Boundary and Initial Conditions for 1D Modeling

Alex Sánchez, PhD

Senior Hydraulic Engineer USACE, Institute for Water Resources, Hydrologic Engineering Center

1

Objectives

- Know requirements and options for *boundary conditions*
- Review sources of data
- Know *initial condition* options
- Additional Tips and Tricks

HEC

Unsteady Flow Data

- External Boundaries Required
 - Upstream end of the river
 - Downstream end of the river
- Internal Boundaries Required/Optional
 - Define gate operation (required for all gates)
 - Add flow within the river system (optional)
- Initial Conditions Optional
 - Establish flow and stage at all nodes at the start of simulation

As with steady-flow applications, the Unsteady Flow data define flow and starting conditions for the simulation. The model simulates a dynamic hydraulic process on a segment of a river system network. To perform the hydraulic calculations within the segment, the time-varying "Boundary Conditions" must be defined for the "External Boundaries."

The Unsteady Flow editor provides the options to define:

- External boundary type and data
- Add internal boundary data
- Set the initial conditions for the start of the simulation

HEC

HE

3

A flow boundary (flow hydrograph) is usually specified at the upstream end of the river. The downstream end is usually a water surface type boundary. Either, it is a stage hydrograph ,or it is a type of boundary where RAS can compute the water surface based on the flow (rating curve or normal depth).

Boundary conditions must be specified for all gates.

Additional options: specifying an internal, initial water surface (for example at a dam) and specifying additional inflows/outflows such as lateral inflows and groundwater (not shown in above example).

Image: Hec-RAS 6.2 - × File Edit Run View Options GIS Tools Help Image: Storage Areas and LS with Gates C:\\Manual\3.3 WSI Image: Storage Areas and LS with Gates C:\\Manual\3.3 WSI Geometry: Beaver Cr. with Storage Areas with Gates C:\\Manual\3.3 WSI Boundary Conditions Meteorological Data Observed Data Storage Areas C:\\Manual\3.3 WSI Boundary Conditions Meteorological Data Observed Data Storage Areas C:\\Manual\3.3 WSI Boundary Conditions Meteorological Data Observed Data Storage Areas C:\\Manual\3.3 WSI Boundary Conditions Meteorological Data Observed Data Storage Areas C:\\Manual\3.3 WSI Boundary Conditions Meteorological Data Observed Data Steady Flow: Unsteady Flow with Gates Openings C:\\Manual\3.3 WSI Boundary Conditions Meteorological Data Observed Data Beser(Dide More and Data Condex C	TH	Unsteady Fl	ow Data	a Ed	it	or						H
File Edit Run View Options GIS Tools Help Image: Storage Areas and LS with Gates Image: Storage Areas and Add Storage Areas and Add Storage Areas an	HEC-RAS 6.2								-	×		
Image:	File Edit Ru	n View Options GIS Tools Help										
Project: Beaver Cr SA and SA Connection C:\\Manual\3.3 WS Plan: Storage Areas and LS with Gates C:\\Manual\3.3 WS Geometry: Beaver Cr. with Storage Areas with Gates C:\\Manual\3.3 WS Steady Flow: Dusteady Flow with Gates Openings C:\\Manual\3.3 WS Unsteady Flow: Dusteady Flow with Gates Openings C:\\Manual\3.3 WS Description: Stage Hydrograph Stage/Flow Hydr. Rating Curve Stage Hydrograph Stage/Flow Hydr. Rating Curve Normal Depth Lateral Inflow Hydr. Uniform Lateral Inflow Groundwater Interflow I.S. Gate Openings Elev Controlle Gates Navigation Dame Ele Stage/Flow Rules Precipitation Mod Son_orge Add Prep Note Steader Creek Kentwood S570 Lis. T.S. Gate Comings Elev Controlle Gates I beaver Creek Kentwood S570 Lis. T.S. Gate Comings Elev Controlle Gates Stage/Flow Hydr. I beaver Creek Kentwood S570 Lis. T.S. Gate Comings Elev Controlle Gates Stage/Flow Beaver Creek Kentwood S570 Lis. T.S. Gate Comings Elever		5 7 6 8 8 8 8 8 8 8	2 🕿 🤟 🖉 🖉		ب اب	비미미	== 🔊	Incel		WwW		
Project: Beaver Cr SA and SA Connection [C:\ \Manual\3.3 WS Plan: Storage Areas and LS with Gates [C:\ \Manual\3.3 WS Geometry: Beaver Cr. with Storage Areas with Gates [C:\ \Manual\3.3 WS Steady Flow: Unsteady Flow with Gates Openings [C:\ \Manual\3.3 WS Unsteady Flow: Unsteady Flow with Gates Openings [C:\ \Manual\3.3 WS Description: [Stage Hydrograph Stage/Flow Hydr. Rules Precipitation [Stage Hydrograph] Add Rs Add Boundary Condition Type Rules Precipitation Location Add Rs Add Boundary Condition Type River Creek Kentwood S.570 LS Select Location In table then select Boundary Condition S.570 LS T.S. Gate Openings Beaver Creek Kentwood S.0 Rating Curve				」Unsteady Flo	ow Data -	- Unsteady Flov	v with Gate	es Opening	gs	- 0	×	
Plan: Storage Areas and LS with Gates C:\ \Manual\3.3 WS Geometry: Beaver Cr. with Storage Areas with Gates C:\ \Manual\3.3 WS Steady Flow:	Project:	Beaver Cr SA and SA Connection	C:\\Manual\3.3 WS L	File Options	Help						Apply Data	
Geometry: Beaver Cr. with Storage Areas with Gates C:\ Wanual\3.3 WS L Steady Flow: Boundary Condition Types Unsteady Flow: Unsteady Flow with Gates Openings C:\ Wanual\3.3 WS L Description: Stage Hydrograph Flow Hydrograph Stage/Flow Hydr. Rules Precipitation II.S. Gate Openings III.S. Gate Openings III.S. Gate Openings Add Boundary Condition Types II.S. Gate Openings III.S. Gate Openings III.S. Gate Openings III.S. Gate Openings Beaver Creek Kentwood S:570 LS 70. Gate Openings III.S. Gate Openings III.S. Gate Openings	Plan:	Storage Areas and LS with Gates	C:\\Manual\3.3 WS L	Boundary Condit	tions Toi	itial Conditions	Meteorolog	nical Data	Observed Data	- <u></u>		
Steady Flow: Description: Boundary Condition Types Stage Hydrograph Flow Hydrograph Stage Hydrogr	Geometry:	Beaver Cr. with Storage Areas with Gates	C:\\Manual\3.3 WS L	Contract y Contain		contrations	meteor olog	gical Data	observed Data		1	
Unsteady Flow: Unsteady Flow with Gates Openings C:\\Manual\3.3 WS1 Description: Stage Hydrograph Flow Hydrograph Stage/Flow Hydr. Rating Curve I.S. Gate Openings Elev Controlled Gates Navigation Dams IB Stage/Flow Rules Precipitation Add Boundary Condition Location Add RS Add SA/2D Flow Area Add Pupe Node Select Location It table then select Boundary Condition Beaver Creek Kentwood 5.570 L5 T.S. Gate Openings Beaver Creek Kentwood 5.0 Rating Curve	Steady Flow:					В	oundary Co	ondition Typ)es			
Normal Depth Lateral Inflow Hydr. Uniform Lateral Inflow Groundwater Intertion I.S. Gate Openings Elev Controlled Gates Navigation Dams IB Stage/How Rules Precipitation Image: Select Location Image: Select Location Add Boundary Condition Location Add Pipe Node Add Pipe Node Select Location In table then select Boundary Condition Type River Reach RS Boundary Condition 1 Beaver Creek Kentwood 5.570 LS T.S. Gate Openings 3 Beaver Creek Kentwood 5.0 Rating Curve	Unsteady Flow:	Unsteady Flow with Gates Openings	C:\\Manual\3.3 WS L	Stage Hydro	graph	Flow Hydro	ograph	Stage	e/Flow Hydr.	Rating Curve		
Rules Precipitation Image and the second secon	Description:			T S. Gate Op	pth enings	Elev Controll	w Hydr,	Uniform	Lateral Inflow	Groundwater Interflow		
Add RS Add SA/2D Flow Area Add Pump Sta Add Pipe Node Select Location in table then select Boundary Condition Type River Reach RS Boundary Condition 1 Beaver Creek Kentwood S.99 Flow Hydrograph 2 Beaver Creek Kentwood S.70 LS T.S. Gate Openings 3 Beaver Creek Kentwood S.0 Rating Curve				Rules	or in rgs	Precipita	ation	1	30001100000			
River Reach RS Boundary Condition 1 Beaver Creek Kentwood 5.99 Flow Hydrograph 2 Beaver Creek Kentwood 5.570 LS T.S. Gate Openings 3 Beaver Creek Kentwood 5.0 Rating Curve						Add	Boundary C	Condition Lo	cation			
Select Location in table then select Boundary Condition Type Reach R5 Boundary Condition 1 Beaver Creek Kentwood 5.99 Flow Hydrograph 2 Beaver Creek Kentwood 5.570 LS T.S. Gate Openings 3 Beaver Creek Kentwood 5.0 Rating Curve				Add RS	Add SA	/2D Flow Area	. Add	Conn	Add Pump S	Add Pipe Node		
River Reach RS Boundary Condition 1 Beaver Creek Kentwood 5.99 Flow Hydrograph 2 Beaver Creek Kentwood 5.570 LS T.S. Gate Openings 3 Beaver Creek Kentwood 5.0 Rating Curve					Se	ect Location in t	table then s	elect Bound	dary Condition Ty	ре		
2] Beaver Creek Kentwood 5.570 LS T.S. Gate Openings 3] Beaver Creek Kentwood 5.0 Rating Curve				1 Beaver Cree	k Ke	each entwood	RS 5.99	Flow Hyd	drograph			
3 jeaver Greek – Kentwood – 5.0 – Kating Curve				2 Beaver Cree	k Ke	entwood	5.570 LS	T.S. Gat	e Openings			
				5 beaver cree	K Ne	ntwood	5.0	Raung C	urve		4	
												5
												G

Once the geometric data is entered, the modeler can then enter all of the required (and optional) unsteady flow data. To bring up the unsteady flow data editor, select **Unsteady Flow Data** from the **Edit** menu on the HEC-RAS main window. The Unsteady flow data editor should appear as shown above.

The user is required to enter boundary conditions at all of the external boundaries of the system and any gates as well as any other desired internal locations, and optional initial flows and storage area conditions in the system at the beginning of the simulation period.

Boundary conditions are entered by first selecting the **Boundary Conditions** tab from the Unsteady Flow Data Editor. River, Reach, and River Station locations of the external bounds of the system will automatically be entered into the table.

Boundary conditions are entered by first selecting a cell in the table for a particular location, then selecting the boundary condition type that is desired at that location. Not all boundary condition types are available for use at all locations. The program will automatically gray-out the boundary condition types that are not relevant when the user highlights a particular location in the table.

Users can also add locations for entering internal boundary conditions. To add an additional boundary condition location, select the desired River, Reach, and River Station, then press the **Add a Boundary Condition Location** button.

	Flow Hydrograph			
	River: Beaver	Creek Reach: Kentwood RS: 5.9	99	
	C Read from DSS before simulation	S	Select DSS file and Path	
Dead fram DCC	File: C:\HEC\Ras30\Unsteady\beaver.dss			
' Read from DSS	Path: //BEAVER CREEK KENTWOOD/5.99/FLOW	V/01FEB1999/1HOUR/10 YEAR EV	/NT/	_
Select DSS file	 Enter Table Select/Enter the Data's Starting Time Reference 	Data time i	nterval: 1 Hour	
	Use Simulation Time: Date: 22MA	Y1974 Time: 0000		
 Select Pathname 	C Fixed Start Time: Date:	Time:		
Sciecti atimame	No. Ordinates Interpolate Missing Values	Del Row Ins Row		
с. · т.)		Hydrograph Data		
[,] Enter in Table	Date	Simulation Time	Flow	
	1 21May 1974 2400	(hours) 0:00:00	(cfs)	-
 Select time interval 	2 22May 1974 0 100	1:00:00	730	
	3 22May 1974 0200 4 22May 1974 0300	2:00:00	1404.33	-
	4 221/dy 1974 0300	4:00:00	3875	
· Calaat start data /time a	5 22May 1974 0400	5:00:00	5502.97	
 Select start date/time 	5 22May 1974 0400 6 22May 1974 0500	6:00:00	7050	
 Select start date/time 	5 22May 1974 0400 6 22May 1974 0500 7 22May 1974 0600 0 22May 1974 0600	7.00.00	7250	-11
 Select start date/time Enter flow data - or cut & paste 	5 22May 1974 0400 6 22May 1974 0500 7 22May 1974 0500 8 22May 1974 0600 9 22May 1974 0700 9 22May 1974 0700	7:00:00	8997.03	1
 Select start date/time Enter flow data - or cut & paste 	5 22May 1974 0400 6 22May 1974 0500 7 22May 1974 0500 8 22May 1974 0500 9 22May 1974 0500 10 22May 1974 0800 10 22May 1974 0900	7:00:00 8:00:00 9:00:00	7250 8997.03 10625 12022.97	
 Select start date/time Enter flow data - or cut & paste 	5 22May 1974 0400 6 22May 1974 0500 7 22May 1974 0500 8 22May 1974 0600 9 22May 1974 0700 10 22May 1974 0800 11 22May 1974 0100	7:00:00 8:00:00 9:00:00 10:00:00	8997.03 10625 12022.97 13095.67	
 Select start date/time Enter flow data - or cut & paste Add more Ordinates 	5 22May 1974 0400 6 22May 1974 0500 7 22May 1974 0500 8 22May 1974 0600 9 22May 1974 0800 10 22May 1974 0900 11 22May 1974 0900 12 22May 1974 1100	7:00:00 8:00:00 9:00:00 10:00:00 11:00:00	7250 8997.03 10625 12022.97 13095.67 13770	
 Select start date/time Enter flow data - or cut & paste Add more Ordinates 	5 22May 1974 0400 6 22May 1974 0500 7 22May 1974 0500 8 22May 1974 0700 9 22May 1974 0800 10 22May 1974 0800 11 22May 1974 1000 12 22May 1974 1000 13 22May 1974 1000	7:00:00 8:00:00 9:00:00 10:00:00 11:00:00 12:00:00	7230 8997.03 10625 12022.97 13095.67 13770 14000	

A flow hydrograph can be used as either an upstream boundary or downstream boundary condition but is most commonly used as an upstream boundary condition. When the flow hydrograph button is pressed, the window shown above will appear. As shown, the user can either read the data from a HEC-DSS (HEC Data Storage System) file, or they can enter the hydrograph ordinates into a table.

If the user selects the option to read the data from DSS, they must press the **Select DSS File and Path** button. When this button is pressed a DSS file and pathname selection screen will appear as shown on the next page. The user first selects the desired DSS file by using the browser button at the top. Once a DSS file is selected, a list of all of the DSS pathnames within that file will show up in the table. The user can use the pathname filters to reduce the number of pathnames shown in the table. The last step is to select the desired DSS Pathname and to close the window.

Ϊ×

	Beaver Creek Rea	ach: Kentwood RS: 5	.99: Flow						-		×
-ile Opt	ions Help										
∧ File (Count: 1 Time	Window: 21May19	74 2400 - 25May1974 2400								
	se FileName		FileDate					Time Window			
		AS\Classes\2022\1D-	Unstead 5/2/2022 3:53:09 PM					Plan Time			¥
Le L		10 (0100000 (2022 (10	011010000 0, E, E0EE 0100100 1 111				v	<u></u>			
Comonal	5:14 - m					Apply					
General	Filter:					Appiy					
Last App	olied Filter:					Path Cour	nt: 8 / 1064				
	File Name	Туре	Part A	Part B	Part C	Part D	Part E	Part F	Data Type	Data Units	s
Row #	-	TimeSeries 💌	BEAVER CREEK KENTWOOD	5.99 💌	FLOW -	•	1HOUR 💌	•	-	-	X
1018	BeaverSA	RegularTimeSeries	BEAVER CREEK KENTWOOD	5.99	FLOW	01MAY1974	1HOUR	EXIST COND	INST-VAL	cfs	
1019	BeaverSA	RegularTimeSeries	BEAVER CREEK KENTWOOD	5.99	FLOW	01MAY1974	1HOUR	SA AND LS	INST-VAL	cfs	
1020	BeaverSA	RegularTimeSeries	BEAVER CREEK KENTWOOD	5.99	FLOW	01MAY1974	1HOUR	SA AND LS WITH GATES	INST-VAL	cfs	
1020		BogularTimeCories	BEAVER CREEK KENTWOOD	5.99	FLOW	01MAY1974	1HOUR	TASK 1	INST-VAL	CFS	_
1020	BeaverSA	Regular timeseries				A		TASK 2	INST-VAL	CES	
1020 1021 1022	BeaverSA BeaverSA	RegularTimeSeries	BEAVER CREEK KENTWOOD	5.99	FLOW	01MAY1974	THOUR				_
1020 1021 1022 1023	BeaverSA BeaverSA BeaverSA	RegularTimeSeries RegularTimeSeries	BEAVER CREEK KENTWOOD BEAVER CREEK KENTWOOD	5.99 5.99	FLOW FLOW-CUM	01MAY1974 01MAY1974	1HOUR	EXIST COND	INST-CUM	acre-ft	
1020 1021 1022 1023 1024	BeaverSA BeaverSA BeaverSA BeaverSA	RegularTimeSeries RegularTimeSeries RegularTimeSeries	BEAVER CREEK KENTWOOD BEAVER CREEK KENTWOOD BEAVER CREEK KENTWOOD	5.99 5.99 5.99	FLOW FLOW-CUM FLOW-CUM	01MAY1974 01MAY1974 01MAY1974	1HOUR 1HOUR	EXIST COND SA AND LS	INST-CUM INST-CUM	acre-ft acre-ft	

When the **Select DSS File and Path** button is pressed a DSS file and pathname selection screen will appear as shown above. First select the desired DSS file by using the browser button at the top. Once a DSS file is selected, a list of all of the DSS pathnames within that file will show up in the table. The user can use the pathname filters to reduce the number of pathnames shown in the table. The last step is to select the desired DSS Pathname and to close the window.

Note:

The desired path must be added to the window at the bottom by double clicking the desired selection. Click on the **Clear List** button to remove a selection.

Flow Hydrograph Table

 Select radio button "Enter Table"

Ĭ

- Select time interval
- Select start date/time
- Enter flow data or cut & paste
- Add more Ordinates (if needed)

	River: beaver Cr	eek keach; kentwood ks;	2.33	
ead from DSS l	before simulation		Select DSS file and Path	
File: C:\HEC\R	as30\Unsteady\beaver.dss			
Path: BEAVER	CREEK KENTWOOD/5.99/FLOW/0	1FEB1999/1HOUR/10 YEAR	EVNT/	
Color Table		Data Ka	a baharan da a tatan an an	ſ
Enter Table	Data's Starting Time Reference -	Data tim		
 Lice Simulation 	Data's Starting Time Reference	974 Time: 0000		
C si la la	and the second			
Fixed Start 1	ime: Date: J	Time:		
No. Ordinates	Interpolate Missing Values	Del Row Ins Row		
		Hydrograph Data		
	Date	Simulation Time	Flow	_ ^
		(hours)	(cts)	
1	21May1974 2400	0:00:00	500	
2	22May 1974 0 100	1:00:00	730	
3	22May 1974 0200	2:00:00	1404.33	
4	22May1974 0300	3:00:00	24/7.03	
5	22May 1974 0400	4:00:00	3875	
0	22May1974 0500	5:00:00	5502.97	
	22May1974 0600	6:00:00	7250	
-	22May 1974 0700	7:00:00	8997.03	
8	22May 1074 0900	9.00.00		
8	22May 1974 0800	8:00:00	10625	
7 8 9 10	22May 1974 0800 22May 1974 0900 22May 1974 1000	9:00:00	12022.97	
7 8 9 10 11 12	22May 1974 0800 22May 1974 0900 22May 1974 1000 22May 1974 1100	8:00:00 9:00:00 10:00:00	10025 12022.97 13095.67 13770	
7 8 9 10 11 12 13	22May 1974 0800 22May 1974 0900 22May 1974 1000 22May 1974 1100 22May 1974 1200	8:00:00 9:00:00 10:00:00 11:00:00	10025 12022.97 13095.67 13770 14000	
7 8 9 10 11 12 13 14	22May 1974 0800 22May 1974 0900 22May 1974 1000 22May 1974 1100 22May 1974 1200 22May 1974 1200	8:00:00 9:00:00 10:00:00 11:00:00 12:00:00	10625 12022.97 13095.67 13770 14000 13770	
7 8 9 10 11 12 13 14 15 5	22May1974 0800 22May1974 0900 22May1974 0900 22May1974 1000 22May1974 1100 22May1974 1200 22May1974 1300 22May1974 1400	8:00:00 9:00:00 10:00:00 11:00:00 12:00:00 13:00:00 14:00:00	10023 12022.97 13095.67 13770 14000 13770 13005.67	

HEC

11-1-1

The user also has the option of entering a flow hydrograph directly into a table, as shown above. The first step is to enter a **Data time interval**. Currently the program only supports regular interval time series data. A list of allowable time intervals is shown in the dropdown window of the data interval list box. To enter data into the table, the user is required to select either **Use Simulation Time** or **Fixed Start Time**.

If the user selects **Use Simulation Time**, then the entered hydrograph will always start at the beginning of the simulation time window. The simulation starting date and time is shown next to this box, but is grayed out.

If the user selects **Fixed Start Time** then the hydrograph is entered starting at a user specified time and date. Once a starting date and time is selected, the user can then begin entering the data.

HTH	Starting ⁻	Гime

	River: Bea	wer Creek Reach: Kentwood R	S: 5.99	File Options Help			
Read from	n DSS before simulation		Sele	Plan : Unsteady with 100 yr even	t	Short ID 100	Y1 Evnt
File: C:	Users\a0hecssp\Documents\6	AS Data\Beaver.dss		Geometry Eile :	Beaver Cr bridge		
Daths /B		0/ELOW/01EEB1000/1HOUR/1	00 V1 EVNT/	Geometry The .	peaver cr bridge		
Path: 1/0	LAVER CREEK REIVI WOOD/J.		DUTIENNI	Unsteady Flow File :	Unsteady flow data	- Smaller Event	
					Plan Description :		
Enter Tabl	le	C	ata time inte	Programs to Run			
-Select/Er	nter the Data's Starting Time	eference		Geometry Preprocessor			
Use Si	imulation Time: Date:	10FEB1990 Time: 000	00	Unsteady Flow Simulation			
C Fixed	Start Time: Date:	Time:		Sediment			
			-	Post Processor			
No. Ordin	nates Interpolate Missing	Values Del Row Ins F	low	Floodplain Mapping	I		
		Hydrograph Data	-	Simulation Time Window			
	Date	Simulation Time		Starting Date: 10Fl	B1990	Starting Time: 00	000
		(hours)	-	Ending Date: 12F	B1990	Ending Time: 24	400
1	09Feb1990 2400	00:00	317.58				
2	10Feb 1990 0 100	01:00	429.91	Computation Settings			. г
3	10Feb 1990 0200	02:00	615.75	Computation Interval: 2 Mi	nute <u> </u>	ograph Output Inter	rval:
4	10Feb 1990 0300	03:00	873.08	Mapping Output Interval: 1 Ho	our 💌 Detai	led Output Interval:	:
5	10Feb 1990 0400	04:00	1199.07	Computation Level Output			
Time Ste	n Adjustment Options ("Critica	l" boundary conditions)				alDAC Data Peasuor	dee
	tor this hydrograph for adjustr	nents to computational time ste	n	DSS Output Filename: (C: (Users	Idonecssb (bocument	s (KAS Data (peaver	.uss
Monit				Mixed Flow Regime (see men	u: "Options/Mixed Fla	w Options") de	bug par
Monit	Channel in Flaur Arithmeth also						

If the first value in the table should always be the first flow, then the **Use Simulation Time is** recommended. In this case for instance, if the user changed the starting date on the **Unsteady Flow Analysis** compute window to 0400 the first flow would still be 317.58 cfs. The user does not need to enter a date on the **Flow Hydrograph** editor because the date is always the same as the date on the compute window.

If the values in the table have actual dates, for instance they are historical flows, then the **Fixed Start Time** is recommended. The user then has to enter the Date and Time (the blank fields shown above). In this situation, RAS will know to match the correct flow to the correct time. So, for instance, if the Fixed Time was entered as 0000, but the starting time on the compute window was changed to 0400, RAS would know to use 1199.07 cfs as the first flow in the simulation.

HEC

HEC

- An additional option listed on the flow hydrograph boundary condition is: Monitor this hydrograph for adjustments to computational time step
- When you select this option, the program will monitor the inflow hydrograph to see if a change in flow rate from one time step to the next is exceeded. If the change in flow rate does exceed the user entered maximum, the program will automatically cut the time step in half until the change in flow rate does not exceed the user specified max. Large changes in flow can cause instabilities.
- The use of this feature can help to keep the solution of the program stable.
- Also, the flow hydrograph for model boundaries can be monitored to ensure that the flow values do not drop below an input minimum value. If the value is less than the minimum, the value is set to the minimum.
- If the study is only concerned with the high flow/high stage results, a flow minimum might be useful to prevent instability at low flows.

Additionally, the flow hydrograph for model boundaries can be easily modified by a constant ratio. This allows easy testing of model sensitivity to input flow values, or an analysis of model results with larger flood events.

These features appear on most flow input editors.

Ĩ

Downstream Boundary Conditions

- Stage hydrograph
- Flow hydrograph (not recommended)
- Rating Curve
- Normal Depth

Unsteady Flow Data	- Unsteady flow	data - Sma	aller Event	
File Options Help				
Boundary Conditions	Initial Conditions			Apply Data
	[Boundary Co	ndition Types	
Stage Hydrograph	Flow Hydr	ograph	Stage/Flow Hydr.	Rating Curve
Normal Depth	Lateral Infl	ow Hydr.	Uniform Lateral Inflow	Groundwater Interflow
T.S. Gate Openings	Elev Contro	lled Gates	Navigation Dams	IB Stage/Flow
Rules				
	Add	Boundary C	ondition Location	
Add RS	Add Storage	e Area	Add SA Connection	Add Pump Station
	Select Location in	table then s	elect Boundary Condition Typ	pe
River	Reach	RS	Boundary Condition	
1 Beaver Creek	Kentwood	5.99	Flow Hydrograph	
2 Beaver Creek	Kentwood	5.0		

Downstream boundary can be:

- Stage Hydrograph e.g., gage data on the stream
- Flow Hydrograph e.g., gage data converted to flow
- Stage & Flow e.g., combined observed stage and forecasted flow
- Rating Curve e.g., rating at a gauged location, or steady-flow rating
- Normal Depth e.g., average slope of stream to estimate energy slope

HEC

HEC

12

Stage Hydrograph

Read from DSS

Ĭ

- Select DSS file
- Select Pathname
- Enter in Table
 - Select time interval
 - Select start date/time
 - Simulation time
 - Fixed starting time
 - Enter stage data or cut & paste

	River:	Beaver Creek Reach:	Kentwood RS: 5.0		
ead i	from DSS before simulation			Select DSS file and F	Path
.cou i			<u></u>		
le:					
ath:					
ter T	able		Data time	interval: 1 Hour	•
Select	/Enter the Data's Starting Tim	e Reference	boto and	janoa	
Use	e Simulation Time: Dat	e: 10FEB1999	Time: 0000		
Fiv	ed Start Time: Dat	e:	Time:		
	colourernines Dat		1		
lo. O	rdinates Interpolate Missi	ng Values Del Ro	w Ins Row		
		Hudeocomb	Data		
	Data	Hydrograph	Data	Channe	
	Date	Simulation	lime	Stage	
1	00Eab 1000 2400	(nours)	204.1	(11)	
2	10Eeb 1999 2400	00:00	204.1	т 2	_
2	10Feb 1999 0100	02:00	206.0	5	
4	10Eeb 1999 0300	03:00	207.20	, 7	
5	10Feb 1999 0400	04:00	209.3		
6	10Feb 1999 0500	05:00	209.83	3	
7	10Feb 1999 0600	06:00	210.2	5	
8	10Feb 1999 0700	07:00	210.68	3	
9	10Feb 1999 0800	08:00	210.99	9	
10	10Feb 1999 0900	09:00	211.2	7	
11	10Feb 1999 1000	10:00	211.53	3	
12	10Feb 1999 1100	11:00	211.78	211.78	
13	10Feb 1999 1200	12:00	212.02	2	
	10Feb 1999 1300	13:00	212.2	5	
14	10Feb 1999 1400	14:00	212.4	7	_
14 15	10Eeb 1000 1500	15:00	212.68	3	
14 15 16	10/ 601999 1300	16.00	213		
14 15 16 17	10Feb1999 1600	10:00	210.		

HEC

HEC

A stage hydrograph can be used as either an upstream or downstream boundary condition. The editor for a stage hydrograph is similar to the flow hydrograph editor shown above. The user has the choice of either attaching a HEC-DSS file and pathname or entering the data directly into a table.

The rating curve option can be used as a downstream boundary condition. The user can either read the rating curve from HEC-DSS or enter it by hand into the editor.

The downstream rating curve is a single valued relationship, and does not reflect a loop in the rating, which may occur during an event. This assumption may cause errors in the vicinity of the rating curve. The errors become a problem for streams with mild gradients where the slope of the water surface is not steep enough to dampen the errors over a relatively short distance. When using a rating curve, make sure that the rating curve is a sufficient distance downstream of the study area, such that any errors introduced by the rating curve do not affect the study reach.

The normal depth option will use Manning's equation to compute a downstream stage. The friction slope must be entered by the user.

As a first approximation, the average bed slope (at the downstream end) can be used as an estimate for the friction slope. On the profile plot (as well as most other plots), the user can draw a line (or polygon) and RAS will provide information. Position the mouse pointer at the start of the line, hold down the Ctrl key, press the left mouse button, draw the line and release the Ctrl key.

To draw multiple line segments (or a polygon), release and then reclick the left mouse button.

Gates

- Time-series of gate openings
- Navigation Dams
- Elevation Controlled
- Rules

Hrii

Options Help					
oundary Conditions	Initial Conditions	s			Apply Dat
		Boundary Co	ndition Types		
Stage Hydrograph	Flow Hy	drograph	Stage/Flow Hy	dr,	Rating Curve
Normal Depth	Lateral In	flow Hydr.	Uniform Lateral I	nflow	Groundwater Interflow
T.S. Gate Openings	Elev Cont	rolled Gates	Navigation Da	ms	IB Stage/Flow
Rules					
	A	dd Boundary C	ondition Location		
Add RS	Add Stora	ge Area	Add SA Connect	ion ,,,	Add Pump Station
	Select Location i	n table then se	elect Boundary Cond	dition Ty	De
River	Reach	RS	Boundary Cond	lition	
1 Nittany River	Weir Reach	60.1	Flow Hydrograph		
2 Nittany River	Weir Reach	41.75 IS			

Time Series of Gate Openings

This option allows the user to enter a time series of gate openings for an inline gated spillway, lateral gated spillway, or a spillway connecting two storage areas.

Elevation Controlled Gate

Define the opening and closing of gates based on the elevation of the water surface elevation upstream from the structure.

Navigation Dams

Simulate the gate operations for navigation dams attempting to maintain navigation depths.

Rules

This option allows the user to control gate openings (and other hydraulic structure functions) using sophisticated If/Then tests and advanced math operations. Not covered in this lecture.

HEC

HE

16

The Unsteady Flow Data editor automatically has the external boundaries defined, based on the geometric data model. The user can add internal boundary locations to define additional lateral flow. Also, when weirs with gates are added, the gate operation will be defined as an internal boundary.

Select the River, Reach and River Station where the data will be added. Then press **Add a Boundary Condition Location**. The location is added to the boundary condition table.

Internal Boundary Conditions

- Lateral Inflow Hydrograph (e.g. small streams)
- Uniform Lateral Inflow (e.g. rainfall/runoff)

Ĭ

Groundwater Interflow

ndary Conditions	Tailial Condition	-		Apply Data
indal y Conditions		Reundary Co	ndition Turnon	
Stage Hydrograp	h Flow H	ydrograph	Stage/Flow Hydr.	Rating Curve
Normal Depth	Lateral I	nflow Hydr.	Uniform Lateral Inflow	Groundwater Interflow
r.S. Gate Openin	gs Elev Con	trolled Gates	Navigation Dams	IB Stage/Flow
Rules				
		Add Boundary C	ondition Location	
Add RS	Add Stor	age Area	Add SA Connection	Add Pump Station
	Select Location	in table then s	elect Boundary Condition Ty	pe
River	Reach	RS	Boundary Condition	
Beaver Creek	Kentwood	5.99	Flow Hydrograph	
Beaver Creek	Kentwood	5.836		
Beaver Creek	Kentwood	5.0	Normal Depth	

HEC

HE

18

Lateral Inflow Hydrograph: This internal boundary condition allows the user to bring in flow at a specific point along the river.

Uniform Lateral Inflow Hydrograph: This internal boundary condition allows the user to bring in a flow hydrograph and distribute it uniformly along the river reach between two specified cross sections.

Groundwater Interflow: This option allows the user to identify a reach that will exchange water with a groundwater reservoir.

Lateral Inflow Hydrograph

- Lateral flow downstream from a Cross Section
- Read from DSS

ĬĦĬ

- Select DSS file
- Select Pathname
- Enter in Table
 - Select time interval
 - Select start date/time
 - Enter flow data or cut & paste

HEC

HE

Lateral Inflow Hydrograph: This internal boundary condition allows the user to bring in flow at a specific point along the stream. The user attaches this boundary condition to the river station of the cross section just upstream of where the lateral inflow will come in. The actual change in flow will not show up until the next cross section downstream from this inflow hydrograph. The user can either read the hydrograph from DSS or enter it by hand.

A lateral diversion/outflow can be specified by entering negative numbers.

Uniform Lateral Flow Hydrograph

- Uniform Lateral flow to a reach element
- Add Internal Location at Upstream River RS
- Set Downstream RS
- Read from DSS
- Enter in Table

	River: Beaver	Creek Reach: Kentwood	RS: 5.836	
nflow will be evenly dist	ributed from RS: "	5.836" to RS:		5.685 💌
Read from DSS before s	imulation		Select DSS f	le and Path
ile:				.685
nc.				.647
aut: j				.61
ator Tabla			Data time intervalu	.593
Select/Enter the Data's	Starting Time Refe	rence	Data une interval.	.559 -
Use Simulation Time:	Date: 1	OFEB 1999 Time: 0	000	
Fixed Start Time:	Date:	Time:		
			- 1	
No. Ordinates	rpolate Missing Valu	Jes Dei Row Ins	ROW	
D		Hydrograph Data	later 1	
Date		Simulation Time	Lateral In	ntiow 🔺
1 09Feb 1999	2400	00:00	0	
2 10Feb1999	0100	01:00	9.73	
3 10Feb 1999	0200	02:00	357.48	
3 10Feb 1999 4 10Feb 1999	0200	02:00 03:00	357.48 801.96	
3 10Feb 1999 4 10Feb 1999 5 10Feb 1999	0200 0300 0400	02:00 03:00 04:00	357.48 801.96 1410.38	
3 10Feb1999 4 10Feb1999 5 10Feb1999 6 10Feb1999	9 0200 9 0300 9 0400 9 0500	02:00 03:00 04:00 05:00	357.48 801.96 1410.38 1869.34	
3 10Feb1999 4 10Feb1999 5 10Feb1999 6 10Feb1999 7 10Feb1999 8 10Feb1999	0 0200 0 0300 0 0400 0 0500 0 0600 0 0700	02:00 03:00 04:00 05:00 06:00 07:00	357.48 801.96 1410.38 1869.34 2328.30 2787.27	
3 10Feb 1999 4 10Feb 1999 5 10Feb 1999 6 10Feb 1999 7 10Feb 1999 8 10Feb 1999 9 10Feb 1999	0 0200 0 0300 0 0400 0 0500 0 0500 0 0600 0 0700 0 0800	02:00 03:00 04:00 05:00 06:00 07:00 08:00	357.48 801.96 1410.38 1869.34 2328.30 2787.27 3246.23	
3 10Feb1999 4 10Feb1999 5 10Feb1999 6 10Feb1999 7 10Feb1999 8 10Feb1999 9 10Feb1999 10 10Feb1999	0 0200 0 0300 0 0400 0 0500 0 0600 0 0700 0 0800 0 0900	02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00	357.48 801.96 1410.38 1869.34 2328.30 2787.27 3246.23 3705.19	
3 10Feb1995 4 10Feb1995 5 10Feb1995 6 10Feb1995 7 10Feb1995 8 10Feb1995 9 10Feb1995 10 10Feb1995 11 10Feb1995	0 0200 0 0300 0 0400 0 0500 0 0500 0 0500 0 0500 0 0500 0 0500 0 0500 0 0500 0 0500 0 0500 0 0500 0 0500 0 0500 0 0500	02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00	357.48 801.96 1410.38 1869.34 2328.30 2787.27 3246.23 3705.19 4164.15	

HEC

1I-F

Uniform Lateral Inflow Hydrograph: This internal boundary condition allows the user to bring in a flow hydrograph and distribute it uniformly along the river reach between two specified cross sections. The hydrograph for this boundary condition type can be either read from DSS, or entered into a table.

HMS provides individual watershed flows locations. If a reach flows through a watershed the hydrograph can be distributed along the reach with the distributed flow boundary condition.

NOTE:

By default, HEC-HMS will automatically route the local run-off to the downstream end of the subbasin. If you use hydrographs developed by HMS, that have been calibrated in HMS, then you will need to incorporate these into HEC-RAS as point Lateral Inflows at the downstream end of the subbasin where they were computed. Alternatively, one could develop an HEC-HMS model in which local flows (i.e. Unit Hydrograph parameters) were developed in such a way as to represent only getting the flow to the main stream (and not also routing it down the main stream to the outlet). If flows were developed in this manner in HEC-HMS, then when using them in HEC-RAS you should use the Uniform Lateral Inflow option, which distributes the flows along the entire length of the main channel. Then HEC-RAS will route them down the main channel, along with the flows from upstream.

	Goundwater Interflow
	River: Beaver Creek Reach: Kentwood RS: 5.836
Add Internal Location at Upstream River RS	C Read from DSS before simulation Select DSS file and Path File: Path:
Set Downstream RS	Enter Table Data time interval: 1 Hour
 Input Groundwater Stage Read from DSS 	Green Service Start Time: Date: 10FEB 1999 Time: 0000 Fixed Start Time: Date: Time: Time: Time: No. Ordinates Interpolate Missing Values Del Row Ins Row Hydrograph Data
Enter in Table	Date Simulation Time Groundwater Stage
Groundwater Interflow K Hydraulic Conductivity 	1 09Feb1999 2400 00:00 2 10Feb1999 0100 01:00 3 10Feb1999 0200 02:00 4 10Feb1999 0300 03:00 5 10Feb1999 0400 04:00 6 10Feb1999 0500 05:00 7 10Feb1999 0500 06:00
& groundwater	8 10Feb1999 0700 07:00 9 10Feb1999 0800 08:00 10 10Feb1999 0900 09:00 11 10Feb1999 1000 10:00 12 10Feb1999 1000 10:00 13 10Feb1999 1000 10:00 14 10Feb1999 1000 10:00 15 10Feb1999 1000 10:00

Groundwater Interflow: This option allows the user to identify a reach that will exchange water with a groundwater reservoir. The stage of the groundwater reservoir is assumed to be independent of the interflow from the river, and must be entered manually or read from DSS. The groundwater interflow is similar to a uniform lateral inflow in that the user enters an upstream and a downstream river station, in which the flow passes back and forth. The computed flow is proportional to the head between the river and the groundwater reservoir. The computation of the interflow is based on Darcy's equation. The user is required to enter Darcy's groundwater loss coefficient (hydraulic conductivity), as well as a time series of stages for the groundwater aquifer.

If the groundwater time-series represents the stage immediately at the cross section, then the user should enter the "K of the streambed sediment" and the "Thickness of the streambed sediments."

If the groundwater time-series is the stage some distance from the cross section (such as a monitoring well), then the user should enter an "Average K of the Groundwater Basin" and the "Distance between the river and the groundwater stage monitoring location."

Ï.

HEC

Darcy's Law (1856) applied the principles of fluid flow to the flow of water in a permeable media. The velocity of flow equals the product of a coefficient times the hydraulic gradient. The flow equals the velocity times the effective area = gross area times porosity of the media. (*Hydrology for Engineers, by LKP*)

• In RAS, the slope is computed by the difference between the water elevation at the cross section and the input groundwater elevation, divided by the input Distance.

- The area is length times the flow width.
- The length is the channel length for the reach element (between upstream and downstream River Stations).
- The flow width depends on the groundwater level.

If the groundwater level is below the invert of the channel, the flow is down from the channel and the width is the average top width.

If the groundwater level is above the invert, the width is the overbank width plus the channel depth, estimated by the average channel water elevation minus the groundwater elevation.

IB Stage/Flow Upstream Inline Structure

Options Help)			
undary Conditions	Initial Condition	sl		Apply Data
		Boundary Co	ndition Types	
Stage Hydrograp	h Flow Hy	drograph	Stage/Flow Hydr.	Rating Curve
Normal Depth	Lateral Ir	nflow Hydr.	Uniform Lateral Inflow	Groundwater Interflow
T.S. Gate Openin	gs 🛛 Elev Cont	rolled Gates	Navigation Dams	IB Stage/Flow
Rules				
	A	dd Boundary C	ondition Location	
Add RS	Add Stora	ge Area	Add SA Connection	Add Pump Station
	Select Location i	n table then se	elect Boundary Condition Ty	pe
River	Reach	RS	Boundary Condition	
Nittany River	Weir Reach	60.1	Flow Hydrograph	
Nittany River	Weir Reach	41.76		
Nittany River	Weir Reach	41.75 IS	T.S. Gate Openings	
Nittany River	Weir Reach	36.85	Rating Curve	

IB Stage and Flow Hydrograph:

ÏH

This option will act as a stage boundary for as long as there is stage data. If there is no stage data (or the stage data runs out), it will act as a flow boundary (for as long as there is flow data).

The IB boundary can force a known WSEL (or flow) at an internal cross section. The program will compute the resulting flow (or WSEL) in order to conserve mass. For instance, this can create a "wall of water" (a virtual dam) if less flow is allowed to leave the IB cross section than comes in from upstream.

If the IB stage/flow is located at a cross section immediately upstream of an inline structure, then the IB stage/flow boundary will override the inline structure computations as long as the IB boundary has data. When the IB boundary has run out of data, the normal inline structure computations will resume.

Using the IB boundary to override the inline structure operation at the beginning of a forecast model is the most common use for the IB boundary. When the IB boundary runs out, and the program switches to the inline structure computations, the flow computed from the inline hydraulics may be different than the last value computed by the IB boundary. This discontinuity can cause a "shock" that may cause instabilities. The user should use care with this option. HEC

HEC

Stage and Flow Hydrograph

- Upstream Mixed
 - Stage used while defined
 - Flow used next
 - Inline Hyd. after
- Purpose:

Hrii

- Real-time use
- Mix observed stage with
- Forecasted flow

rom DSS before simulation Select DSS file and Path able Data time interval: /Enter the Data's Starting Time Reference D000 ed Start Time: Date: OBAPR 1999 Time: of data time interval: 1 Hour 'Enter the Data's Starting Time Reference 0000 ed Start Time: Date: ``Time: Time: 'dinates Interpolate Missing Values Del Row Ins Row Hydrograph Data (ft) OTApr 1999 2400 00:00 15.3 08Apr 1999 0100 01:00 15.4	m DSS before simulation Select DSS file and Path Le Data time interval: 1 Hour Inter the Data's Starting Time Reference Inulation Time: Date: 08APR 1999 Time: 0000 Start Time: Date: Time: Time: 1	
able Data time interval: 1 Hour	le Data time interval: 1 Hour	
able Data time interval: 1 Hour /Enter the Data's Starting Time Reference. Simulation Time: Date: 08APR 1999 Time: 0000 ed Start Time: Date: Time: Time: dinates Interpolate Missing Values Del Row Ins Row Hydrograph Data Hydrograph Data Date Simulation Time Stage Flow (ft) (cfs) 07Apr 1999 2400 00:00 15.3 567.11 08Apr 1999 0100 01:00 15.4 897.76	le Data time interval: 1 Hour nter the Data's Starting Time Reference imulation Time: Date: 08APR 1999 Time: 0000 Start Time: Date: Time: Date: 1	•
able Data time interval: 1 Hour // Enter the Data's Starting Time Reference // Simulation Time: Date: 08APR1999 Time: 0000 ed Start Time: Date: Time: Time: 1 // Time: Time: 1 //	le Data time interval: 1 Hour interval:	•
able Data time interval: 1 Hour /Enter the Data's Starting Time Reference is simulation Time: Date: 08APR1999 Time: 0000 ed Start Time: Date: Time: 0000 dinates Interpolate Missing Values Del Row Ins Row Hydrograph Data Date Simulation Time Stage Flow (hours) (ft) (cfs) 07Apr1999 2400 00:00 15.3 567.11 08Apr1999 0100 01:00 15.4 897.76	le Data time interval: 1 Hour	•
able Data time interval: 1 Hour /Enter the Data's Starting Time Reference is Simulation Time: Date: D8APR1999 Time: 0000 ed Start Time: Date: Time: 0000 dinates Interpolate Missing Values Del Row Ins Row Hydrograph Data Date Simulation Time Stage Flow (hours) (ft) (cfs) 07Apr1999 2400 00:00 15.3 567.11 08Apr1999 0100 01:00 15.4 897.76	le Data time interval: 1 Hour Inter the Data's Starting Time Reference D0000 imulation Time: Date: 0000 Start Time: Date: Time: 0000	•
VEnter the Data's Starting Time Reference Date: DBAPR 1999 Time: D000 ed Start Time: Date: Date: Time: D000 Time: D000 ed Start Time: Date: Time: Time: D000 Time: D000 rdinates Interpolate Missing Values Del Row Ins Row D000	nter the Data's Starting Time Reference ,	
e Simulation Time: Date: 08APR 1999 Time: 0000 ed Start Time: Date: Time: Time: dinates Interpolate Missing Values Del Row Ins Row Hydrograph Data Date Simulation Time Stage Flow (hours) (ft) (cfs) 07Apr 1999 2400 00:00 15.3 567.11 08Apr 1999 0100 01:00 15.4 897.76	imulation Time: Date: 08APR 1999 Time: 0000 Start Time: Date: Time: Time:	
ed Start Time: Date: Time: Time: dinates Interpolate Missing Values Del Row Ins Row Hydrograph Data Date Simulation Time Stage Flow (hours) (ft) (cfs) 07Apr 1999 2400 00:00 15.3 567.11 08Apr 1999 0100 01:00 15.4 897.76	Start Time: Date: Time:	
Interpolate Missing Values Del Row Ins Row Hydrograph Data Date Simulation Time Stage Flow (hours) (ft) (cfs) 07Apr 1999 2400 00:00 15.3 567.11 08Apr 1999 0100 01:00 15.4 897.76 100 100		
dinates Interpolate Missing Values Del Row Ins Row Hydrograph Data Date Simulation Time Stage Flow (hours) ((ft) (cfs) 07Apr 1999 2400 00:00 15.3 567.11 08Apr 1999 0100 01:00 15.4 897.76		
Hydrograph Data Date Simulation Time Stage Flow (hours) (ft) (cfs) 07Apr 1999 2400 00:00 15.3 567.11 08Apr 1999 0100 01:00 15.4 897.76	nates Interpolate Missing Values Del Row Ins Row	
Date Simulation Time Stage Flow (hours) (ft) (cfs) 07Apr 1999 2400 00:00 15.3 567.11 08Apr 1999 0100 01:00 15.4 897.76	Hydrograph Data	
(hours) (ft) (cfs) 07Apr 1999 2400 00:00 15.3 567.11 08Apr 1999 0100 01:00 15.4 897.76	Date Simulation Time Stage Flow	
07Apr 1999 2400 00:00 15.3 567.11 08Apr 1999 0100 01:00 15.4 897.76	(hours) (ft) (cfs)	
08Apr 1999 0100 01:00 15.4 897.76	07Apr 1999 2400 00:00 15.3 567.11	
	08Apr 1999 0100 01:00 15.4 897.76	
08Apr1999 0200 02:00 1228.42	08Apr 1999 0200 02:00 1228.42	
08Apr 1999 0300 03:00 1559.07	08Apr 1999 0300 03:00 1559.07	
08Apr 1999 0400 04:00	08Apr 1999 0400 04:00	
08Apr 1999 0500 05:00		
08Apr 1999 0600 06:00	08Apr 1999 0500 05:00	10

HEC

HE

In the above example, the stage will start at 15.3 feet at time zero and rise to 15.4 feet over the first hour. During this period, the program will compute the flow in order to maintain mass continuity. After exactly one hour, the program will switch to flow. It will initially force a flow of 897.76 cfs. If this flow is significantly different than the flow that was computed from the stage boundary, it could cause an instability.

The flow leaving the cross section will be increased until it reaches 1559.07 cfs at the end of the third hour. At this point (since this cross section is immediately upstream of an inline structure) the flow computations will switch to the inline structure. This inline structure has time-series gate openings. So the flow will be based on the gate openings that are specified at time 03:00. Again, a sudden change in flow might cause instability.

This option is convenient for a real-time forecast model. The initial stage in the reservoir can be entered (only a single stage at time zero is really needed) and the known releases can be entered up until the time of the forecast.

Precipitation Boundary Condition

- Single time-series for a SA/2D Flow Area
- Period cumulative
- Steps
 - 1. Add SA/2D Area
 - 2. Select Precipitation BC
 - 3. Enter time-series data

recipi	tation Hydrograph		6				
		SA: 2D Area	Ŭ				
Read f	from DSS before simulation		Select DSS file and Pat	h			
File:							
Path:							
Enter	Table		Data time interval: 1 Hour	v			
Select	t/Enter the Data's Starting Time	Reference	, 				
Use	e Simulation Time: Date	e: 010CT2013 Time: 0	000				
C Fix	ed Start Time: Date	e: 🚺 Time:					
	1		1				
No. O	rdinates Interpolate Missin	g Values Del Row Ins	Row				
		Hydrograph Data					
	Date	Simulation Time	Precipitation				
		(hours)	(mm)				
1	30Sep2013 2400	00:00	0.0				
2	01Oct2013 0100	01:00	0.2				
3	01Oct2013 0200	02:00	0.2	_			
4	01Oct2013 0300	03:00	0.3	- 11			
5	01Oct2013 0400	04:00	0.6	- 11			
6	01Oct2013 0500	05:00	0.2				
7	01Oct2013 0600	06:00	0.1	- 11			
8	010ct2013 0700	07:00	0.0	_			
10	010ct2013 0800	08:00	.00	_			
11	010ct2013 1000	10:00	.00	- 11			
12	010ct2013 1000	11:00	00				
13	010ct2013 1200	12:00	.00				
14	01Oct2013 1300	13:00	.00				
15	01Oct2013 1400	14:00	.00				
16	01Oct2013 1500	15:00	.00				
17	01Oct2013 1600	16:00	.00				
10	01Oct2013 1700	17:00	.00				
10		10.00	00				
10	01Oct2013 1800	18:00	.00				

HEC HEC

- A stage boundary is frequently located where there is a physical gage or perhaps where the river ends at a tidal location. But otherwise, there is usually some discretion in the location of the downstream boundary.
- The downstream boundary should be located far enough downstream so that any errors associated with the boundary do not propagate all the way upstream to the study area. This is more important on mild streams than on steep streams. If in doubt, the downstream boundary can be adjusted (for instance by changing the normal depth slope) to see how far upstream effects propagate.

Downstream Sensitivity

The above example shows a steady flow profile from the RAS sample data set BaldEagle. Three different normal depths (using same upstream flow) were selected: 0.0003, 0.0006, and 0.0012. There is around 1.6 feet of difference between the highest and lowest profile at the downstream end. 6000 feet upstream, the difference between the highest and the lowest is 0.14 feet.

Assume for the moment that the actual water surface is the middle profile shown in red. At the downstream end, it is approximately half-way between the higher and the lower profile. Note that the lower profile converges more quickly (going upstream) than the higher profile does. This is typically the case. HEC

HEC

• Historic Records (USGS)

ÏH

- Stage Hydrographs
- Flow Hydrographs
- Computed Synthetic Floods
- Peak Discharge with assumed time distribution
- Rainfall-runoff modeling

Unsteady-flow modeling provides a dynamic solution for stage and flow throughout the river network. The primary boundary data are time-series flow, typically for a flood event. Where do you get that flow data?

For most situations, the simulation will route an upstream flow hydrograph, using a downstream rating curve or normal depth. The upstream hydrograph can be:

• Historic, like those obtained from the US Geologic Service.

• Synthetic, often, prior studies have computed and published synthetic floods like the Corps' Standard Project (SPF) or the Probable Maximum Flood (PMF).

• Modeling, using rainfall-runoff models like the Corps' Hydrologic Modeling System (HEC-HMS).

• Peak Discharge, and a time to peak estimate, can be used to provide a crude hydrograph using the HEC-RAS interpolation routine (Triangle hydrograph). If a Unit Hydrograph is available, that distribution can be used to develop a flow hydrograph.

29

HEC

HE

29

By clicking the circled button shown above, the user can quickly see a plot of the boundary hydrographs.

Initial Conditions

 Automatically computed (leave blank)

Hrii

- Enter [some/all] Initial flow distribution
- Use system status from previous simulation (Restart)

C	Options Help					
und	dary Conditions	Initial Conditions			Appiy L	Data
tia	al Flow Distribution	n Method				
5	Use a Restart File	Filenam	e:			í cá
F	Enter Initial flow d	istribution (Optiona	I - leave blar	nk to use boundary co	ondtions)	
				,		
1	Add RS					
		User sp	ecified fixed	flows (Optional)		2
	River	Reach	RS	Initial Flow		
1	Bryon Creek	Bryon Creek	639.	1200		
ļ	Spruce Creek	Upper River	1278.	3000		
	Spruce Creek	Middle River	978.	1800		
4	Spruce Creek	Lower River	480.	3000		
	Initial Elevation o Keep initial elevat	f Storage Areas/20 tions constant durin) Flow Areas Ig warmup	(Optional)	Import Min SA Elevation(s)	
	Initial Elevation o Keep initial elevat Storage Area/2D	f Storage Areas/20 tions constant durin Flow Area) Flow Areas Ig warmup	(Optional)	Import Min SA Elevation(s)	
	Initial Elevation o Keep initial elevat Storage Area/2D Sto #1	f Storage Areas/20 ions constant durin Flow Area) Flow Areas Ig warmup	(Optional)	Import Min SA Elevation(s)	
1	Initial Elevation o Keep initial elevat Storage Area/2D Sto #1	f Storage Areas/20 iions constant durin Flow Area) Flow Areas ig warmup	(Optional)	Import Min SA Elevation(s)	

HEC

11-1-1

HEC-RAS unsteady flow requires a water surface and flow at every cross section at the start of the simulation. Unless the Restart option is used, RAS will automatically perform a steady-state backwater computation to provide the starting conditions for the unsteady flow model.

If the initial conditions are left blank, RAS will automatically compute the starting conditions. It will use the initial value in all of the incoming flow hydrographs (upstream and lateral) to determine the starting flows. This is the recommended option for most RAS data sets.

However, for some models the automated backwater may produce poor results leading to instabilities at the start of the unsteady flow run. Or, the steady flow results may be "good/stable", but the assumptions of static-steady flow may not be correct. So in order to better represent the actual system at time zero, the user may want to enter the initial conditions. In either case, some or all of the flows may be specified.

Finally, the results that were written out from a previous unsteady flow simulation can be used as the starting condition. In this case, RAS will not need to compute a steady backwater solution.

For simple situations, the automated option can normally be used, but if not:

For most applications, the initial condition is a steady-flow water surface profile throughout the river system. If a constant flow is defined for each river reach, that flow should represent a condition when flows are fairly stable, i.e., a period prior to the start of the flood. The initial value should usually be the starting flow in the inflow hydrograph. You do not want a large change in flow between the initial flow and the first inflow value.

The flows in the river system should be consistent. For a complex river network, it may help to resolve the flow distribution using a steady-flow analysis model. The option for optimizing the flow distribution could be used to help develop a consistent flow set.

If flow is not steady at the start of simulation, you can use hydrologic routing to estimate the flows through the river system. Flow changes can be input in the initial condition, just like steady flow data. An HMS model could be used for this purpose. Remember, the initial flow in the hydrologic model is steady flow.

Initial Conditions (Complex)

ĬĦĬ

There are at least three reasons why you may want to input Initial Flows manually:

- The transition between the steady flow profile computed for t=0 and the unsteady flow profile computed for the first times step is sometimes a difficult one. Since different equations are being used, there can be a discontinuity between these two profiles that leads to an instability. Specifying initial conditions allows you to 'tweak' them to increase the stability of this transition.
- 2) There are certain hydraulic configurations (e.g. looped networks) that RAS may struggle with.
- 3) Flows (and stages) may need to be specified for lateral structures (and inline structures).

HEC

11-1-1

• Enter flows, if known, or...

Ĩ

- Steady Flow Optimization for Junctions
- Low flow for Lat Struct. and/or many warmup time steps

Options Help				
undary Conditions	Initial Conditions			Apply Data
nitial Elevy Distributio	n Mathed			
ritual Flow Distributio	n method			
🔍 Use a Restart File	Filename	:		<u>a</u>
Enter Initial flow of the second s	distribution (Optional	- leave blan	k to use boundary o	condtions)
Add RS				
	User spe	cified fixed	flows (Optional)	2
River	Reach	RS	Initial Flow	
1 Bryon Creek	Bryon Creek	639.		
2 Spruce Creek	Upper River	1278.		
3 Spruce Creek	Middle River	978.		
4 Spruce Creek	Lower River	480.		
Initial Elevation (of Storage Areas/20	Flow Areas	(Ontional)	Import Min SA Elevation(s)
Koop initial aloua	tions constant during	Normuna		import in or developingy
	uoris constant during	y warmup	<u> </u>	
Storage Area/2D	Flow Area		Initial Elevation	
1 Sto #1			68	

HEC

HE

The initial backwater (steady flow) can attempt to solve the "split flow" problem that is caused by loops and flow diversions (e.g., lateral structures). This option (which is off by default) is available from the unsteady compute window. The optimization at junctions is usually good enough (to not have stability problems). The optimization for lateral structures is less robust. A single lateral structure will usually optimize, but the behavior of three or more is usually erratic and may give results that are worse than not attempting optimization in the first place.

It may be possible to avoid problems by choosing a low starting flow so that the lateral structures do not start with flow diversions. Alternately, the optimization for the lateral structures can be left off and the situation handled by a large number of warmup time steps. (The flow optimization at the junction would normally still be recommended.)

ile Optio	ons) Help Stage and Flow Output Locations		
lan	Stage and Flow Output Locations		JULICUOUS I A ATERAL STRUCTURES/DIVERSIONS L. REACH-STORAGE AREAS L. PUMOS L. L.
	Flow Distribution Locations Flow Roughness Factors Seasonal Roughness Factors	•	Junctions Optimize 1 Meadows 🔽
Pro	Automated Roughness Calibration Unsteady Encroachments Ungaged Lateral Inflows Dam (Inline Structure) Breach		OK Cancel
Sim Sta En	Levee (Lateral Structure) Breach SA Connection Breach		Unsteady Initial Conditions - Flow Optimization Options
Cor Cor	Mixed Flow Options Time Slicing	1 Minute 💌	Sunctions Lateral Structures/Diversions Reach Structures Pumps River Reach RS Optimize Optimize Briven Reach RS Optimize
Map I	Calculation Options and Tolerances Output Options	1 Minute	2 Bryon Creek Bryon Creek 250 LS
DSS	Friction Slope Method for Cross Sections	s and Cl 🗁 🗙	

Example:

Assume that the RAS model shown has an upstream flow of 3000 cfs and that for a hydraulically-correct, steady state solution the upstream lateral structure (the one connected to the storage area) will divert 1000 cfs. The water surfaces downstream of this LS should be based on a flow of 2000 cfs. However, with the LS optimization off, the backwater will be based on the full 3000 cfs. The downstream reach will have 3000 cfs and the two middle (looped) reaches will also have a combined 3000 cfs. This extra flow will cause the water surfaces to be too high. Based on these computed water surfaces, the upstream LS may be able to divert 6000 cfs. This is more than the flow in the river!

If no warmup time steps are used, when the unsteady flow model starts, it will attempt to divert the full 6000 cfs out of the river during the first time step and the model would surely go unstable. However, warmup time steps can be used to reduce this shock.

[During the warmup period, all of the starting flows, such as upstream hydrographs and lateral inflows are held constant.]

ĨŦĬ

Warm Up Time Steps

During the first part of the warmup period, RAS automatically reduces the flow change from lateral structure. In the example where the user has selected 2000 warmup steps, for the very first warmup time step, RAS may only reduce the downstream flow by 60 cfs instead of the full 6000 cfs. The greater the number of user entered warmup time steps used, the smaller the initial change. (This is why the number of warmup time steps may by as large as 100,000.) This "reduction factor" is gradually wound down during the first two-thirds of the warmup period. During the last third of the warmup period, the full diversion is computed as normal. This last third allows the model to "settle down" (the original reason behind the warmup period option) before the main simulation is allowed to start at "time zero" (a negative time is displayed during the warmup period).

Alternately, say the upstream LS had been optimized and it had incorrectly optimized to a flow diversion of 2500 cfs (leaving only 500 cfs traveling downstream). The "shock reduction" would still be used, but in this case, the flow in the river might only be allowed to increase to 550 cfs for the very first warmup time step. This is also true of the "tailwater" side of the lateral structure if the structure is connected (the flow is not out of the system). Whatever flow (if any) the lateral structures inside of the looped network divert during the initial backwater, this diversion will also be subject to the reduction factor so as to prevent shocks to either side of the lateral structure. HEC

TIT

- The user may specify an initial stage for a given storage area. By default, this stage is allowed to vary during the warmup period (in order to allow things to settle down to equilibrium). Checking the keep initial stage option will prevent any changes to the user specified stage during the warmup period. So, for instance, a dry storage area will stay dry even if there is inflow. If the are no warmup time steps, this option will not have any effect.
- If the initial elevation is left blank, then the elevation in the storage area is determined immediately after the initial backwater. If there is no flow into the storage area (from lateral structures or storage area connectors), then the storage area is dry. If there is flow from a connection, RAS will set the initial elevation to the water surface from that connection. If there are multiple inflows, it will compute an average water surface.

- The above example is from a model of the lower Columbia. The floodplain has a series of connected storage areas to represent the storage and routing of the flow that is outside of the river that is represented by the normal cross sections.
- To start the model during a high flow, the water surfaces in the storage areas need to approximate the water surface in the nearby river which can be done automatically if the storage area initial elevation is left blank.

Restart File

- Write an Initial Condition File at a desired time
- Create a new Unsteady Flow file and Plan ("Save As...")
- Select Use a Restart File option
- Adjust starting date, if needed

A **Restart** file can be saved from a simulation. This option may be useful when the software is having stability problems at the beginning of a run. Run the model in a mode that gets through the initial conditions. For instance, using a large number of warmup time steps. Another options is "dewatering" the model: Run the model with all the inflow hydrographs set to a constant flow, and set the downstream boundaries to a high tailwater condition. Run the model with decreasing tailwater down to a normal stage over time. Once the tailwater is a reasonable value for the constant flow, those conditions can be written out to a file, and then used as the starting conditions.

The **Restart** file can also be useful during model development. For instance, if a RAS model takes several hours to run on a computer, and then it goes unstable, a restart file can be written out just prior to the instability. The model can then be quickly and repeatedly run through the period of interest.

The **Restart** file starts the model in the same condition that it was saved. For instance, the state of all gate operations, navigation dams, levee breaches, etc. are saved.

HEC

HE

39

- To create a **Restart** file, go to the output options editor, select the **Restart File Options** tab and enter the date and time and then run the model.
- Although it is possible to both create and use a restart file using the same unsteady flow and plan, this is not recommended.
- Instead, create a new flow and plan file using the Save as option.

Note:

• To use the **Restart** file option, the geometry that is used when the restart file is created needs to be [pretty much] identical to the geometry that uses the restart file.

Ĭĸĭ	Sel	ect R	esta	art							HEC
	上 Unsteady Flow Data	a - Unsteady flow	data	frame framework			X				
	File Options Help										
	Boundary Conditions	Initial Conditions				Apply D	ata				
	Initial Flow Distribution	n Method									
	Use a Restart File	Filenam	e: Docume	ents \RAS Data \Be	aver.p0	03.10FEB1990 1200.rst	E				
	C Enter Initial flow o	distribution									
	Add RS				上し	Jnsteady Flow Ana	lysis				
	Locations of Flow D	Data Changes (spec	ify the flow o	r optionally leave	File	Options Help					
	River	Reach	RS	Initial Flow	Diam				1		
	1 Beaver Creek	Kentwood	5.99		Plar	1: junsteady 100 yr			Short ID	100 yr	
						Geometry F	ile :	Beaver Cr bridge			
						Unsteady Fl	low File :	Unsteady flow data			
								Plan Description :			
					Pr	ograms to Run					
						Geometry Preproce	essor				
					 •	Unsteady Flow Sim	ulation				
						Post Processor					
					ΪĒ	Floodplain Mapping	1				
					Si	mulation Time Windo	w				
					s	tarting Date:	10FE	B1990	Starting Time	: 1200	
					E	inding Date:	12FE	B1990	Ending Time:	2400	
											41

- In the initial condition editor, browse and select the desired restart file.
- Note that the name of the restart file contains both the project and plan identification as well as the date and time stamp (the simulation time when the restart file was created).
- If the restart file is written out in the middle of a long run, it would usually be recommended to change the starting date and time on the compute window to match the date and time of the restart file.
- There is no requirement that the date and time match. For instance, if the restart file is being used in lieu of the initial backwater and warmup period, it may not matter.

Note:

 The user must maintain sufficient continuity between the restart file and the unsteady flow run at time zero. For instance, if a gate is only open 0.5 feet in the restart file, but the unsteady model (that is using the restart file) is using a time series gate opening and the given starting time specifies a gate opening of 10.0 feet, instability is likely to result.

The Unsteady Flow Window has the standard **File Menu** options. It is a good idea to save the data before going on to the next step.

The **Options Menu** has four options:

- Delete an added Boundary Condition. You cannot delete external boundaries because they are required.
- Internal RS Initial Stages to set a stage at the start of simulation.
- Flow Minimum and Flow Ratio Table
- Add Observed Data this option is helpful when calibrating model to simulate an historic flood event.

Ĩ

Internal RS Initial Stages

- Select:
 - River
 - Reach
 - River Station
- Add Location to table
- Define Initial Elevation
- Optionally used upstream of Inline Structures to set pool WSEL

: Beaver Creek	▼ ▼ R	iver Sta.: 5.9	99 🔻	Delete row(s) Add an Initial St	Add Multiple
,		Locations and I	nitial Stages		
River	Reach	RS		Elev	
				OK	Cancel

HEC

HE

43

The initial stage can be set for a river station. Normally, this would be defined by the computed water surface profile during the initial conditions stage of the computation process. This option is useful at locations upstream from a control structure where the initial stage is NOT the 'normal' backwater elevation. For instance, an inline structure using time series gate opening will compute a water surface at the dam that satisfies steady-state hydraulics which may or may not be the desired starting pool elevation.

Select the River, Reach and River Station where the initial stage is to be defined. Then 'click' the **Add an Initial Stage Location** button. The location will be added to the table below. Then you can enter the initial stage for that location.

The boundary hydrographs can be modified with global editing to:

Add a constant value to the input

Multiply input values by a factor

Set values to an input value

The following two options are also available on all flow hydrograph input windows.

1. The flow hydrograph for model boundaries can be monitored to ensure that the flow values do not drop below an input minimum value. If the value is less than the minimum, the value is set to the minimum.

2. The flow hydrograph for model boundaries can be easily modified by a constant ratio. This allows easy testing of model sensitivity to input flow values, or an analysis of model results with larger flood events.

There are 3 options available to enter observed data:

- 1. Time-series data can be entered to define observed stage or flow data. There data must be in a DSS file.
- 2. High-water marks can be defined
- 3. A Rating Curve can be defined

Observed time-series data can be added to the unsteady flow data set. First select the model location where the observed data would apply. Select River, Reach, and River Station and press **Add selected location**. The location will appear in the table below. Several locations can be selected.

The second step is the selection of DSS records to read the observed data. The lower half of the window has the standard DSS file and record selection features. Filters can be selected for pathname parts to facilitate record selection. A DSS Record should be selected for each Location selected. Remember the time window set for the simulation will be used to extract the observed data, so be sure there is observed data for the time window.

High Water Marks can be defined for locations along the river reach.

First the nearest upstream cross section is selected and added to the Observed Water Surface Locations. The distance downstream from the section and the observed stage are then entered in the table.

Observed Rating provides for a Rating Curve or Measured Flow Data to be entered.

- 1. The Rating curve is defined in typical Stage Flow relationship, starting from the lowest stage and sequentially increasing.
- 2. The Measured Point Data is entered by pressing that button and entering the observed stage and flow, along with optional description. These data do not have to define a complete rating.

Boundary & Initial Conditions

