Simplified Bridge Modeling in 2D Flow Areas

Objective

 The purpose of this lecture is to describe how the 1D bridges can be used inside in 2d flow areas. The details of how the computations are performed in 6.0-6.1 and 6.2 will be explained. Some examples will demonstrate how to enter the required data. Assumptions and issues will also be discussed.

Simple 1D Bridge inside 2D Flow Areas

- Bridges are a new option for SA-Connection structures that are completely inside 2D Flow Areas. New approach in 6.0 and new simplified solution approach for 6.2
- Structure centerline should be enforced as a breakline with appropriate cell spacing.
- Select Bridge Mode and enter general bridge like Deck, Piers, Abutments and Modeling Approach and some data specifically needed for bridges inside 2D flow areas.
- Loses will be computed during simulation from family of curves

Structure Enforced as Breakline

4

- 1D Bridge loses computed between "XS" downstream of deck through the bridge to "XS" upstream of bridge deck.
- Cells sizes (or cell US-DS length) set so that the cell centers match the domain covered by 1D Bridge Loses

Structure Enforced as Breakline

5

Cell Size Example

- Bridge Deck width = 40 feet and US Distance = 5 feet
 - half deck width = 40/2 = 20 feet
 - distance from centerline to first cell center = 20+5
 - row of cells needs to be 50 feet

Structure Enforced as Breaklines

Connection in Bridge Mode

7

- SA Connection must be completely inside a 2D flow area (from and to are same)
- Set Structure Type

Bridge – Deck

- Set US Distance and Width
 - Will set the "XS" and range of bridge curves loses
- Enter rest of bridge data

	Distanc	e	Wid	th	W	eir Coef		
5.		4	D.		3.			
Cle	ear D	el Row I	ns Row		Сор	Copy US to DS		
	L. L	Jpstream			Downstrea	m		
	Station	high chord	low chord	Station	high chord	low chord		
1	0	947	930	0	947	930		
2	7	947	939	7	947	939		
3	10	947	941.175	10	947	941.175 942.45		
4	13	947	942.45	13	947			
5	16	947	943.2	16	947	943.2		
6	19	947	943.8	19	947	943.8		
7	22	947	944.25	22	947	944.25		
8	25	947	944.55	25	947	944.55		
J.S I Wei	Embankmer ir Data —	nt SS 0		D.S Er	nbankment S	s 0		
Max	Submerge	ence: 0.	95	Min W	eir Flow El:			
(• (•	r Crest Sha Broad Cre Ogee	ape sted						

Bridged - Piers

Enter Piers

Same as normal 1D Bridge

A	dd Copy	Delete	Pier #	- ↓
	el Row Ce s Row Ce pating Pier Del Il On All Set Wd/Ht for	nterline Statio nterline Statio bris Off Deb Deb	on Upstream on Downstream Apply floating oris Width: oris Height:	debris to this pi
	Upstre	am	Dow	Instream
1	Upstre Pier Width	am Elevation	Dow Pier Width	Elevation
1	Upstrea Pier Width 6	am Elevation 925	Dow Pier Width 6	Elevation 925
1	Upstrea Pier Width 6 6	am Elevation 925 945	Dow Pier Width 6 6	Elevation 925 945
1 2 3	Upstrea Pier Width 6 6	Elevation 925 945	Dow Pier Width 6 6	Elevation 925 945
1 2 3 4	Upstrea Pier Width 6 6	am Elevation 925 945	Dow Pier Width 6 6	Elevation 925 945
1 2 3 4 5	Upstrea Pier Width 6 6	Elevation 925 945	Dow Pier Width 6 6	Instream Elevation 925 945
1 2 3 4 5	Upstrea Pier Width 6 6	am Elevation 925 945	Dow Pier Width 6 6	Elevation 925 945

Bridge - Abutments

Enter Abutments

Same as normal 1D Bridge

Sloping Abutment Data Editor												
Add Copy Delete Abutment # 1 I <t< td=""></t<>												
Upstream Downstream												
1 2 3 4 5 6 7	Station	Elevation	Station	Elevation								
OK Cancel Help Copy Up to Down Select Abutment to Edit												

Bridge - Modeling Approach

Enter Modeling Approach

Same as normal 1D Bridge

Conne	Connection Bridge Modeling Approach Editor											
Low Flow Methods Use Compute ○ ✓ Energy (Standard Step) ○ ✓ Momentum Coef Drag Cd 2. ○ ✓ Yarnell (Class A only) Pier Shape K 💟												
•	Highest Energy /	Answer										
High Flow Methods Energy Only (Standard Step) Pressure and/or Weir Submerged Inlet Cd (Blank for table)												
	Submerged Inlet	+ Outlet Co	ł	0.8								
	Max Low Chord (Blank for default)											
	OK	Cano	el	Help								
Enter (Enter Cd Coefficient for mometum computations											

Bridge – HTab Param

- Enter Hydraulic Tables
 Parameters
 - Same as normal 1D Bridge

Connection Hydraulic Property Table Parameters									
Number of points on free	50								
Number of submerged cu	50								
Number of points on eac	20								
Apply number of points to all Connections									
Head water maximum elevation: 950.									
Tail water maximum elevation (Optional):									
Maximum Flow (Recomm									
OK Cancel									

Bridge – Additional Parameters

Additional Data – Options Menu

BUILDING STRONG®

Additional Options – XS (and Manning's n)

Bridge Cross Sections

Upstream Outside Upst					Jpstream Inside					Downstream Inside					Downstream Outside				
Þ	Main Channel Bank Stations Left Bank Sta Right Bank Sta þ 271.53				Main Channel Bank StationsLeft Bank StaRight Bank Sta0271.53			Main Channel Bank StationsLeft Bank StaRight Bank Sta0271.53					Main Channel Bank StationsLeft Bank StaRight Bank Sta0271.53				3		
	Cross Se	ection X-Y Co	ordinates			Cross Se	ction X-Y Cod	ordinates			Cross Se	ction X-Y Co	ordinates			Cross Se	ction X-Y Co	ordinates	
	Station	Elevation	Mann n	-		Station	Elevation	Mann n	-		Station	Elevation	Mann n	-		Station	Elevation	Mann n	-
1	0	946.32	0.035		1	0	950.58	0.035		1	0	950.84	0.035		1	0	950.22	0.035	
2	3.76	935.29			2	1.75	950.62			2	0.69	950.36			2	7.15	950.62		
3	6.84	934.66			3	7.01	934.83			3	4.31	950.61			3	11.96	936.86		
4	8.59	934.32			4	11.14	934.13			4	4.93	950.62	-		4	12.49	935.55		
5	9.72	934.12			5	12.97	933.86			5	9.87	950.62			5	18.38	934.54		
6	12.2	933.81			6	14.76	933.66			6	12.53	942.74			6	19.67	934.37		
7	15.69	933.41			7	21.98	932.92			7	15.13	934.91			7	21.66	934.15		
8	21.65	932.8			8	29.21	932.27			8	17.12	934.59			8	24.34	933.86		
9	27.61	932.28			9	36.44	931.58			9	21.09	934.08			9	30.31	933.29		
10	33.58	931.7			10	45.01	930.95			10	27.96	933.39			10	34.13	932.95		
11	39.54	931.24			11	50.9	930.47			11	38.8	932.38			11	37.74	932.61		
12	45.51	930.82		-	12	54.51	930.2		-	12	44.95	931.74		-	12	40	932.37		-

Cancel Help

Family or Rating Curves

Geometry Preprocessor computes family of rating curves

Family of Rating Curves - Riverine1D

 Current (last time step or last iteration) DS XS water surface and flow are used to compute the US XS water surface

 Matrix Coefficients for US XS row are changed to impose this computed US water surface

Family of Rating Curves - 2D Flow Areas

- Curves are used differently
 - Compute US XS and DS XS are used to compute expected 1D Flow
 - Friction lose terms are adjusted so that compute 2D flows match expected 1D Flow

Family of Rating Curves - 2D Flow Areas

Version 6.0 (and 6.1)

- Bridge Losses imposed using the family of rating curves and velocity distribution at each 2D face in bridge opening
- Different adjustment factor for each face in bridge centerline
- Can be instable when 2D face velocity distribution does not match 1D velocity distribution

Family of Rating Curves - 2D Flow Areas

Version 6.2

- Computes total 2D flow of the all the bridge centerline faces
- Computes average upstream WS and average DS water surface
 - At cells along bridge centerline faces
- Family of curves compute the expected total 1D flow
- Manning's n roughness adjusted for centerline faces so 2D flow solution matches 1D flow
- One adjustment factor for all the bridge faces

Bridge - Output

Stage and Flow Plot

Bridge Output

Profile Lines – Plot Tick Marks

21

BUILDING STRONG®

Issues in 6.2

- New approach in 6.2 sometimes has an error in the reported flow through the bridge in stage and flow plot
- Not a computation error, correct flow is transported through the bridge
- Can add a Reference line downstream or upstream of bridge to get the real flow through the bridge.

Issues Overall

- Spacing/cell sizes through a bridge modeled as 1D are generally larger than users would like.
- Necessary to use these cell sizes so that we do not duplicate contraction and expansion loses in 2D domain and in 1D curves.

