Overview of Unsteady Flow Modeling

Stanford Gibson, PhD Hydrologic Engineering Center

2. How is it different than Steady Flow?

3. Why would you use it?

changes gradually Flow does not change with time

Flow changes with time

Overview:

1. What is Unsteady Flow?

2. How is it different than Steady Flow?

- i. Boundary Conditions
- ii. Calibration
- iii. Applications

2. How is it different than Steady Flow? <u>Boundary Conditions</u>

Hydrologic Routing Hydraulic Routing

2. How is it different than Steady Flow? <u>Boundary Conditions</u>

Hydrologic Routing Hydraulic Routing

Example 1: Flood Attenuation

Hydrologic Routing Steady Flow

Hydraulic Routing Unsteady Flow

Distance

Example 2: Tributary Timing

2. How is it different than Steady Flow? <u>Steady</u>

2. How is it different than Steady Flow?SteadyCalibrationUnsteady

Flow

Flow

2. How is it different than Steady Flow? <u>Applications</u>

 \times

🐨 Inline St	ructure Data - Gate Geometry with 3 Gate Groups — 🛛
File View	Options Help
River: Nitta	ny River 🗾 Apply Data 🕂 🗰
Reach: Weir	Reach 🔹 River Sta.: 41.75 🔹 🖡 🕇
Upstream XS:	41.76 Upstream channel length: 90 (ft)
Description	Inline Weir and Gated Spillway
Pilot Flow	Breach (plan data) Rules (unsteady data)
All Culverts:	No Flap Gates
Gate T Culvert Outlet TS U	00000 0000 000 000 000 000 000 000 000

	Gate	Openings							
		River: Nitt	any R	liver Reach	: Weir Rea	ach RS: 4	1.75		
			Gate	Group:	Left	Group		- +	1
	C Rea	ad from DSS befo	ulation	Sel	ect DSS fil	e and	Path	<u> </u>	
	File						_		
	Pd	u:							
	C Enter Table Data time interval: 1 Hour Select/Enter the Data's Starting Time Reference								
	Θt	Jse Simulation Tin	ne:	Date:	08APR 1	999	Time	: 0000)
O Fixed Start Time: Date: Time:							:		
				L L MR - 1	, 		1		
	NO.	Ordinates Ir	iterpo	late Missing	Values	Del Ro	w	INS RO	w
				Hydrogra	ph Data				
		Date		Simulation Time		Gate Opening Height 🔺			
				(hours)		(ft)			
	1	07Apr 1999 24	00	00:0	0:00	3			
	2	08Apr 1999 01	00	01:0	0:00	3.23			
	3	08Apr 1999 02	00	02:0	0:00	3.47			
	4	08Apr 1999 03	00	03:0	0:00	3.7			
	5	08Apr 1999 04	00	04:0	0:00	3.93			
	6	08Apr 1999 05	00	05:0	0:00	4.1/			
		08Apr 1999 06	00	06:0	0:00	4.4			
		08Apr 1999 07	00	07:0	0:00	4.03			
	10	08Apr 1999 00	00	00:0	0:00	5.1			
	11	08Apr 1999 09	00	10:0	0.00	5.33			
	12	08Apr 1999 11	00	11:0	0:00	5.57			
-			~~	12.0					•
1			P	lot Data		ОК		Cance	

Dams and Reservoirs:

- All Volume Matters
- Operations –*f*(*t*)
 - Specified
 - Rules
- Dam Breach

2. How is it different than Steady Flow? <u>Applications</u>

2. How is it different than Steady Flow? <u>Applications</u>

Rule Operati	Operations 💦					
Description: Divert flow out of the system by using a two way table. Note the lateral structure is "abstract" (no weir or gate flow computations are used).						
	Gate Parameters					
Location	Open Rate (ft/min) Close Rate (ft/min) Max Opening Min O					
	Summary of Variable Initializations:					
User Varia	User Variable Description					
1						
	Rule Operations					
row	Operation					
1	! Get the Hour of the Day					
2	'Hour of Day' = Time:Hour of Day(Beginning of time step)					
3	1					
4	! Get the average flow at the dam over the last hour;					
5	! Average flow over an hour is used to prevent sudden changes.					
6	'Flow at Inline Weir' = Inline Structures:Structure.Total Flow(Nittany River,W					
7	1					
8	! Based on both the Flow and the Time;					
9	! Use a 2-way table to look up the flow to divert.					
10	'Flow to Divert' = Table Lookup(Inline Flow, Hour, Interpolate value)					
11	1 All and a second s					
12	! Set the amount of flow to divert.					
13	13 Structure.Total Flow (Fixed) = 'Flow to Divert'					
P	Enter/Edit Rule Operations					

RAS

Operational Rules:

- Dam Operations
- Lateral Gates
- Pumps
- Sediment

Unsteady Flow Examples

- Navigation Dam
- Lower Columbia River Tidal Flow
- Russian River Dambreak Model
- Allegheny/Ohio River Real Time Forecasting Model
- Operational Rules and Reservoir Flushing

Lower Columbia River Tidal Flow

Russian River Dam Breach Model

Spencer Dam Reservoir Flushing Model

Reservoir 97% Full of Sediment – Flushed 2X per year

Gibson, S. and Boyd, P. (2016) "Designing Reservoir Sediment Management Alternatives with Automated Concentration Constraints in a 1D Sediment Model," River Sedimentation: Proceedings of the 13th International Symposium onon River Sedimentation, ed edited by S. Wieprecht, *et al*.

Gibson, S. and Boyd, P. (2016) "Monitoring, Measuring, and Modeling a Reservoir Flush on the Niobrara River in the Sandhills of Nebraska," Proceedings, River Flow 2016, ed Constantinescu *et al.*, 1448-1455.

25

Gibson, S. and Boyd, P. (2016) "Designing Reservoir Sediment Management Alternatives with Automated Concentration Constraints in a 1D Sediment Model," River Sedimentation: Proceedings of the 13th International Symposium onon River Sedimentation, ed edited by S. Wieprecht, et al.

Gibson, S. and Boyd, P. (2016) "Monitoring, Measuring, and Modeling a Reservoir Flush on the Niobrara River in the Sandhills of Nebraska," Proceedings, River Flow 2016, ed Constantinescu *et al.*, 1448-1455.

