Alex Sánchez, PhD

Senior Hydraulic Engineer

USACE, Institute for Water Resources, Hydrologic Engineering Center

GWB

1D vs 2D Bridge Modeling

- Advantages of 2D over 1D
 - Detailed flow velocities
 - Detailed water surface elevations
 - Turbulence
 - Automatic contraction and expansion losses
 - Automatic ineffective flow areas

- Disadvantages of 2D over 1D
 - Longer run times
 - Requires more detailed terrain
 - Can be more unstable
 - Detailed 2D models can take longer to develop than 1D models

-

Terrain

- Must be
 - High-resolution
 - High-quality
- Use Terrain Modifications for
 - Piers
 - Embankments
 - Bathymetry Modificaitons

Equation Set

- Diffusion Wave Equation
 - For preliminary runs and/or initialization
 - Cannot simulate contraction and expansions
 - Cannot simulate mixed flow
- Shallow Water Equations
 - Production runs
 - SWE-EM preferred due to better momentum conservation

Computational Mesh

- Preliminary runs with simple coarse mesh
- Breaklines and refinement regions for high-resolution meshes
 - Minimum cell size will drive time step
- Perform grid convergence

Turbulence Modeling

- Turbulence Model
 - Use the Conservative Formulation!
- Eddy Viscosity Model
 - Use Parabolic-Smagorisnky
 - Calibrate if possible
 - In lieu of calibration, perform sensitivity analysis

Bottom Roughness

- Use spatially variable Manning's n
- Different flows may require different bottom roughness
- Compare Results Between
 - Single Manning's n per Face
 - Composite Manning's n on Faces (Beta)

Boundary Conditions

- Tempting to place them very close to the bridge but don't
- Perform sensitivity on boundary placement and boundary values (such as friction slope)
- Place boundaries in areas with 1D flow (i.e. no recirculation, or sharp contracts and expansions)
- Precipitation, Infiltration, Wind, etc.

Advanced Computational Parameters and Options

- Time Step
 - Variable time step algorithm
 - Hand calculations of Courant
 - Model stability
- Implicit Weighting Factor
 - 1.0 for preliminary runs
 - 0.5-0.6 for production unsteady flow runs
 - Not important for steady flow
- Coriolis not important
- Mobile Bed (2D Sediment Transport)

Limitations

- Flow must be below bridge deck
 - No pressured flow
 - No flow overtopping
- 2D Flow Assumption
 - Breaks down when cell resolution is much finer than depth
- Hydrostatic Pressure Assumption
- Cannot simulate
 - Bridge openings such as culverts
 - Debris (can be done in 1D)
 - Ice (can be done in 1D)
 - Waves

- Equation set = SWE-ELM
- Eddie Viscosity Coefficient •Conservative D_1 and $D_T = 0.5$
- Grid Size = 2x2 ft up to 8x8 ft
- Time step = 0.2 seconds
- No. Cells = 45,000
- Event Duration = 20 min. Steady
- Run Time = 3min 39s

Т

13

Thank You!

HEC-RAS Website:

https://www.hec.usace.army.mil/software/hec-ras/

Online Documentation:

https://www.hec.usace.army.mil/confluence/rasdocs

