrating over a computational cell n, :Outward face-normal unit vector

ﬁ _ At : Time step
5t.[”dQ+H(V-n)dS—Q
Q § Change in volume equals

* Finite-Volume Discretization sum of inflow and outflow

Q™ _Qr
i S S V ‘n, A4 = Q[_
At k;(i)( ‘ k) ‘ Ej> Q=volume

* The most important principle we want enforce is mass conservation.

* By assuming constant water density, the mass conservation can be written in terms of
water volume which is referred to as the Continuity Equation.

* It basically means that within a control volume the change in water volume is balanced
by the flows coming in and out.

* The bottom equation shows a simple Finite-Volume discretization of the Continuity
Equation




Momentum Conservation

* Momentum Equation (non-conservative form) V :Velocity
oV 1 T T z, : Water level
—+ (V- VWV + fhkxV=—gVz +=V-(»,hiVV)——+— . Gravi
c s g : Gravity
—— P v — =~ v, : Turbulent eddy
» oy, G, &g e 8 Y, . .
e %, o, fe%/:/» Usy, Otf% /,7% viscosity
(o)
iC ¢ ’%% ’f@ss h: Water depth
* From Newton’s 2" Law of motion 7 R : Hydraulic Radius
* Assumes constant water density, small vertical /. - Coriolis Parameter
velocities, hydrostatic pressure, etc. 7, : Bed shear stress
* Non-linear and a function of both velocity and water z, : Surface stress
levels

e Continuity and Momentum Equations are the
Shallow Water Equations or sometimes referred to
as the “Full Momentum” equations in HEC-RAS

*  The momentum equation is basically Newton’s second Law written here with the
acceleration on the left and the forces on the right.

* Obviously, the equation is depth-averaged, but it also has some assumptions like
constant water density, and hydrostatic pressure, and others.

* The momentum equation is non-linear and a function of both velocity and water levels.
So, it’s coupled to the continuity equation.

* The system of Continuity and Momentum Equations is the Shallow Water Equations. In
HEC-RAS they are sometimes referred to as the “Full Momentum” equations.




Acceleration and Total Derivative i

* Eulerian: Frame of reference fixed in space and time https:/Jcommons.wikimedi.org/wiki/Fle:Lag
rangian vs Eulerian frame of reference.svg
oV AT s )
—+(V-V)V )
ot Q4> dt
* Easier to compute /%\/
* Time-step restricted by Courant condition - i QIS
. . Bt ///’
* Lagrangian: Frame of reference moves with A
total derivative along flow path E i Z[ fy
oV pv ymiopr :
—+(V V==&

ot Dt At

* More expensive to compute
* Allows larger time-steps

flo

path \ Velocity ()

Velocity (¥7}) at time t+At

attime t
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* HEC-RAS has 2 solvers for the shallow water equations: Eulerian (SWE-EM) and the
Eulerian-Lagrangian (SWE-ELM) approach.

* They differ in how they treat the acceleration terms.

* Inthe Eulerian approach the frame of references is fixed in space and time.

* It’s easier to compute but it’s time step is limited by the Courant condition.

* In the Lagrangian approach to the acceleration terms, the frame of reference moves
along a flow path.

* It’s more expensive to compute because but allows for larger time steps.




HEC,

Coriolis Acceleration

* Effect of rotating frame of reference (earth’s rotation)

Wost ;.- Hotation aoos
* Constant for the each 2D domain (f-plane approx.) . N.m'ﬁﬁé- East
f.=2wsing
* w: sidereal angular velocity of the Earth
 : latitude. Positive for northern hemisphere.
Negative for southern hemisphere
* Coriolis acceleration disabled by default
to save computational time —

* Negligible for most river and flood simulations

* When to enable Coriolis term?
* Large domains
* Higher latitudes

— Banith Pala
! 5
L

* The Coriolis acceleration is a result of the earths’ rotation.

* It allows for the conservation angular momentum within the rotating reference frame of
the earth.

* It’s the reason why storms spin counter-clockwise in the Northern hemisphere and
clock-wise in the southern hemisphere.

* The Coriolis parameter is a function of latitude, but most RAS models are small enough
that an average latitude can be used to compute a constant Coriolis parameter for each
2D area.

* This is known as an f-plane approximation.

* Coriolis is disabled by default, and for most in rivers and flood simulations the Coriolis
effect is negligible.

* However, it can be important for large domains or higher latitudes.
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Hydrostatic Pressure

* Assumes vertical water accelerations are small compared to gravity

* Total pressure is
P:Patm +pg(zv _Z)

* P,.,,: atmospheric pressure (assumed to be constant)
* p : constant water density

 g: gravity acceleration constant

* z,: water surface elevation

* z: vertical coordinate

* Pressure gradient

oP 0z

ang ox

S

* Hydrostatic pressure assumes that the vertical water accelerations are small compared
to gravity and this is true for most RAS applications.
* The total pressure is the sum of the atmospheric pressure and the weight of the fluid

above a point.
* Since atmospheric pressure is assumed constant, so the horizontal pressure gradient

only includes the gradient of the water surface.



Diffusion of Momentum

* Non-conservative Formulation
* Only option in Version 5.0.7 and earlier,
* Optional in Version 6.0

DV

Dt

-gVz +

v AV e

PR

* Conservative Formulation
* Default in Version 6.0
* Only option for Eulerian SWE solver

DV

Dt

=—gVz_+

%V-(vthVV)——

HEC,
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A =V?: Laplacian

u,, : Face-normal velocity

v, : Turbulent eddy viscosity
h: Water depth

c,: Non-linear friction coefficient

* Diffusion of Momentum is caused by turbulent mixing and dispersion.

* RAS has 2 formulations for the diffusion term, also known as the mixing term.

* The non-conservative formulation was the only option in versions 5.0.7 and earlier and
is still an option in 6.0.

* It computes the Laplacian of the velocity field times eddy viscosity. For many natural
flows, the Laplacian tends to be on average negative and results in a net dissipation
which is not good because it can start to increase water levels and then in order to
calibrate the bottom roughness can be adjusted to compensate.

* This why new Conservative formulation has been developed.

* |t’s the default in version 6.0 and is the only option for the Eulerian SWE solver.

* It computes the divergence of the diffusive fluxes and for this reason it is more

conservative.




Mixing Term Formulation Comparison L€

g oF *\Ej\fa(ierSurface ]
§ Bathymetry and
5 water level
-100 1‘0 2‘0 3‘0 40 510 60 70 8‘0 9‘0 100
0.6
Eoap Produces a net
802 inviscd dissipation
2 Non-conservative Turbulent
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S R RS e S Decreases velocities in
o4 _ middle of channel but
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* This slide shows a comparison of the two mixing term formulations for a simple
parabolic channel.

* The top plot shows bathymetry and water level.

* The middle plot shows the velocity with the non-conservative formulation in black. The
blue line represents the velocity profile without mixing. Because the velocity curvature is
negative everywhere, the mixing term results in a net dissipation and lower velocities.

* The bottom plot shows the velocity with the conservative formulation also in black and
with the blue line representing the velocity without mixing for comparison. There the
velocities are decreased along the center of the channel and increased along the sides
which is much more realistic.




Eddy Viscosity Model =3

* Old: Parabolic v, =Du,h u, : Shear velocity
* Versions 5.0.7 and earlier h: Water depth
* Isotropic (same in all directions) D : Mixing coefficient
* 1 parameter: mixing coefficient D D, : Longitudinal mixing coefficient
* New: Parabolic-Smagorisnky D, : Transverse mixing coefficient
v, = Du,h +(C.;A)2 ‘g‘ C, : Smagorinsky coefficient

. ou 2 ov 2 ou ov 2 Dxx 0 l))oC = DL COS2 6+ D,T Sin2 0
‘S‘: 2l — | +2|— | +| —+— D= ., ,
ox Oy oy Ox 0 D, D, =D, sin*0+D,cos* 0
* Default method in Version 6.0
* Non-Isotropic (not the same in all directions)

* 3 parameters: D, , D, and C|
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One significant improvement in HEC-RAS 6.0 is the addition of a new eddy viscosity
model.

In versions 5.0.7 and earlier, the eddy viscosity was computed with a simple isotropic
parabolic model. It has one parameter the mixing coefficient D.

In version 6.0 there is a new formulation which is a combined Parabolic-Smagorinsky
model. It has a non-isotropic mixing coefficient and an additional Smagorinsky term
which is a function of the horizontal velocity gradients. This is important because areas
with high horizontal shears produce more turbulence.

The new eddy viscosity model better but it is more computationally expensive because
of the velocity gradients.

It also has 3 parameters instead of 1 so it can be more difficult. However, it does
generally produce better results. The 3 parameters are the Longitudinal and Transverse
Mixing Coefficients, and the Smagorinsky coefficient.

If the Longitudinal and Transverse mixing coefficient as set to the same value and the

Smagorinsky coefficient is set to zero, then it reduces to the previous turbulence model.

The Smagorinsky-Lelly model is sometimes criticized because it tends to under-predict
the eddy viscosity for fine-resolution meshes.

However, this model doesn’t have that problem because of the first term.

The first term represents the turbulence produced by bottom friction and dispersion,
whereas the second term represents the turbulence produced by subgrid flows and

11



horizontal shear.
Both of these formulations are referred as zero-equation turbulence models and they
offer a good comprise between accuracy and computational costs.

11



Bottom Friction

HEC,

S

* Resisting force due to relative motion of fluid against the bed

* Bed Shear Stress

t, = pC, V|V
* Drag Coefficient
_gn
D _F
* Friction coefficient
C gn’
Cy :?D |:R4/3 |V|

12

n :Manning coefficient

p: water density

g: gravity acceleration constant
|V| : velocity magnitude

R: hydraulic radius

Bottom friction is the resisting force due to the relative motion of the fluid against the
bed.

The nonlinear bottom friction coefficient is computed as a function of the Manning’s
roughness coefficient, gravity, the velocity magnitude, and the hydraulic radius.

12



Wind Stress

 Surface Stress is given by

N

. =p,C, |VV10|”/10

e Wind Reference Frame

E .
W,, —V for Lagrangian
10 .
W, for Eulerian
Wind Wind
—
y < vy
T — - —
Current Current
/—\\_/—" /—---~_-_"/—_'~
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Drag Coefficient

%107

HEC,

Ly -!IT(_V"

Drag Coefficient

= = =Hsu (1988)
Garratt (1977)

s T Large and Pond (1981) B
,_,/‘ ------- Andreas et al. (2012)
2 Charnock (1955) + smooth flow
1 1 1 1 1
0 10 20 30 40 50 60
Wind Speed (m/s)

* Wind forcing is new feature 6.0.

* The wind surface stress is computed as a function of the atmospheric density, a drag

coefficient, and the 10-m wind velocity.

* Several options are available to compute the wind drag coefficient.

* There is also an option to choose between Eulerian and Lagrangian reference frames.

* The Lagrangian reference frame takes into account the relative motion between the air
and water whereas the Eulerian reference frame ignores the water velocity.

* |n general, it always recommended to use the Lagrangian reference frame because it’s

more physically accurate and stable.

13



HEC_
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Diffusive-Wave Approximation

* Ignoring the following terms

0
+ W + f =—gVz + — 1y.
A dl/ Co i
Scy /s D/ff
re’"po “on d/e Usiop, °fl‘o W’”o’
l'a/ f)[‘ /'/CI. f eSS

* Expanding and dividing both sides by the square of its norm leads to

R2/3

* Inserting the above equation into the Continuity Equation leads to the

Diffusion-Wave Equation (DWE)

%zV-(aths)+q

14

* What’s very convenient about this equation is that it is no longer a function of current
velocities. It only has water levels. Therefore, velocities can be computed once a solution
for the water surface is obtained.

* The DWE is simpler and more computationally efficient to solve compared to the SWE'’s.

* However, the DWE has a more limited applicability than the SWE’s.

14



HEC

SWE vs. DWE

* Use SWE for:
* Flows with dynamic changes in acceleration
* Studies with important wave effects, tidal flows
* Detail solution of flows around obstacles, bridges or bends
* Simulations influenced by Coriolis, mixing, or wind
* To obtain high-resolution and detailed flows

e Use DWE for:

* Flow is mainly driven by gravity and friction

* Fluid acceleration is monotonic and smooth, no waves

* To compute approximate global estimates such as flood extent
* To assess approximate effects of dam breaks

* To assess interior areas due to levee breeches

* For quick estimations or preliminary runs

15

* These are some general guidelines for when to use the Diffusion-Wave or Shallow Water
Equations.

* But because it is so easy to switch from Diffusion Wave to Shallow Water and RAS is
relatively fast. The best practice is to try them both compare.

* | always recommend starting a project with diffusion-wave because it’s faster and more
stable. Then once the model is running well, try the Shallow Water Equations and
compare. This is the most objective and evidence-based way of knowing.

15
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Computational Mesh

* Mesh/grid can be unstructured

* Polygonal cells of up to 8 sides
* Cells must be concave
e Multiple 2D mesh can be run together

e Grid Notation

Cell

or independently . Face
Computation

Point

* Cells, Faces, Face Points (i.e. nodes or
vertices), Computational Points, etc.

e State Variables Face Point

16

(Node or Vertices)
* Cell Water levels

* Face-normal Velocities

HEC-RAS uses an unstructured polygonal mesh.

The polygons or cells consist of sides or faces, connected by Face Points (or better-
known Nodes or Vertices).

Cells can have up to 8 faces.

Cells must be concave.

Multiple 2D meshes can be run together or independently.

Each cell has a Computation Point which may or may not be the Cell Centroid.

In version 6.0 the Computation Points is only used for mesh generation and editing and
not in the model computations. Instead, the Cell Centroid is used in the computations.

16



Numerical Methods

* Both DWE and SWE solvers are Semi-implicit

* Terms treated as:
* Explicit: acceleration and diffusion terms
* Semi-implicit: friction, flow divergence terms, and water level gradient
* Fully-Implicit: pressure gradient term (for 6 = 1)

* By treating the “fast” pressure gradient term implicitly, the time step
limitation based on the wave celerity can be removed

e Both DWE and SWE use Finite-Difference and Finite-Volume
Methods

* Time integration: Finite-Difference
* Continuity Equation: Finite-Volume
* Momentum Equation: Finite-Difference (no control volume)

HEC,
1
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Face Water Surface Gradient HEC

* Face-Normal Gradient

S

VZV -nk =—x
’ ON Ax

N

82 ZS,R - Zx,L

Uses Cell Centroids and
NOT the Computation Points

* Future versions may include non-orthogonal

* Compact two-point stencil is computationally
efficient and robust

* Important to have a good quality mesh
to reduce errors

18

* The face-water surface gradient calculation has changed in version 6.0.

* The change is small and in fact for Cartesian cells, the schemes are identical. But for
other cells they can vary and for highly distorted meshes, they can vary significantly.

* The gradient is computed with a simple two-point stencil.

* The approach uses the orthogonal distance between Cell Centroids and NOT the
distance between Computation Points and there is no correction for non-orthogonality.

* We may include corrections in future versions as an option.

* However, the new 2-point stencil is efficient and robust.

* We're also going to working mesh quality to improve the model accuracy.

18



Momentum Conservation M

* Momentum conservation is directionally invariant

* Only “face-normal” component is needed at faces so
ou,, oz, 1
—+(V-Vu, — fu,=—-g—+—-V-(v,hiVu, )- +
o TV V) S =g ot Vo N)pR oh

where u, is the velocity in the N direction

T

z-b,N s,N

19

* Because momentum conservation is directionally invariant, we can simply things and
only solve the momentum equation in the directions that need and that is the face-
normal directions.

* The tangential face velocities could be solved with a momentum equation just like the
face-normal velocities.

* However, it’s much more efficient to reconstruct them from the face-normal velocities.

* This is much more computationally efficient and is very robust.

19



Face-Tangential Velocity

* Tangential velocities are computed on left and
right of face with a Least-squares Formulation

Sp=> (Verm, —(uy),) S, =>.(V, m—@),)

* Of the left and right reconstructed velocities,
only the tangential component is used, because
the normal component is known

(1, ), =V, t, (u,), =V, -t
* Average face-tangential velocity computed as

(UT )f = (MT)R —;‘_ (uT )L

HEC,
1

Double-C Stencil

A

20

* The face-tangential velocities are computed with what we call the Double-C stencil

approach.

* The method computes 2 face-tangential velocities, one on each side of a face.

* A full velocity vector is reconstructed on the blue and red C-stencils shown in the figure
by solving a least-squares problem. The face-normal component is then thrown out,

because it’s already known, and the tangential component is applied at the face.
* |f the 2 cells are hydraulically connected, the average face-tangential velocity is
computed as a simple average of the left and right tangential velocities.

* This same double-C stencil approach is used to compute the face-tangential water

surface gradient utilized by the DWE.

20



et . .
Discretization

* Cell Velocity Gradient (x-direction)
* Gauss’ Divergence Theorem

Vu, =A%;[VudA =A%C.§undL =A%ZuknikL,

i kei

* Needed tor turbulence modeling

* Cell Velocity
¢ Perot’s Method

* Needed for the conservative form of the
mixing term and for Eulerian advection

* The cell velocity gradients are computed by applying the Divergence Theorem and are
needed for turbulence modeling.

* The cell velocities are computed with Perot’s method and are needed for the
conservative form of the mixing term and for the advection term of the Eulerian Shallow
Water Equation solver.

21
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Discretization: Laplacian

* Node Laplacian . S
(V?0), =[V-(V¥)], = 2d.(VP), e S
i:Cells \‘;\* &
(VV),- = ZCka j :Nodes o i
‘ k : Faces |

* Used only by non-conservative turbulence

22

* The Laplacian of the velocity field is computed on the nodes based on the cell velocity

gradients.
* The image on the right shows the mesh and dual mesh. The blue circle on the nodes and

red X’s are the neighboring computation points at which the velocity gradients are

computed.
* The Laplacian is computed similar to the velocity gradients by utilizing the divergence

theorem but in this case on the dual mesh shown in red.

22



Backtracking e

Ou,, +(V V), = Du,, Uy —uy
1. Interpolate node velocities from faces ot Dt At
2. Set starting location and remaining time as f'and T, = At »
) . e . =V(x,t)
3. From starting location and velocity, find location B
4. Compute time to location B: T, = (x, —x,)V,'

5. Interpolate velocity at location B: V, =w,V, +w,V,,
if Ty > T
6. SetA=B,T,=T,—1T,,andgo tostep 3
else
7. Findlocation Xas x, =x, — TV,
8. Interpolate velocity vector at X
Ve =T, [TV, +(T, - T, )V, |

9. Compute advective velocity

uy=n,-Vy

3.
4,
5.

The Courant condition is avoided in the Eulerian-Lagrangian solver by incorporating
advection in the total derivative.
An integral part of this is backtracking, which the processes of the tracing back the flow
path or characteristic line from a face to its starting location X at the beginning of the
time.
The algorithm is RAS is computationally efficient, robust, and has good time
convergence.
The actual algorithm in RAS is more complicated than this because of boundary
conditions and special cases, but this the general idea.
First the node velocities are interpolated from the faces using the previous time step
velocity field.
The backtracking starts at the faces. The starting location A is set to face center f and
the remaining backtracking time T_R is initialized as the time step.
Next location the location B is computed from the starting location A.
Then the time to location B (T_B) is computed
Then the velocity at B is interpolated from the nodes

If T_B is greater than the remaining time T_R,

5.

The particle has crossed into the neighboring cell. B is set as the new starting location

and T_B is subtracted from the remaining time.
If T_Bis less than the remaining time T_R, the particle is within the current cell.

23



6. In this case, the location of X is computed as shown and

7. The velocity at X is interpolated from the velocities at A and B.

8. Finally, the face-normal advective velocity is computed with the dot product of the face
unitand V_X.

23



. . HEC,
Coriolis Term e

* Eulerian-Lagrangian Solver

* Fractional Step Method (Semi-implicit) [ : Coriolis Parameter

. @ : Implicit weighting factor
[ 1 QAtﬂj(u J — (MX +(1- Q)Atfcv)fj V= [“ j At : Time step interval
oMY, 1 4 vy +(1-0)Atf uj, d u’, : Backtracking velocity

Z/anrl _u* 6Zn+9 . .
VI A uy,=n, -V
¢

e Eulerian Solver

* Explicit
n+l n n+6
Hy ~Ux Jr(V~V)u}’v — fup =—g———c,u,"
At ON

24

* The Coriolis term is treated slightly differently in the ELM and EM solvers.

* Inthe ELM solver, Coriolis is computed semi-implicitly with a Fractional Step Method.

* Inthe first step a 2x2 matrix is inverted analytically to compute an interim velocity
vector V star which includes the Coriolis. The second step includes all remaining terms.

* The treatment of Coriolis in the EM solver is much simpler. It doesn’t use a fractional
step method. Instead, the Coriolis computed explicitly based on the face-tangential
velocity. The tangential velocity is computed from a least-squares of the neighboring
face-normal velocities.

24



Eulerian-Lagrangian Momentum Equation

* Semi-discrete form (2" Fractional Step)

n+l % a n+6 1 " T
B N N e
At ON h . phf
where
2 =(1-6)z" + 6z
u, =V" ‘n,

* Velocity V" includes Coriolis

* Mixing term is interpolated at backtracking location X and
based on previous time step velocity field

* Friction term is semi-implicit

HEC,
1

25

* The second fractional step of the ELM solver is shown here in
semi-discrete form.

* The velocity uN* is the face-normal component of the intermediate velocity computed
from the first fractional step at the backtracking location X and thefore includes Coriolis.
* The water surface gradient is computed semi-implicitly based on the weighting factor

theta.

* The mixing or diffusion term is explicit and Lagrangian. In other words, it’s interpolated

at the backtracking location X and is based on the previous velocity field.
* Lastly, the friction and pressure gradient terms are treated semi-implicitly.

25



Eulerian Momentum Equation

e Semi-discrete form

n

n+l _ o0 n+6
w Uy +(V” -V)ufv - fu; =—-g &, '{lv'(‘ﬂ hVuN)} —c,u I

At oN Lk ; ph'
where

2" =(1-0)z" + 62" h, =aih, +afh,
* Coriolis term computed at face /" and is explicit
* No fractional step method like ELM solver

* Mixing term is computed at face fand is explicit
* Friction and pressure gradient terms are semi-implicit

26

* The semi-discrete Eulerian Momentum Equation looks similar to the Eulerian-
Lagrangian.

* As before, the water surface gradient and friction semi-implicit

* However, here the Coriolis term treated explicitly.

* There’s no fractional step method here.

* The mixing is also explicit and Eulerian.

26



* Approach from Kramer and Stelling (2008) . \
at
(V'V)MN ~ ]/_lfAL ;SLka |:Vku n, _(MN )f:|
a;
+= SO V! -n,—(u
thR; Rk k|:k r (N)f:|
aL:L; h, =ah +a®h
f Axf N Axf f sy T8
at=1-a!

* Courant-Freidrichs-Lewy (CFL) Condition

CzU—AtSI
Ax

27

* Of course, the main difference between the ELM and EM solvers is how they treat
advection.

* Inthe EM solver, advection computed with what | would call is a Finite-Volume
Advection Interpolation approach.

* It reminds me of Rhie and Chow’s momentum interpolation approach.

* Basically, the advection term is computed on either side of a face and then interpolated
onto the face.

* Here the alpha’s are the interpolation weights

* Asimple first order upwinding scheme is used to compute the face advective velocities.
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HEC,
Discretization: Diffusion Term =3

* Non-Conservative Form

2 i 217\
vV uN‘f ~v,ﬂf(V V)X n,

* Conservative Form

1y, a noV, V), o n oV, V)
p \% (vthVuN)f ~ E,»AL ;Akvt,k - + E_AR ;Akvt,k Ax,

* Discretization same for both ELM and EM solvers

A2

* Approximate Stability Criteria for EM solver |, A,
<

* ELM interpolates term to location X

Ev.(v,w%)}

n

X

* The non-conservative form of the mixing term is only available with the ELM solver.

* It’s computed as the explicit face eddy viscosity times the dot product of the velocity
Laplacian and the face unit vector.

* The velocity Laplacian is interpolated at the backtracking location X.

* The eddy viscosity could also be backtracked as well, but tests have shown that’s its
more stable to use the value at the face.

* The Conservative form of the mixing term is available with both the ELM and EM solvers.

* It’s computed with a similar weighting scheme as the Eulerian advection

* Here the divergence of the diffusive fluxes are summed around the left and right cell
faces to compute a diffusion term on each.

* These are then weighted to compute a value at the face with the same alpha
coefficients as the advection term.

* In order to simplify the code, the same discretization is used for both the ELM and EM
solvers

* However, for ELM solver the mixing is backtracked and interpolated at the location X.

* This removes the stability criteria from the diffusion term and allows it to use a larger
step.
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i . HEC,
Turbulence Numerical Implementations <%/

* Non-conservative mixing

* Eulerian-Lagrangian Solver ) .
P Eulerian-Lagrangian ® ApprOX|mate Stablllty

* All diffusion terms explicitly

n+l *
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* |In order to understand the strengths and limitations of the different formulations and
solvers it’s important to understand some basic aspects of the numerical
implementations.

* The non-conservative form of mixing remains largely the same in Version 6.0 except for
the eddy viscosity. The mixing term is Eulerian-Lagrangian. The eddy viscosity is
computed at face while the velocity Laplacian is backtracked. Through testing, this was
found better convergence properties then a full Lagrangian approach.

* The non-conservative form of mixing is not available with the EM solver.

* The Conservative Mixing term is available with both the EM and ELM solver.

* In both cases, the mixing term is discretized the same, however in the ELM solver, term
is backtracked. This means it’s interpolated at the backtracking location X.
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Eulerian-Lagrangian vs. Eulerian SWE Solvers

* ELM-SWE
* Only solver available in V5.0.7 and earlier
* Defaultin V6.0
* Not limited by Courant condition
* Excellent stability
* Can have momentum conservation
problems around shocks or
where the flow changes rapidly
* EM-SWE
* New to V6.0 as an option
* Limited to Courant less than 1.0
* Good Stability

* Improved momentum conservation
for all flow conditions

S
Strength/Feature/Capability SWE-ELM | SWE-EM
Larger Time Step X
Best Stability X
Courant Stability Criteria X
Diffusion Stability Criteria X
Computational Speed X
Wet/dry > 1 cell per time step X
Best Momentum Conservation X
Non-Conservative Mixing X
Conservative Mixing X X
Wind X X
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Subgrid Modeling

* Problem

* Water levels usually vary much more
smoothly than the terrain

* Unfeasible to resolve every detail of the
terrain with the computational mesh

* Approach
* Utilize a grid resolution sufficient
to resolve the hydraulics

* Capture the details of the subgrid terrain
through hydraulic properties tables

31
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Subgrid Bathymetry: Cells

Cell ~ A(H) “ Q, (%
w I /
7~
/
‘ /
Area Volume
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On the left you a cell that is partially wet and dry; the blue region being the area under
water.

The terrain is binned into discrete elevations which can be used to create a curve of
horizontal area as a function of elevation (shown in the middle).

Each bin represents the area corresponding to specific elevations and is used to
compute the total wetted cell area for a specific water level.

The area-elevation curve is integrated to produce and a piece-wise linear volume-

elevation curve. This curve is used to compute the cell water volume for any water level.
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Subgrid Bathymetry: Faces

* Faces treated similar to cells

* Hydraulic property tables computed

33

* Wetted length
* Wetted Perimeter
* Area

face k

Ay,

The subgrid bathymetry at faces is computed similar to cells.

The property tables computed at faces are the wetted length, wetted perimeter, and
wetted vertical area.

The figure on the left is an example of an irregular bed profile at a face. The light blue
shaded region is the wetted area corresponding to a particular water level.

The figure on the right represents the relationship for the face area and the water level
for that face.
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Benefits of Subgrid Bathymetry [

Shown - gh
hydraulic detail that flow can move through a channel, even though the channel is smaller 3.
than the cell size_ In the abave example the cells are 500 ft by 500 ftWater will move

GWB

though the channel portion of the cells, because the details of the channel cross sections
are contained within the faces. Additionally, the details of the cell elevation-volume curve
allow for accurate water storage within the channels. In this type of example, flow can
move through a cell/channel in a 1D-type of mode, while flow in the overbank areas will be
2D from cell to cell. If the user wants more detail within the channel, such as 2D flow
velocities and varying water surface elevations, then smaller cell size can easily be specified
within the channel. However, if the goal is to convey water through the channel and
capture the 2D flow the floodplain, then this is a very viable option.
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Solution Procedure

* System of equations
Q+WY7Z =b

* Algorithm
1. Compute Right-Hand-Side b

* Contains explicit terms:
advection, diffusion, wind, etc.

2. Outer Loop (Assembly and Updates)

* Update linearized terms and variables
including coefficient matrix Y/

3. Inner Loop (Newton Iterations)

zm=2"-[P+A4"] (Q"+¥Z"-b)

35

HEC,

e

Z :\Water level

Q : Water volume

y : Coefficient matrix
b :Right-hand-side

m : Iteration index

A :Diagonal matrix of

cell wet surface areas

* The final system of equations can be written in matrix form as the first equation.
* The computational algorithm begins each time by computing the right-hand-side b

which contains the sources/sinks and explicit terms.

* The outer loop computes or updates the linearized terms and variables such as the

coefficient matrix and wetted surface area.

* The inner loop ensures mass conservation and computes water levels via Newton-like
iterations which require solving the sparse matrix shown at the bottom.
* Both the inner and outer loops are repeated until convergence.
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HEC,

Boundary Conditions

* Stage Hydrograph. Upstream or downstream

* Flow Hydrograph. Upstream or downstream. Local conveyance
and velocities computed automatically.

* Normal Depth BC. At downstream boundaries.
* Rating Curve BC.
* Wind. Only for shallow-water equations.

* Precipitation, evapotranspiration, and infiltration. Included as
sources and sinks in the continuity equation.

* 1D reaches and 2D areas can be connected
e Multiple 2D areas can be connected to each other

e 2D areas can be connected to 1D lateral structures
such as levees to simulate levee breaches

* The 2D model supports various types of boundary conditions.

* A stage hydrograph can be specified upstream or downstream. Water can flow in and
out of stage boundaries and there can even be flow reversals within the same boundary.

* Flow hydrograph can also be specified upstream or downstream but is typically specified
upstream. The flow hydrograph BC requires a user-specified energy grade slope which is
used to compute a normal depth from a flow rate and the bathymetry profile at the
boundary. A conveyance approach is used to distribute the total boundary flow at every
face along a boundary.

* A normal depth BC can only be specified at downstream boundaries.

* The rating curve BC specifies the total boundary flow as a function of stage. It can only
be specified at downstream (or outflow) boundaries. The total flow is distributed along
the wet boundary based on conveyance.

* Wind forcing is new in version 6.0. Wind surfaces stresses are computed from wind
velocity data and can only applied with the shallow-water equations.

* Precipitation, evapotranspiration, and infiltration are also new version 6.0. These are
applied as sources and sinks within continuity equation.

* 1D reaches and 2D areas can be connected or coupled.

* Multiple 2D areas can be connected to each other.

* And finally 2D areas can be connected to 1D lateral structures such as levees.
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Computational Implementation

HEC

* Multiple 2D areas can be computed independently and
simultaneously

* All solvers are can be run on multiple cores

2D solvers and parameters can be selected independently for
each 2D area

* A partial grid solution keeps track of active portion of
mesh and only computes the solution for active portion
significantly reducing computational times.

37

Compute Engine written in Fortran
Theta parameter controls shape of stencil in time: % = Crank-Nicolson
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Thank You!

HEC-RAS Website:
https://www.hec.usace.army.mil/software/hec-ras/

Online Documentation:
https://www.hec.usace.army.mil/confluence/rasdocs
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