Modeling Bridges with Unsteady Flow

Solution

Enter Bridge Information

Add a new Bridge at Station 5.4.

🎩 Bridge Culvert Data - Beaver Creek - Initial Bridge

			THECH WID	
File View	Options Help		Enter a new river station for the	
River: Beav	Add a Bridge and/or Culvert		new bridge or culvert in reach	
Reach: Kent	Copy Bridge/Culvert	· + t	Kentwood	
Description	Rename River Station	÷	5.4	
Bounding XS's	Delete Bridge/Culvert	ot set) (ft)	10.1	
Deck/ Roadway	Internal Bridge Cross Sections		OK Cancel	É

Use the Bridge Design Editor to enter the deck and pier data.

- Road embankment is at a constant elevation of **216.93**ft.
- The bridge low chord is at elevation of **215.7 ft**.
- The bridge opening has vertical walls at cross section stationing **450** ft and **647** ft.
- The bridge has **9 piers**. The piers are **1.25** ft wide each and have a square nose. The piers are spaced **20** ft. apart on center, starting with the first pier at station **470** ft.

HEC-RAS

 The bridge deck is 40 ft wide, and the upstream side of the bridge deck is 30 ft from cross section immediately upstream of the bridge (section 5.41).

Deck/Roadway Data Editor

	Distance		Wid	th	Weir Coef				
30		4	D		2.6				
Cle	ear De	Row	ns Row		Сор	y US to DS			
	U	pstream			Downstrea	m			
	Station	high chord	low chord	Station	high chord	low chord	•		
1	0	216.93	202.7	0	216.93	202.7			
-		210.00		-					

k

Select a Bridge Modeling Approach for both low and high flow.

Multiple methods can be used initially; however, a single method should be selected prior to unsteady flow modeling. Based on previous modeling with this data, the shown combination is the best choice for this bridge.

Bridge Modeling Approach Editor
Add Copy Delete Bridge # 1 -
Low Flow Methods Use Compute ○ ✓ Energy (Standard Step) ○ ✓ Momentum Coef Drag Cd ○ ✓ Yarnell (Class A only) Pier Shape K ○ ✓ WSPRO Method (Class A only) WSPRO Variables ○ Highest Energy Answer
High Flow Methods C Energy Only (Standard Step) Pressure and/or Weir Submerged Inlet Cd (Blank for table) Submerged Inlet + Outlet Cd Max Low Chord (Blank for default)
OK Cancel Help

Enter the Ineffective Flow Area data for the bounding bridge cross sections

The initial model applied the Normal Ineffective Flow option, laterally offset from the abutment locations based on a rapid contraction and expansion of flow in the vicinity of the bridge. The elevation for the ineffective areas was set to just below the top of weir elevation.

Ineffective Flow	w Areas	
	Select Ineffectiv	e Mode
Norr	mal OM	ultiple Blocks
	Left	Right
Station	420.	677.
Elevation	216.5	216.5
	Permanen	t 🔲 Permanent
ОК	Cancel	Defaults Clear

Compute Steady Flow Profiles

The Bridge Comparison table shows that for the 1974 flood event the pressure/weir flow solution was used.

T Profil	e Output T	able - Brid	ge Compa	rison						_		\times
<u>F</u> ile <u>O</u> pt	tions <u>S</u> td	. Tables <u>L</u>	ocations	<u>H</u> elp								
		HEC	-RAS Pla	in: Stead	y River: Bea	ver Creek	Reach: K	(entwood			Re	load Data
Reach	River Sta	Profile	E.G. US.	W.S. US.	BR Sel Method	Energy EG	Momen. EG	Yarnell EG	WSPRO EG	Prs O EG	Prs/Wr EG	Energy/W
			(ft)	(ft)		(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)
Kentwood	5.4	PF 1	213.62	213.37	Energy only	213.62						
Kentwood	5.4	PF 2	216.79	216.36	Press Only	215.81				216.79		
Kentwood	5.4	1974 flood	217.31	217.17	Press/Weir	216.94				217.60	217.31	
•												Þ
Upstream e	energy grad	le elevation	at bridge or	r culvert (s	pecific to that op	pening, not	necessarily t	he weighte	d average).			

The bridge only table shows weir flow for the third profile.

T Profil	e Output T	able - Brid	ge Only							_		×
<u>F</u> ile <u>O</u> pt	tions <u>S</u> td	l. Tables <u>L</u>	ocations	<u>H</u> elp								
		HEC-	RAS Plai	n: Steady	River: Beav	/er Creek	Reach:	Kentwood			Reloa	d Data
Reach	River Sta	Profile	E.G. US.	Min El Prs	BR Open Area	Prs O WS	Q Total	Min El Weir Flow	Q Weir	Delta EG	BR Sluice	Coef
			(ft)	(ft)	(sq ft)	(ft)	(cfs)	(ft)	(cfs)	(ft)		
Kentwood	5.4	PF 1	213.62	215.70	1600.38		5000.00	216.94		0.21		
Kentwood	5.4	PF 2	216.79	215.70	1600.38	216.36	10000.00	216.94		1.42		0.34
Kentwood	5.4	1974 flood	217.31	215.70	1600.38		14000.00	216.94	1112.25	1.31		
Upstream e	energy grad	le elevation	at bridge o	r culvert (s	pecific to that o	pening, not	necessaril	y the weighted av	erage).			

Check the cross sections around the bridge. The Six XS Bridge table shows that there was a bit more overbank flow in the upstream of the bridge than downstream. This may be a result of the ineffective flow options being off upstream and turn on downstream. Also, the **overbank flow is much greater than weir flow**.

III Profile	e Output Tal	ble - Six XS	Bridge							-	- [l X
<u>F</u> ile <u>O</u> pt	ions <u>S</u> td.	Tables <u>L</u> o	cations	<u>H</u> elp								
	HEC-R/	AS Plan: S	Steady F	River: Bea	ver Creel	Reach:	Kentwood	d Profile	: 1974 flo	bod	F	Reload Data
Reach	River Sta	Profile	E.G. Elev	W.S. Elev	Crit W.S.	Frctn Loss	C & E Loss	Top Width	Q Left	Q Channel	Q Right	Vel Chnl
			(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft/s)
Kentwood	5.44	1974 flood	217.52	217.41		0.20	0.01	1843.97	3719.94	4383.23	5896.83	4.18
Kentwood	5.41	1974 flood	217.31	217.17	212.25			1844.77	2102.79	7612.42	4284.79	3.81
Kentwood	5.4 BR U	1974 flood	217.30	217.17	212.52			1844.77	266.11	13004.25	694.10	7.89
Kentwood	5.4 BR D	1974 flood	217.30	217.17	212.52			1824.00	266.11	13004.24	694.10	7.89
Kentwood	5.39	1974 flood	216.00	215.74	212.28	0.23	0.06	1714.13	1874.00	8688.69	3437.32	5.06
Kentwood	5.3450*	1974 flood	215.71	215.58		0.23	0.00	1678.22	3130.06	4655.09	6214.85	4.36
Energy gra	deline for giv	en WSEL.										

The ineffective area controlling elevation was set to 214.5' at the downstream section to allow overbank flow for the 1974 flood profile. Also, the overbank n values were doubled at the bounding sections to reduce overbank conveyance.

Looking at the bridge tables we find that there is still a lot of flow in the overbanks compared with the computed weir flow.

III Profile	e Output Tal	ble - Six XS	Bridge								_		×
<u>F</u> ile <u>O</u> pt	ïle <u>O</u> ptions <u>S</u> td. Tables <u>L</u> ocations <u>H</u> elp												
	HEC-RAS	5 Plan: Fi	nal Stead	y River:	Beaver C	reek Rea	ach: Kentv	vood Pro	ofile: 197	4 flood		Reload D)ata
Reach	River Sta	Profile	E.G. Elev	W.S. Elev	Crit W.S.	Frctn Loss	C & E Loss	Top Width	Q Left	Q Channel	Q Right	Vel Chnl	
			(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft/s)	1
Kentwood	5.44	1974 flood	217.64	217.50		0.25	0.00	1844.35	2137.27	4982.01	6880.72	4.71	
Kentwood	5.41	1974 flood	217.38	217.23	212.25			1845.24	1140.96	8180.95	4678.09	4.07	1
Kentwood	5.4 BR U	1974 flood	217.38	217.23	212.52			1845.24	358.73	12705.14	936.13	7.66	
Kentwood	5.4 BR D	1974 flood	217.38	217.23	212.52			1824.00	358.73	12705.14	936.13	7.66	5
Kentwood	5.39	1974 flood	216.18	215.89	212.26	0.27	0.07	1726.95	1025.42	9195.37	3779.21	5.27	1
Kentwood	5.3450*	1974 flood	215.85	215.69		0.31	0.00	1687.19	1759.68	5159.75	7080.58	4.77	1
Energy gra	deline for giv	en WSEL.											

In order to reduce conveyance, we must dramatically increase the Manning's n values in the overbanks. An n value of 0.6 was used. This may be justified given the extremely think trees in the overbank. Weir flow is much closer to the overbank flow.

🎹 Profile	e Output T	able - Bridg	ge Only							_		×
<u>F</u> ile <u>O</u> pt	ions <u>S</u> td	. Tables <u>L</u>	ocations	<u>H</u> elp								
	HEC-RA	S Plan: F	inal Stea	dy River	: Beaver Cre	ek Reac	h: Kentwo	od Profile: 1	974 flood		Reload D	ata
Reach	River Sta	Profile	E.G. US.	Min El Prs	BR Open Area	Prs O WS	Q Total	Min El Weir Flow	Q Weir	Delta EG	BR Sluice Coef	
			(ft)	(ft)	(sq ft)	(ft)	(cfs)	(ft)	(cfs)	(ft)		
Kentwood	5.4	1974 flood	217.39	215.70	1600.36	217.23	14000.00	216.94	1492.69	1.07	0.40	
Upstream e	nergy grad	le elevation a	at bridge o	r culvert (sp	pecific to that o	pening, not	necessarily	y the weighted av	erage).			

T Profile	e Output Tal	ble - Six XS	Bridge								—		×
<u>F</u> ile <u>O</u> pt	ions <u>S</u> td.	Tables <u>L</u> o	cations	<u>H</u> elp									
	HEC-RAS	5 Plan: Fir	nal Stead	y River:	Beaver C	reek Rea	ach: Kentv	vood Pro	ofile: 197	4 flood		Reload Da	ata
Reach	River Sta	Profile	E.G. Elev	W.S. Elev	Crit W.S.	Frctn Loss	C & E Loss	Top Width	Q Left	Q Channel	Q Right	Vel Chnl	
			(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft/s)	
Kentwood	5.44	1974 flood	217.82	217.73		0.26	0.16	1845.42	3677.66	4162.94	6159.41	3.86	
Kentwood	5.41	1974 flood	217.39	216.79	212.24			1841.40	509.72	12649.62	840.66	6.59	
Kentwood	5.4 BR U	1974 flood	217.39	216.79	212.52				370.19	12669.36	966.07	7.92	
Kentwood	5.4 BR D	1974 flood	217.39	216.79	212.52				370.19	12669.36	966.07	7.92	
Kentwood	5.39	1974 flood	216.32	215.51	212.25	0.36	0.33	1693.56	429.04	12680.61	890.35	7.60	
Kentwood	5.3450*	1974 flood	215.63	215.48		0.23	0.02	1670.79	3276.42	4754.07	5969.52	4.60	
Energy gra	deline for giv	en WSEL.											

The model was rerun and checked against the observed data.

Unsteady Flow Simulation

HTAB parameters were set up for the flows the bridge.

The range of elevations for the processing of bridge data should exceed the expected range of flow and elevations. The tailwater and headwater elevations could be set onefoot higher than the values for the 1974 flood. Also, the maximum flow could be set to the maximum expected in future applications.

The unsteady flow simulation was set up for the May 1974 flood. A 1min time step was used.

Geometry File: Beaver Creek - Final Bridge Unsteady Flow File: May 1974 flood Programs to Run Geometry Preprocessor Gunsteady Flow Simulation Geometry Sediment Floodplain Mapping Simulation Time Window Starting Date: 21MAY1974 Starting Time: 2400 Fording Date: 21MAY1974 Fording Date: 21MAY1974 Fording Date: 2400 Fording Parting Parting Parting Parting Parting Parting Parting Parting Parting Parti
Unsteady Flow File: May 1974 flood Programs to Run Geometry Preprocessor Data Plan Description Plan Description Plan Description Plan Description Plan Description Plan Description Starting Date: 21MAY 1974 Starting Time: 2400 2400 2400 240 24
Programs to Run Plan Description Image: Sediment Starting Date: Plan Description Floodplain Mapping Plan Description Simulation Time Window Starting Date: 21/04/1974 Starting Date: 21/04/1974
Geometry Preprocessor Unsteady Flow Simulation Sediment Floodplain Mapping Simulation Time Window Starting Date: 21MAY1974 Sedime Data: 22MAY1974 Sedime Time: 2400 24
Simulation Time Window Starting Date: 21MAY1974 Starting Time: 2400 Ending Date: 22MAY1974 Starting Time: 2400
Ending Date: 22MAY 1974 Ending Time: 2400
Ending Date. J22-IAT 1974 Ending Time. J2100
Computation Settings
Computation Interval: 1 Minute 💌 … Hydrograph Output Interval: 1 Hour
Mapping Output Interval: 1 Hour 🔻 Detailed Output Interval: 1 Hour
Project DSS Filename: 💽 C:\Temp_2022 Unsteady Class\Bridges and Culverts\Bridge

Review Unsteady Flow Results

The Hydraulic Properties Plot for the bridge is shown below. The family of curves looks reasonable, except for the zone around elevation 216, where it looks like we could have trouble. The low-chord elevation is 215.70, where pressure flow using the gate equation will begin. The sharp breaks for several curves reflect the upstream water surface elevation based on the gate equation, which is independent of tailwater. Solutions in that range may have difficulty.

The stage and flow hydrograph plot, for the bridge solution, is shown below. Generally, the hydrographs appear reasonable up to the low-chord elevation. Then there is a break in the hydrographs as they hit the low chord and top of road for the bridge.

The ineffective flow areas around the bridge are turning off in unison.

The profile plot comparing the Max profile from the unsteady run is very close to the steady flow run for the 1974 event. The downstream stage is not in agreement with the steady flow solution. The unsteady run uses a rating curve with an elevation of 212.68'. The observed water surface elevation was 211.8' per the USGS data.

Questions

How do your steady-flow results compare to the observed data? What methods did you use?

The final steady flow results looked good after significantly adjusting the Manning's n values very high to significantly reduce conveyance. This may well be appropriate given the large obstruction due to heavy trees and the bridge. The computed WSE is still low compared with the observed values. However, the observation could very well have been at the energy grade line – which would make sense near a bridge that the observation was not in the main channel but at the edge of the water.

What settings did you use for HTAB on bridge model processing?

The HTAB settings limited the tailwater and headwater to values above the 1974 flood. Also, the maximum flow was set to 30,000 – twice the 1974 peak. The number of curves were the default setting.

What changes did you make to the unsteady flow model, after you were satisfied with the steady flow solution?

The headwater stage hydrograph is a little ragged around the bridge deck. This can be expected when pressure and weir flow is present; however, it might be improved with a few adjustments. You can plot the solution track through the bridge rating, as shown in the Internal Boundary Curve below. The ragged zone is through the bridge when flow goes from using the energy solution to pressure flow with the gate equation.

If we were not satisfied with the internal boundary curves at the transition from the energy solution to the pressure solution, we could adjust the gate coefficient to smooth out the flow transition. If a value of 0.40 was used a lower headwater would result from the same tailwater (at a given flow). A comparison of the results showed no significant improvement in the solution and was not used.

The Bridge Only table is shown below for profiles around the peak flow.

🎹 Profil	e Output T	able - Bridge Onl	у							_		×
<u>F</u> ile <u>O</u> pt	tions <u>S</u> td	l. Tables <u>L</u> ocatio	ns <u>H</u> elp									
		HEC-RA	S Plan: l	Jnsteady	River: Beave	er Creek	Reach: I	Kentwood			Reload D	ata
Reach	River Sta	Profile	E.G. US.	Min El Prs	BR Open Area	Prs O WS	Q Total	Min El Weir Flow	Q Weir	Delta EG	BR Sluice Coef	
			(ft)	(ft)	(sq ft)	(ft)	(cfs)	(ft)	(cfs)	(ft)		
Kentwood	5.4	22MAY 1974 0900	217.01	215.70	1600.36	216.48	10848.59	216.94	72.12	1.63	0.35	
Kentwood	5.4	22MAY1974 1000	217.24	215.70	1600.36	216.91	12904.36	216.94	814.03	1.23	0.39	
Kentwood	5.4	22MAY1974 1100	217.34	215.70	1600.36	217.12	13648.41	216.94	1278.59	1.12	0.39	
Kentwood	5.4	22MAY1974 1200	217.39	215.70	1600.36	217.21	13959.84	216.94	1467.81	1.07	0.40	
Kentwood	5.4	22MAY1974 1300	217.37	215.70	1600.36	217.16	13810.83	216.94	1380.16	1.08	0.40	-
Kentwood	5.4	22MAY1974 1400	217.28	215.70	1600.36	217.00	13216.70	216.94	1018.25	1.15	0.39	
Kentwood	5.4	22MAY1974 1500	217.17	215.70	1600.36	216.73	12106.32	216.94	400.88	1.29	0.38	
Kentwood	5.4	22MAY1974 1600	217.03	215.70	1600.36	216.52	10981.31	216.94		1.45	0.36	
Kentwood	5.4	22MAY1974 1700	216.04	215.70	1600.36	216.39	10233.06	216.94		1.66	0.34	_
Upstream e	energy grad	le elevation at bridg	ge or culve	rt (specific	to that opening,	not neces	sarily the w	eighted average)				

The weir flow values from post-processing can be compared to the flow transitions upstream and down from the bridge. The Six XS Bridge Table shows those results for the weir profiles, as shown below. Flow is conserved in the overbanks and overbank flow is comparable to the computed weir flow.

Profile Output Table - Six XS Bridge										-	- [1 ×
<u>F</u> ile <u>O</u> pt	ions <u>S</u> td.	Tables <u>L</u> ocation	is <u>H</u> elp									
		HEC-RAS	Plan: Uns	steady R	iver: Bea	ver Creek	Reach:	Kentwood				Reload Data
Reach	River Sta	Profile	E.G. Elev	W.S. Elev	Crit W.S.	Frctn Loss	C & E Loss	Top Width	QLeft	Q Channel	Q Right	Vel Chnl
			(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(cfs)	(cfs)	(cfs)	(ft/s)
Kentwood	5.44	22MAY 1974 1100	217.55	217.46		0.36		1844.17	3625.03	4246.37	5793.38	4.03
Kentwood	5.44	22MAY 1974 1200	217.59	217.50		0.37		1844.36	3699.17	4310.68	5955.13	4.08
Kentwood	5.44	22MAY1974 1300	217.57	217.48		0.36		1844.27	3659.42	4274.78	5871.12	4.05
Kentwood	5.41	22MAY 1974 1100	217 34	216.76	212 13			1841.20	494.88	12340 12	813 41	6.44
Kentwood	5.41	22MAY 1974 1200	217.39	216.78	212.23			1841.37	507.89	12614.81	837.14	6.57
Kentwood	5.41	22MAY1974 1300	217.37	216.77	212.18			1841.29	501.72	12483.15	825.96	6.51
Kentwood	5.4 BR U	22MAY1974 1100	217.34	216.76	212.41				312.06	12506.43	814.17	7.81
Kentwood	5.4 BR U	22MAY1974 1200	217.39	216.78	212.52				364.83	12651.75	952.08	7.91
Kentwood	5.4 BR U	22MAY1974 1300	217.37	216.77	212.46				339.53	12579.31	885.95	7.86
Kentwood	5.4 BR D	22MAY 1974 1100	217.34	216.76	212.41				312.06	12506.43	814.17	7.81
Kentwood	5.4 BR D	22MAY 1974 1200	217.39	216.78	212.50				364.83	12651.75	952.08	7.91
Kentwood	5.4 BR D	22MAY1974 1300	217.37	216.77	212.46				339.53	12579.31	885.95	7.86
Kentwood	5.39	22MAY 1974 1100	216.23	215.44		0.43		1687, 19	411.47	12386.77	850.17	7,49
Kentwood	5.39	22MAY 1974 1200	216.32	215.51		0.43		1693.75	428.01	12643.48	888.35	7.57
Kentwood	5.39	22MAY1974 1300	216.29	215.49		0.43		1691.90	421.45	12515.75	873.63	7.52
Kentwood	5.3450*	22MAY 1974 1100	215.47	215.32		0.24		1657.84	3194.46	4734.61	5703.96	4.67
Kentwood	5.3450*	22MAY1974 1200	215.54	215.39		0.24		1663.89	3268.01	4795.25	5891.56	4.69
Kentwood	5.3450*	22MAY1974 1300	215.52	215.37		0.24		1662.25	3235.94	4761.00	5818.78	4.66
	dallas fas -1											

L

How did the unsteady-flow simulation compare to the steady-flow profile with 14,000 cfs?

A comparison plot is shown below for the Unsteady flow Max WSE and the 14,000 cfs steady flow. The profiles compare well, but in general, the unsteady flow profile is lower. We can expect the unsteady flow profile answer to be slightly lower because the unsteady flow solution does not use the contraction/expansion coefficients for computing energy losses. At the downstream boundary, it is evident that the unsteady solution started at a higher water surface elevation than the steady flow solution due to the use of a rating curve. (The lower two profiles are the third profile unsteady-flow profile from post processing and the first profile steady flow because the first and third profiles were selected for the two plans.)

