Modeling Bridges and Culverts

Cameron Ackerman, P.E., D.WRE

USACE, Institute for Water Resources, Hydrologic Engineering Center

Objectives

- How to Add a Bridge
- Understanding Flow through a Bridge
- Enter Parameters for Bridge Modeling
- Evaluate Bridge Results

Adding a Bridge or Culvert

- Select River Reach
- Option Add a Culvert
- Enter River Station
- OK

I Brid	lge C	ulvert Data - High n values		_		×	
File Vi	iew	Options Help					
River:	Beav	Add a Bridge and/or Culvert					
Reach:	Kent	Copy Bridge/Culvert	• I t				
Descriptio	n	Rename River Station	<u></u>				
Bounding	XS's:	Delete Bridge/Culvert	it set) (ft)				
Deck/ Roadway	\square	Internal Bridge Cross Sections				~	
\bigtriangledown		Momentum Equation					
Pier		Class B defaults					
		Pressure flow criteria					
Abutment		Ice Option					
		Skew Bridge/Culvert	No Data for Plot				
Bridge Modeling				3			
Approach				HEC-RAS			
Culvert							
Multiple				Enter a nev	w rive	r station for the	
Opening Analysis				new brida	e or c	ulvert in reach	
шты				The first strong	Kent	wood	
Param.					- Cerre	nood	
HTab							
Curves							
Bridge	1			5.4			
Design			No Data for Plot		1		
	1			OK	- 1	Cancel	
							_
	+					* }	
	1						
J							

Bridge - Culvert Data Window

Bridge Application

- Deck/Roadway
 - Top of Road
 - Approach Fill area
 - Bridge Low chord
- Pier Data
- Sloping Abutments
- Bridge Modeling Approach

Bridge Modeling Approach

- Low Flow Methods
 - Energy
 - Momentum
 - Yarnell
 - WSPRO
- Use or Compute
- Highest Energy option
- High Flow Methods
 - Energy Only
 - Pressure & Weir

Culvert Data

Culvert Data Edit	or					8
Culvert Group:	Culvert #1	•	1 t		6	
Solution Criteria:	Computed Flow	v Control	•			
Shape:	Circular		▼ Span	:	Diameter	:
Chart #: 1 - Cond	Circular Box Pipe Arch Ellipse Arch Semi-Circle		^ ~			-
Distance to Unstru	Low Arch High Arch		~			<u> </u>
Culvert Length:				Depth to use	Bottom n:	0
Entrance Loss Coe	eff:	2		Depth Blocke	d:	0
Exit Loss Coeff:	1			Upstream Inv	/ert Elev:	
Manning's n for To	p:			Downstream	Invert Elev:	1
Culvert Barrel Da Barrel Centerli	ne Stations	# Barrels :	0	Barrel GIS D	ata:	2
Barrel Na	me US Sta	DS Sta	^	X	Y	_
1 2 3 4 5			•	1 2 3 4 5		-
Individual Barrel	Centerlines	Show	on Map	ОК	Cancel	Help
Select culvert shap	De					

- Culvert #1 (can Rename)
- Shape 9 available
- Size reflects shape
- Chart culvert type
- Scale entrance type
- Distance to upstream section
- Culvert Length

Culvert Data - continued

Culvert Data Editor
Add Copy Delete Culvert ID Box Image: Solution Criteria: Solution Criteria: Highest U.S. EG Image: Rename Image: Rename
Chart 10-90 degree headwall; Chamfered or beveled inlet Scale #: 2 - Inlet edges beveled 1/2 inch at 45 degrees (1:1) Distance to Upstrm XS: 5 Upstream Invert Elev: 28.1 Culvert Length: 50 Entrance Loss Coeff: 0.2 # identical barrels : 2
Exit Loss Coeff: 1 Centerline Stations Manning's n for Top: 0.013 Upstream Downstream Manning's n for Bottom: 0.013 2 1011.5 1011.5 Depth to use Bottom n: 0 4 Image: Centerline Stations
OK Cancel Help Enter the culverts centerline stations (ft)

- Entrance Loss
- Exit Loss
- Manning n culvert
- Manning n Bottom
- Depth for bottom n
- Depth Blocked
- Invert Elevations
- Centerline Stations
- OK

Flow Transitions

See Appendix B "Flow Transitions in Bridge Backwater Analysis" in *Hydraulics Reference*, a summary from HEC RD #42, September 1995.

Ineffective Area Option

- Bounding sections provide full conveyance.
- When all flow is under bridge, overbanks cannot convey flow through highway fill.
- Ineffective area option indicates overbank storage instead of conveyance.
- Station should be near abutments.
- Elevation is set to define when overbanks become effective when water flows over the roadway.

Ineffective-Flow at Bounding Cross Sections

 Contraction/Expansion coefficients *do not* apply to unsteady flow solution for contraction/expansion reaches

Ineffective-Flow at Bounding Cross Sections

Ineffective Area Option

Ineffective Flo	w Areas		
	Select Ineffect	tive Mode	
Nor	mal C	Multiple Blocks	
	Left	Right	
Station	420.	677.	
Elevation	216.5	216.5	
	Perman	ent 🥅 Perr	manent
ОК	Cancel	Defaults	Clear

- Normal
- Multiple Blocks
- Permanent

Hydraulic Parameters

- Fix Bridge Solution first
 - Use steady flow analysis
 - Run range of flow profiles
 - Set bridge solution options
- HTab Param button provides data window
- Data entered for each bridge and culvert

Hydraulic Property Tables

上 Parameters for Hyd	raulic Property Tab	les \times
Number of points on free	flow curve:	50
Number of submerged cu	rves:	50
Number of points on each	submerged curves:	20
Apply number of poir	nts to all bridges and	culverts
Head water maximum ele	vation:	220.
Tail water maximum eleva	ation (Optional):	
Maximum Flow (Recomme	ended):	
	ОК	Cancel

- Default setting shown
 - Max curves = 50
 - Max points = 20
- Apply to all?
- Max headwater elevation
- Optional
 - Max tailwater elevation
 - Max flow

Hydraulic Properties Plot

Hydraulic Properties Table

eor	metry: Bea	ver Cr. + I	Final Bridge	•			- (2								
/e	r: Bea	ver Creek		•												
-	the last								1							
a	Ker	twood		▼ Riv	Sta: 5.4	BR		<u> </u>	Varia	bles	Reload	Data				
ot	Table															
Т	FreeFlow		TW Elev	203.49	TW Fley	203 79	TW Elev	204.08	TW Elev	204 38	TW Flev	204 68	TW Flev	204 97	TW Elev:	205 27
ť	Flow	Flev	Flow	HW Elev	Flow	HW Fley	Flow	HW Fley	Flow	HW Fley	Flow	HW Elev	Flow	HW Flev	Flow	HW F
t	(cfs)	(ft)	(cfs)	(ft)	(cfs)	(ft)	(cfs)	(ft)	(cfs)	(ft)	(cfs)	(ft)	(cfs)	(ft)	(cfs)	(ft)
ľ	0.00	202.71	0.00	203.49	0.00	203.79	0.00	204.08	0.00	204.38	0.00	204.68	0.00	204.97	0.00	205
2	107.90	204.43	26.98	203.76	26.98	203.89	26.98	204.12	32.09	204.41	45.31	204.70	61.31	205.00	79.47	205
3	269.75	205.11	32.72	203.83	32.30	203.92	33.44	204.14	48.14	204.42	60.41	204.71	91.96	205.01	119.20	205
4	647.40	206.11	38.46	203.90	37.63	203.96	39.90	204.16	64.19	204.45	75.52	204.72	122.61	205.04	158.94	205
5	1079.00	206.97	44.20	203.96	42.95	204.00	46.36	204.18	80.23	204.49	90.62	204.74	153.26	205.07	198.67	205
6	1618.50	207.86	49.94	204.01	48.28	204.03	52.82	204.20	96.28	204.53	105.73	204.77	183.92	205.12	238.41	205
7	2158.00	208.65	55.68	204.07	53.61	204.07	59.28	204.23	112.33	204.58	120.83	204.79	214.57	205.16	278.14	205
8	2697.51	209.37	61.43	204.12	58.93	204.10	65.74	204.26	128.37	204.63	135.93	204.82	245.22	205.21	317.88	205
9	3237.01	209.96	67.17	204.16	64.26	204.15	72.20	204.29	144.42	204.68	151.04	204.85	275.87	205.27	357.61	205
0	3776.51	210.42	72.91	204.20	67.85	204.18	78.66	204.31	160.47	204.73	166.14	204.88	306.53	205.33	397.34	205
1	4316.01	210.83	78.65	204.24	69.59	204.19	85.12	204.34	176.51	204.78	181.24	204.92	337.18	205.39	437.08	205
2	4855.51	211.18	84.39	204.28	72.72	204.21	91.58	204.37	192.56	204.84	196.35	204.95	367.83	205.45	476.81	205
3	5395.01	211.52	90.14	204.32	74.91	204.23	98.04	204.40	217.65	204.89	211.45	204.99	398.48	205.52	516.55	205
4	5934.51	211.84	95.88	204.36	78.20	204.25	104.50	204.43			226.56	205.02	429.14	205.58	572.00	205
5	6474.01	212.15	101.62	204.39	80.24	204.26	116.38	204.46			241.66	205.06	474.04	205.65		
6	7013.51	212.44	107.36	204.42	83.09	204.28					267.71	205.10				
7	7553.02	212.73	109.75	204.43	85.56	204.30										-
8	8092.52	213.00			88.17	204.32										
9	8632.02	213.28			90.89	204.34						-				-
0	9171.52	213.54			93.69	204.35										-
21	9711.02	213.80			96.22	204.37									-	-
2	10250.52	214.05			99.04	204.38										

Stage & Flow Hydrograph

Internal Boundary Rating Curve

HTAB - Set Optional Settings

L Parameters for Hydraulic Property Tal	oles X
Number of points on free flow curve:	50
Number of submerged curves:	50
Number of points on each submerged curves	: 20
Apply number of points to all bridges and	d culverts
Head water maximum elevation:	220.
Tail water maximum elevation (Optional):	218.
Maximum Flow (Recommended):	30000.
ОК	Cancel

- Number of curves & points
- Shorten the range to provide better definition
 - Reduce Headwater
 - Set Max Tailwater
 - Set Max Flow

Stage & Flow Hydrographs Few & Many Points on HTAB Curves

HTAB - Normal Ineffective Area Option

HTAB - Permanent Ineffective Area Option

└─ Vie <u>File</u> T	w Hy Sype	ydrauli View	c Prope	erty Tab ions	les															-	- 🗆	>	<
Geomet	ry:	Bridge ·	- Norma	l Ineffe	ctive Are	eas				• 0	ž												
River:	[Beaver	Creek		•	Positio	n: 🗌				=												
Reach:	ſ	Kentwo	od		•	Riv Sta	a: 5.4	41			• •	t	Variable	s	Reloa	ad Data							
Plot	Table	e																					
1000	/										F RS = 5.4	Proper 1	ty Tabl	e									-
4	_			+	- <u>i</u>		1	1	1				-					 			Legen	d	1
	1					1	1			8	8										Conv. Cha	annel	
*	225-				1	1		*	R									 			Conv. Over	banks	
	1			-	1	-	R											 			Conv. To	otal	
	220-		1	1	R																Storage A	Area	
E	- 1	1		1 m														 		1 10 10 10 10 10 10 10 10 10 10 10 10 10			
tion	-	·	1																				
Eleva	215-	#	F							-								 					
-	-	1																 					
	210	Ŧ																					
	-	ŧ																 					
	-	ŧ							-									 					
	205	Į						-	-									 					1
						10	00	+			20	00				300	0	 	40	000			_
 _•										Convey	ance/10	00 (cfs)) Storag	ge (sq ft)								0	•

Headwater - Tailwater Stage Normal & Permanent Ineffective Area

Multiple Ineffective Areas

Ine	neffective Flow Areas											
	Select Ineffective Mode											
	C Normal C Multiple Blocks											
	Start Sta	End Sta	Elev	² ermanent(y/n) ▲								
1	0	250	216.3	n								
2	250	420	215.5	n								
3	677	960	215.5	n								
4	960	1375	216.3	n								
5	1375	1850	217.5	n 🔻								
	OK Cancel Defaults Clear											

HTAB - Multiple Ineffective Areas Option

🗠 Viev	w Hydraulic Property Tables			-			
<u>F</u> ile 1	Type View Options						
Geometr	try: Bridge - Multiple Ineffective	Areas		- 2			
River:	Beaver Creek	 Position: 	4615.05, 214.63				
Reach:	Kentwood	 Riv Sta: 	5.41	-	↓ 1 Variables	Reload Data	
Plot	Table						
			P RS = 5.41	roperty Ta	able		2
r		+	++++++				Legend
							Total Area
	220						Conv. Total
						₽━₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽	Storage Area
evation (ft)	215		4				
Ē							
	205 #						
	0 2000		4000	6000	8000	10000	-
		Area	(sq ft) Conveyance/	/1000 (cfs)	Storage (sq ft)		
<u> </u>							•

Headwater - Tailwater Stage Normal & Multiple Blocked Ineffective Area

High *n* values for Ineffective Areas

HTAB - High *n* for Ineffective Area

Headwater - Tailwater Stage Ineffective Areas vs High *n* Values

Ineffective Area Recommendations

- 1. Use the Ineffective Area option to eliminate overbank flow in the bounding sections where the flow is blocked by the roadway, until significant roadway overflow
- 2. Use higher overbank *n* to "balance" overbank flow in bounding sections with computed overflow
 - Expect transition problems near controlling elevations
 - Higher overbank *n* will tend to reduce computational shock
- 3. If the Ineffective Area option creates instability, try Higher n only
- 4. Review bridge solutions with Bridge Tables
- 5. Document adjustments in Bridge Description Box

Internal Boundary for Bridge with Fixed Sluice Gate Coefficient

• If Pressure & Weir Rating creates a problem:

ridge Modeling Appro	ach Editor	
Add Copy Del	ete Bridge #	1 • J †
Low Flow Methods Use Compute C Energy (Stand C Momentum C Yarnell (Class) C WSPRO Metho C Hickest Energy A	ard Step) Coef Dra A only) Pier Sha d (Class A only)	ag Cd 2 2 pe K 1.25 2 WSPRO Variables
 Highest Energy Al High Flow Methods Energy Only (Standa Pressure and/or Wei Submerged Inlet C Submerged Inlet 4 Max Low Chord (B 	nswer ard Step) r d (Blank for table) - Outlet Cd lank for default)	0.45
OK	Cancel	Help

Default & Set Sluice Gate Coefficient

Headwater - Tailwater Stage Energy Only vs. Pressure & Weir

 The Energy Method will use overbank and channel *n* for high flows

Profile Plots with Post-processing

_

 \times

Bridge Comparison

Profile Output Table - Bridge Comparison

• • • • CH THE

		HEC-F	RAS Plan	: High n \	/alues River	: Beaver (Creek Rea	ch: Kentv	vood			Reload
each	River Sta	Profile	E.G. US.	W.S. US.	BR Sel Method	Energy EG	Momen. EG	Yarnell EG	WSPRO EG	Prs O EG	Prs/Wr EG	Energy/Wr EG
			(ft)	(ft)		(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)
entwood	5.4	10FEB1990 0700	211.75	211.64	Energy only	211.75						
entwood	5.4	10FEB1990 0800	212.13	211.99	Energy only	212.14						
entwood	5.4	10FEB1990 0900	212.50	212.33	Energy only	212.51						
entwood	5.4	10FEB1990 1000	212.87	212.67	Energy only	212.89						
entwood	5.4	10FEB1990 1100	213.27	213.04	Press Only	213.25				213.52		
entwood	5.4	10FEB1990 1200	213.75	213.52	Press Only	213.81				213.79		
entwood	5.4	10FEB1990 1300	214.27	214.05	Press Only	214.26				214.25		
entwood	5.4	10FEB1990 1400	214.77	214.55	Press Only	214.75				214.74		
entwood	5.4	10FEB1990 1500	215.27	215.07	Press Only	215.23				215.22		
entwood	5.4	10FEB1990 1600	215.74	215.55	Press/Weir	215.74				215.75	215.72	
entwood	5.4	10FEB1990 1700	216.14	215.95	Press/Weir	216.28				216.30	216.10	
entwood	5.4	10FEB1990 1800	216.44	216.24	Press/Weir	216.83				216.87	216.39	
entwood	5.4	10FEB1990 1900	216.66	216.46	Press/Weir	217.36				217.42	216.61	
entwood	5.4	10FEB1990 2000	216.84	216.63	Press/Weir	218.05				217.94	216.78	
entwood	5.4	10FEB1990 2100	216.99	216.77	Press/Weir	218.28				218.44	216.93	
entwood	5.4	10FEB1990 2200	217.11	216.89	Press/Weir	218.43				218.90	217.05	
ntwood	5.4	10FEB1990 2300	217.21	216.98	Press/Weir	218.57				219.32	217.15	
entwood	5.4	11FEB1990 0000	217.29	217.05	Press/Weir	218.73				219.68	217.23	
entwood	5.4	11FEB1990 0100	217.36	217.11	Press/Weir	218.89				220.00	217.30	
entwood	5.4	11FEB1990 0200	217.41	217.15	Press/Weir	219.04				220.25	217.35	
entwood	5.4	11FEB1990 0300	217.44	217.18	Press/Weir	219.16				220.44	217.38	
entwood	5.4	11FEB1990 0400	217.46	217.20	Press/Weir	219.23				220.56	217.41	
entwood	5.4	11FEB1990 0500	217.47	217.21	Press/Weir	219.26				220.61	217.41	
entwood	5.4	11FEB1990 0600	217.47	217.21	Press/Weir	219.25				220.59	217.41	
entwood	5.4	11FEB1990 0700	217.45	217.19	Press/Weir	219.20				220.50	217.40	
entwood	5.4	11FEB1990 0800	217.42	217.17	Press/Weir	219.10				220.34	217.37	

Bridge Only

Ĩ	Profile	Output	Table -	Bridge Only
---	---------	--------	---------	-------------

<u>File Options Std. Tables Locations H</u>elp

HEC-RAS Plan: High n Values River: Beaver Creek Reach: Kentwood Rela							Reload Data	a				
Reach	River Sta	Profile	E.G. US.	Min El Prs	BR Open Area	Prs O WS	Q Total	Min El Weir Flow	Q Weir	Delta EG	BR Sluice Coef	•
			(ft)	(ft)	(sq ft)	(ft)	(cfs)	(ft)	(cfs)	(ft)		
Kentwood	5.4	10FEB1990 0800	212.13	213.00	1100.93		2928.90	215.51		0.15		
Kentwood	5.4	10FEB1990 0900	212.50	213.00	1100.93		3506.92	215.51		0.19		
Kentwood	5.4	10FEB1990 1000	212.87	213.00	1100.93		4121.97	215.51		0.24		
Kentwood	5.4	10FEB1990 1100	213.27	213.00	1100.93	213.32	4760.63	215.51		0.56	0.28	-
Kentwood	5.4	10FEB1990 1200	213.75	213.00	1100.93	213.56	5425.69	215.51		0.53	-	_
Kentwood	5.4	10FEB1990 1300	214.27	213.00	1100.93	214.01	6090.76	215.51		0.71		
Kentwood	5.4	10FEB1990 1400	214.77	213.00	1100.93	214.51	6800.55	215.51		0.92		
Kentwood	5.4	10FEB1990 1500	215.27	213.00	1100.93	215.01	7484.75	215.51		1.16		
Kentwood	5.4	10FEB1990 1600	215.74	213.00	1100.93		8209.77	215.51	69.24	1.41		
Kentwood	5.4	10FEB1990 1700	216.14	213.00	1100.93		8948.39	215.51	446.20	1.55		
Kentwood	5.4	10FEB1990 1800	216.44	213.00	1100.93		9676.73	215.51	999.78	1.61		
Kentwood	5.4	10FEB1990 1900	216.66	213.00	1100.93		10364.32	215.51	1616.86	1.63		
Kentwood	5.4	10FEB1990 2000	216.84	213.00	1100.93		10994.37	215.51	2231.20	1.62		
Kentwood	5.4	10FEB1990 2100	216.99	213.00	1100.93		11577.11	215.51	2838.82	1.60		
Kentwood	5.4	10FEB1990 2200	217.11	213.00	1100.93		12106.24	215.51	3396.04	1.58		
Kentwood	5.4	10FEB1990 2300	217.21	213.00	1100.93		12583.11	215.51	3900.14	1.56		
Kentwood	5.4	11FEB1990 0000	217.29	213.00	1100.93		12991.06	215.51	4328.13	1.54		
Kentwood	5.4	11FEB1990 0100	217.36	213.00	1100.93		13334.06	215.51	4688.46	1.52		
Kentwood	5.4	11FEB1990 0200	217.41	213.00	1100.93		13608.04	215.51	4988.08	1.51		
Kentwood	5.4	11FEB1990 0300	217.44	213.00	1100.93		13811.02	215.51	5200.51	1.49		
Kentwood	5.4	11FEB1990 0400	217.46	213.00	1100.93		13938.92	215.51	5344.61	1.49		
Kentwood	5.4	11FEB1990 0500	217.47	213.00	1100.93		13992.14	215.51	5392.92	1.48		
Kentwood	5.4	11FEB1990 0600	217.47	213.00	1100.93		13970.26	215.51	5371.07	1.48		
Kentwood	5.4	11FEB1990 0700	217.45	213.00	1100.93		13873.50	215.51	5280.76	1.49		
Kentwood	5.4	11FEB1990 0800	217.42	213.00	1100.93		13703.95	215.51	5107.60	1.50		•

Upstream energy grade elevation at bridge or culvert (specific to that opening, not necessarily the weighted average).

HEC

Х

Station (ft)

6 XS Bridge

IIEO

Detailed Bridge Output

🖬 Bridge Output – 🗆 🗙								
<u>File Type Options H</u> e	lp							
River: Beaver Creek	▼ Profile: 1	OFEB 1990 1100	•					
Reach Kentwood	▼ RS: 5.	4 ▼ ↓	1 Plan: Bridge - Multiple	Ineffective				
Plan: Bridge - Multiple Ineffective Beaver Creek Kentwood RS: 5.4 Profile: 10FEB 1990 1100								
E.G. US. (ft)	213.27	Element	Inside BR US	Inside BR DS				
W.S. US. (ft)	213.02	E.G. Elev (ft)	213.17	213.06				
Q Total (cfs)	4775.83	W.S. Elev (ft)	212.87	212.75				
Q Bridge (cfs)	4775.83	Crit W.S. (ft)	209.00	208.99				
Q Weir (cfs)		Max Chl Dpth (ft)	10.17	10.05				
Weir Sta Lft (ft)		Vel Total (ft/s)	4.43	4.52				
Weir Sta Rgt (ft)		Flow Area (sq ft)	1077.58	1056.49				
Weir Submerg		Froude # Chl	0.31	0.32				
Weir Max Depth (ft)		Specif Force (cu ft)	4735.85	4619.97				
Min El Weir Flow (ft)	215.51	Hydr Depth (ft)	6.16	6.07				
Min El Prs (ft)	213.00	W.P. Total (ft)	297.04	294.08				
Delta EG (ft)	0.25	Conv. Total (cfs)	94509.7	92058.7				
Delta WS (ft)	0.28	Top Width (ft)	174.81	174.07				
BR Open Area (sq ft)	1100.93	Frctn Loss (ft)	0.10	0.06				
BR Open Vel (ft/s)	4.52	C & E Loss (ft)	0.00	0.02				
BR Sluice Coef		Shear Total (lb/sg ft)	0.58	0.60				
BR Sel Method	Energy only	Power Total (lb/ft s)	2.56	2.73				
Errors, Warnings and Notes								
Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.								
Warning: The conveyance ratio (upstream conveyance divided by downstream conveyance) is less than 0.7 or greater than								
1.4. This may indicate the need for additional cross sections.								
Note: Multiple critical depths were found at this location. The critical depth with the lowest, valid, water surface was used.								
Select Profile								
Sectification								

- Post processing provides Interior Bridge Data and Energies
- Notes & Warnings give solution information
- Use summary tables to get overview
- Detailed for problems

Getting to a Bridge Solution

- 1. Use steady-flow profiles in initial analysis!
- 2. Figure out which profile begins to overtop bridge using Profile Plot and XS Plot.
- 3. Evaluate ineffective areas and determine that they turn off at the bounding cross sections at the same time.
- 4. Adjust Ineffective Areas until solution is in sync.

Getting to a Bridge Solution

- Use Bridge Only or Detailed Bridge table to identify total weir flow.
- Use Six XS Bridge table to evaluate flow in the Left/Right Overbanks.
- Does conveyance match weir flow?
 - QWeirTotal QWeirChannel = QLeftOB + QRightOB
- Adjust n values to balance flow in bounding sections with weir flow.

Questions?

