Inline and Lateral Structures

Eric Tichansky, PE, CFM

1. Use Cases for Hydraulic Structures in HEC-RAS

2. Computations for Hydraulic Structures

3. Controlling Hydraulic Structure in HEC-RAS

Overview

Introduction to Hydraulic Structures

Inline Structures

- Uses
- Weirs
- Gates
- Ratings

Lateral Structures

- Uses
- Differences from Inline Structures

Inline & Lateral Structures

Hydraulic structures are used to model:

- Dams of all shapes and sizes
- Drop structures and natural drops
- Culverts
- Levees
- Diversions
- Detention ponds
- Natural overbank flow

Hydraulic Structure Features

Inline Structures

Cross Section Layout

Weir Options for Inline Structures

- Uses standard weir flow equation
 - $Q = CLH^{3/2}$
- HEC-RAS accounts for weir submergence to reduce flow
- Weir shape
 - Broad Crested
 - Ogee

🐨 Inline	e Struct	ure Data	- Existing Condit	ions						Х
File Vi River:	Inline	e Struc	ture Weir Sta	ation Elevat	ion Editor					
Reach:		Dis	tance	V	Vidth	W	eir Coef			
Upstream	450.			25.		3.95				
Descriptio Pilot Flow	Cle	ear	Del Row	Ins Row	Filter					
All Culver			Edit	Station and	Elevation co	ordinates				
Weir / Embaikment			Statio	n		Elevation		-		<u>^</u>
	1	0			683					
Gate	2	1700			683			_	Legend	1
I I I	3	1700			657				Ground	-
Culvert	4	2300			657				Bank Sta	
	5	2300			683					-
Outlet	6	6980			683					
	7							-1		
Outlet ,TS	8						L	<u> </u>		
	U.S I	Emban	kment SS		D.S E	Embankment S	s			
	Wei C	ir Data <u>r Crest</u> Broad Ogee	<u>t Shape</u> Crested	Spillway Ap Design Ener	proach Heigh rgy Head:	nt: 24. 3. OK	Cd	1		
Select the	Enter	distar	nce between u	upstream cro	ss section an	d deck/roadw	av. (ft)	-		

Ogee Weir vs Broad Crested

- Broad Crested
 - Single weir coefficient

Ogee

- Spillway Approach Height (P)
- Design Energy Head (He)
- Weir coefficient (C)
- Ogee (C) Adjustment
 - Ratio of *He / Ho*

$Q = CLH^{3/2}$

Typical Weir Coefficients

<i>Weir Crest Shape</i>	Typical Coefficient Range
Broad Crested	2.6 - 3.1
Ogee Crested	3.2 - 4.1
Sharp Crested	3.1 – 3.3

Weir Submergence

- Tailwater begins to impact flow
- RAS reduces weir flow coefficient automagically
- Different methods for Ogee and Broad Crested

Discharge Reduction for Submerged Flow

HEC

Gates

Gate methods

- Sluice
- Radial
- Overflow Gates
- Rating rurve

nline Gate Editor					
Gate Group: Gate #1	• I I		b		
Gate type (or methodology):	Sluice	•]		
Gate Flow Sluice Gate Flow Sluice Discharge Coefficien	Sluice Radial Overflow (closed Overflow (open a User Defined Curv	top) ir) ves	ow Over ipe:	Gate Sill (gate ou Broad Crested	t of water)
		Weir Co	efficient	:	3
Submerged Orifice Flow Orifice Coefficient (typically	0.8): 0.8	8			
Head Reference:	Center of opening	g <u>•</u>			
Geometric Properties Height: 15 Width:	60 Inve	rt: 590		- Opening GIS Dat	a: Right Gate
Opening Centerline St	Station	CIS Sta			
1 Left Gate	5100	015 518		1	··
2 Middle Gate	5250			2	
3 Right Gate	5400			3	
4				4	
5				5	
7			•		_
Individual Gate Centerlines				ОК	Cancel Help

Sluice Gates

Gate Flow Types

ate Group: Gate #1	◗ੈ⊳∟ੈ≦ँ×≞		
ate type (or methodology): Sluice Gate Flow Sluice Gate Flow	▼ Weir Flo	ow Over Gate Sill (gate out of v	vater)
Sluice Discharge Coefficient (0.5-0.7	7): 0.65 Weir Coe	efficient:	3
Submerged Orifice Flow Orifice Coefficient (typically 0.8):	0.8		

Gate Flow
Submerged Orifice
Weir Flow

Sluice Gate Flow

$Q = CWB\sqrt{2gH}$

Where:

H = Upstream energy head $(Z_U - Z_{sp})$ C = Discharge Coefficient , 0.5 to 0.7 W = Width

B = Opening

 $Q = CWB \sqrt{2gH}$ Where: $H = Z_U - Z_D$ C = Discharge Coefficient, typically 0.8

Orifice Flow / Submerged Flow

Submergence Transition

Low Flow / Weir Flow

$Q = CLH^{3/2}$

Radial Gates

Radial Gate Flow

Inline Gate Editor

Gate Group: Gate #1	- +	1 11	5
Gate type (or methodology):	Radial		
Gate Flow			-
Radial Gate Flow			V
Radial Discharge Coefficie	nt (.06-0.8):	0.65	
Trunnion Exponent:		0	
Opening Exponent:		1	V
Head Exponent:		0.5	
Trunnion Height		10	
Submerged Orifice Flow			
Orifice Coefficient (typical	ly 0.8):	0.8	
Head Reference:	Center of op	ening 💌	

 $Q = C\sqrt{2g}WT^{TE}B^{BE}H^{HE}$

Radial Gate Submergence

Tailwater increases and begins to impact flow

 $Q = C\sqrt{2g}WT^{TE}B^{BE}(3H)^{HE}$

Transitions to fully submerged orifice flow

Low Flow / Weir Flow

Overflow Gates

 $Q = CLH^{3/2}$

Where:

H = Upstream energy head $(Z_U - Z_{sp})$

C = Weir coefficient, 3.1 - 3.3

Outlet Rating Curve

Inline Structure Outlet Rating Curve

Outlet Rating Curve Name (32 chars max): Gate Group	o1
Stationing along structure for outlet flows:	5000
☐ Outlet Width:	30
Outlet Flow Computed as Function of Upstream:	

_

- Water Surface
- C Flow

	Outlet Rating) Curve	
	Reference WS Elev	Outlet Flow	•
1			
2			
3			
4			
5			
6			
7			
8			
9			•
140			
	Plot Curve	·	
GI	S Coordinates		_
	Enter/Edit Centerline Coo	ordinates	
		OK Cancel	

Lateral Structures

Lateral Weir – Sacramento River

Cross Section Layout

Lateral Connections

- Headwater connected to cross sections:
 - Left or right
- Tailwater connected to
 - Other cross-sections
 - Storage Areas
 - 2D Areas
 - Out of system

Lateral Structure Computations

Lateral Structure Computations

Lateral Weir Coefficients (Guidelines)

Terrain Feature	Flow description	Range of Weir Coefficients
Non elevated overbank terrain. Lat Structure not elevated above ground	Overland flow escaping the main river.	0.2 to 0.5 SI Units: 0.11 to 0.28
Natural high ground barrier – 1 to 3 ft high	Not quite a weir. Water must flow over high ground. Flow does not pass through critical depth	0.5 to 1.0 SI Units: 0.28 to 0.55
Levee/Roadway – 1 to 3 ft elevated above ground	Flow over levee/road acts like weir flow, but becomes submerged easily.	1.0 to 2.0 SI Units: 0.55 to 1.1
Levee/Roadway – 3ft or higher above natural ground	Broad crested weir shape, flow over levee/road acts like weir flow	1.5 to 2.6 (2.0 default) SI Units: 0.83 to 1.43

Controlling Structures

Structure Boundary Conditions

1		Jnsteady Flow Da	ta - PMF-HMS_00	01			o x
F	ile	Options Help					
D	esc	ription:				÷	Apply Data
ſ	Boi	indary Conditions	Initial Conditions	Meteorologi	al Data Observed Data		
·			Inda Conditions	Meteorologi		1	1
			В	oundary Con	dition Types		
		Stage Hydrograph	drograph Flow Hydrograph Stage/Flow Hydr,		Ratin	g Curve	
		Normal Depth	Lateral Inflo	w Hydr.	Uniform Lateral Inflow	Groundwa	ter Interflow
ſ	1	F.S. Gate Openings	Elev Control	ed Gates	Navigation Dams	IB Sta	age/Flow
		Rules	Precipita	Precipitation			
Ī			Add	Boundary Co	ndition Location		
	ŀ	Add RS Add	SA/2D Flow Area	. Add C	onn Add Pump St	a Add	Pipe Node
			Select Location in t	able then sel	ect Boundary Condition Ty	pe	
		River	Reach	RS	Boundary Condition		
	1	Bald Eagle Cr.	Lock Haven	137520	Flow Hydrograph		
	2	Bald Eagle Cr.	Lock Haven	81454 IS	T.S. Gate Openings		
	3	Bald Eagle Cr.	Lock Haven	80360 LS	Rules		
	4	Bald Eagle Cr.	Lock Haven	76865	Lateral Inflow Hydr.		
	5	Bald Eagle Cr.	Lock Haven	67130	Lateral Inflow Hydr.		
	6	Bald Eagle Cr.	Lock Haven	28519	Lateral Inflow Hydr.		
	7	Bald Eagle Cr.	Lock Haven	-1867	Normal Depth		

Time Series Gate Openings

Gate (Openings			N	
River: Bald Eagle Cr. Reach: Lock Haven RS: 81454					
	Gate	e Group:	Gate	e #1	- I t
Rea	d from DSS before sin	nulation	Sele	ect DSS file and	d Path
File					
File					
Pat	h:				
C Ente	er Table	Data	time inter	val: 1 Day	•
Sele	ct/Enter the Data's Si	tarting Time I	Reference		
Θu	se Simulation Time:	Date:	01Jan 19	999 Tim	e: 1200
C F	ived Start Time:	Date:		Tim	
No.	Ordinates Interp	olate Missing	Values	Del Row	Ins Row
		Hydrogra	ph Data		
	Date	Simulati	on Time	Gate Openin	g Height 🔺
		(hou	urs)	(ft)	
1	01Jan1999 1200	0:00):00	1	
2	02Jan 1999 1200	24:0	0:00	1	
3	03Jan 1999 1200	48:0	0:00	1	
4	04Jan 1999 1200	72:0	0:00	1	
5	05Jan 1999 1200	96:0	0:00	1	
6	06Jan 1999 1200	120:0	00:00	1	
7	07Jan 1999 1200	144:0	00:00	1	
8	08Jan 1999 1200	168:0	00:00	1	
9	09Jan 1999 1200	192:0	00:00	1	•
		Plot Data		ок	Cancel

Elevation Controlled Gates

Elevation Controlled Gates

River: Bald Eagle Cr. Reach: Lock Haven RS: 80360					
Gate Group: Gate #1			•	1 t	
Reference:	Based on upstr	Based on upstream WS			X
Upstream WS Eleva	Based on upstr	eam \	NS		13
Upstream WS elevati Based on difference in stage					
Upstream WS elevation at which gate begins to close: 583.					
Gate Opening Rate:(ft/min):			0.1		
Gate Closing Rate:(ft/min): 0.1					
Maximum Gate Opening: 10.					
Minimum Gate Opening: 0.2					
Initial Gate Opening ((Optional):			0.2	
			OK	Ca	ancel

Navigation Dam

Navigation Controlled Gates

River: Bald Eagle Cr. Reach: Lock Haven RS: 81454

Normal gate change time increment (hrs):
Rapidly varying flow gate change incremen
Initial gate change time (ex 0800):

Steady Profile Limits Table (Optional)

WSMin

Minimum:

•

Minimum Low:

Close Gates:

WSMax

Flow

2

4 5 6

7 8

):		Gate minimum opening:				2				
ent:		Gate maximum opening:								
		Gate ope	ning rate (ft/min):		-				
		Gate clos	ing rate (fi	t/min):						
Hinge Point and Min and Max Pool Operations										
Flow Monitor Hinge Control Min Pool Control Max Pool Control										
River: Bald Eagle Cr. 🔻										
Reach	n: Lock Have	en	-	RS:	137520	•				
Wa	ter Surface E	levations		Flows a	nd Flow Fac	tors				
Open	River:			Inen Piver	. Г					
Maxim	num High:		Flow Eactor Ma							
Maximum:				actor Max.						
Targe	t High:			actor rarg	gernign: j					
Targe	t:									
Targe	t Low:		\							

> Flow Factor Target Low:

Flow Factor Min:

Flow Minimum:

Cancel

Navigation Dam

https://www.youtube.com/watch?v=IbXId0FH-OE

Rules

A script for how to operate structures

Can apply to:

- Inlines
- Laterals
- Storage Area Connections
- Pumps
- Flexible and powerful

Operation Rules Rule Font Size: ▼ Bold Font Rule Based Operations 12 Operation row ~ 26 27 ! The "new flow" is average of the flow at dam and at upstream end. 28 'Flow New' = 0.5 * 'Flow' + 0.5 * 'Flow Upstream' 29 30 Adjust "Flow New" up or down depending on WSEL at dam. 31 - 32 If ('WSEL at dam' > 110.3) Then 33 'Flow New' = 1.5 * 'Flow New' 34 Elself ('WSEL at dam' > 110.2) Then 35 'Flow New' = 1.2 * 'Flow New' 36 Elself ('WSEL at dam' > 110.1) Then 37 'Flow New' = 1.1 * 'Flow New' 38 Elself ('WSEL at dam' < 109.7) Then Insert New Operation Branch (If/Else) New Variable Get Sim Value Set Operational Param Math Table Comment Branching Operation (If/Else/ElseIf/Else/Endif) Branching Line Type: Expression Expression • If () Then Edit ... X Edit ... 🗙 C If () And/Or () Then 'WSEL at 110.3 ElseIf () Then ElseIf () And/Or () Then Else End If C Check Rule Set ... OK Cancel

Stability Considerations

Lateral and Inline Stability

HEC-RAS Unsteady Computation Options and Tolerances

General	2D Flow Options 1D/2D Options	Advanced Time	e Step Control	1D Mixed Flow Options		
1D Unsteady Flow Options				1D/2D Unsteady Flow Options		
Theta [i	mplicit weighting factor] (0.6-1.0)	:	1.	Number of warm up time steps (0 - 100,000):	0	
Theta f	or warm up [implicit weighting fact	or] (0.6-1.0):	1.	Time step during warm up period (hrs):	0	
Water surface calculation tolerance [max=0.2](ft): 0.02			0.02	Minimum time step for time slicing (hrs):	0	
Storage Area elevation tolerance [max=0.2](ft): 0.02			0.02	Maximum number of time slices:	20	
Flow calculation tolerance [optional] (cfs):			100.	Lateral Structure flow stability factor (1.0-3.0): Inline Structure flow stability factor (1.0-3.0):	2.	
Maximu	Maximum number of iterations (0-40): 20			weir now submergence decay exponent (1.0-3.0):	1.	
Maximum iterations without improvement (0-40):				Gate flow submergence decay exponent (1.0-3.0):	1.	
				Gravity (ft/s^2):	32.174	
Wind Forces				1D Numerical Solution		
Reference Frame: Eulerian Drag Formulation: Hsu (1988)				 Finite Difference (classic HEC-RAS methodology) Finite Difference Matrix Solver Skyline/Gaussian (Default: faster for dendritic systems) Pardiso (Optional: may be faster for large interconnected systems) 		
Geometry Preprocessor Options Family of Rating Curves for Internal Boundaries © Use existing internal boundary tables when possible.				C Finite Volume (new approach)		
C Recompute at all internal boundaries				Number of cores to use with Pardiso solver:	ailable 💌	

OK

Cancel

Defaults ...

Initial Overflow

Submergence Stability

Questions?

