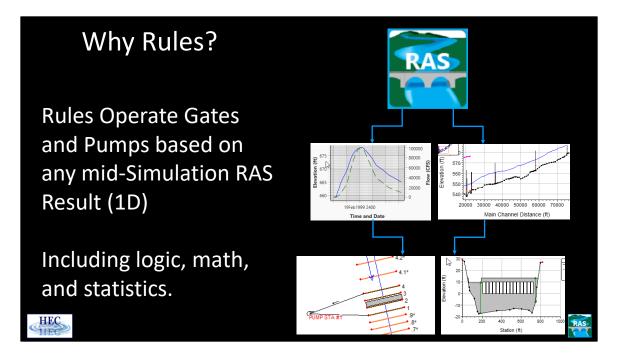
Operational Rules

Stanford Gibson, PhD

Hydrologic Engineering Center



Objective:

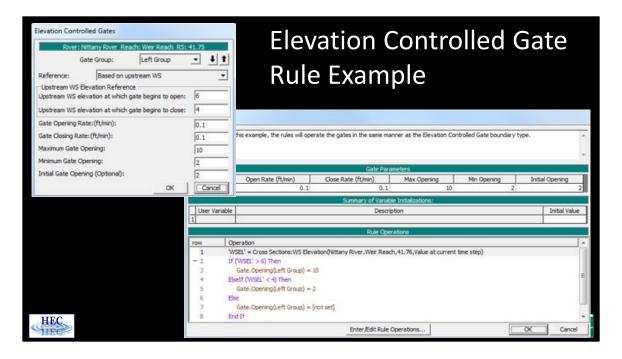
To convince you that you can use Rules.

The operating procedures for determining and controlling the releases from reservoirs and other types of hydraulic structures can be quite complex. HEC-RAS allows flexibility in modeling and controlling the operations of hydraulic structures through the use of rules. The rules can be used to operate the height of the gate openings. Alternately, the rules can directly control (or constrain) the flow despite the gate openings (or even without gates at all). Examples of variables that could be used to control releases from a hydraulic structure are: current flows and water surfaces at the structure, current flows and stages at downstream or upstream cross section locations, time considerations (winter, morning, etc), and/or previously computed values (accumulated outflows, running averages, etc). Rule operations in HEC-RAS are available for inline hydraulic structures, lateral hydraulic structures, and storage area connections.

Rules for controlling hydraulic structures can be entered after an inline structure, lateral structure, or storage area connection has been added to the project. From the Unsteady Flow Data editor, add or select the given structure and then click on the Rules button. This will bring up the Gate Rule Operation editor (as shown in the next slide). In the Gate Parameters table at the top of the editor, some initial information can be entered for any gate groups that are in the hydraulic structure.

How Rules Work

- Rules are a set of instructions for operating a hydraulic structure (eg gates)
- At the beginning of each time step, RAS evaluates Rules and changes hydraulic structure operations
- Elevation controlled gates can be thought of as a simple set of rules


HEC

les wo	JLK			
Unsteady Flow Data -	Unsteady Flow Hydrogra	iph	- 0	\times
File Options Help				
Description:			C Apply	Data
Boundary Conditions Ini	tial Conditions Meteorolog	jical Data Observed Data	1	1
	Boundary Co	ndition Types		
Stage Hydrograph	Flow Hydrograph	Stage/Flow Hydr.	Rating Curve	
Normal Depth	Lateral Inflow Hydr.	Uniform Lateral Inflow	Groundwater Interf	low
T.S. Gate Openings	Elev Controlled Gates	Navigation Dams	IB Stage/Flow	
Rules	Precipitation Elevat	tion Controlled Gates	·	
Se River Re 1 Nittany River We 2 Nittany River We	eir Reach 80, eir Reach 41, Upstre Gate 0 Gate 0 Maxim Minimu	River: Nitany River: Red Gate Group: ence: Based on up and VE elevation Referen- eam WS elevation at which g and WS elevation at which g and WS elevation at which g and Rate: (ft/min): Josing Rate: (ft/min): Josing Rate: (ft/min): um Gate Opening: m Gate Opening: Gate Opening (Optional):	Left Group Instream WS te gate begins to open:	
			ОК	Cancel
			4	RAS

For each hydraulic structure that has rules, the rules are checked at the beginning of each time step. The rules are analyzed from the top to bottom one time. Each rule is analyzed one time (per time step). However, some rules may be skipped because of the operation of If/Then tests.

At the start of any given time step, the rules may or may not make any changes to the operation of the hydraulic structure. In general, a rule that has been put into effect stays in effect until it is expressly changed. So if a rule has put a limit on the maximum flow through a structure, that rule will still constrain the maximum flow until either the maximum limit is adjusted or that rule is explicitly "turned off". Also, some operations may take several time steps to complete. For instance, if a rule operation calls for a gate to be opened 10 feet, but the gate can only be opened 1 foot/minute and the user has selected a 1 minute time step, it will take 10 time steps for the operation to be completed.

Elevation controlled gates can be thought of as a simple set of rules.

In the above example, the rule operations will behave in an identical manner as the elevation controlled gates. (This is just an example to show how the rules work. If this was all that was desired, the elevation controlled gates would be simpler than the rules).

Just as with the elevation controlled gates, the user enters an opening and closing rate, a maximum and minimum gate opening, and the initial opening for each gate group.

Just like the elevation controlled gates, this rule set is checked at the start of each time step to see if the gates should be opened or closed.

Rule Example for Elevation Controlled Gates

	Rule Based Operations
row	Operation
1	1
2	'WSEL' = Cross Sections:WS Elevation(Nittany River,Weir Reach,41.76
- 3	If ('WSEL' > 6) Then
4	Gate.Opening(Left Group) = 10
4 5	Elself ('WSEL' < 4) Then
6	Gate.Opening(Left Group) = 2
7	Else
8	Gate.Opening(Left Group) = [not set]
9	End If
000-0	

Rule 2 (in row 2), which is the first rule that actually does something, gets the water surface just upstream of the inline structure and stores it in a variable called WSEL. The next rule (row 3) checks to see if the water surface is greater than 6 feet. If this is true, then control goes to row 4 and that rule will start opening the gate by setting the opening to 10 feet. (If the gate is already at 10 feet, then this rule does not have any effect.) If the water surface is greater than 6 feet, then row 4 is the last rule that is analyzed.

If the water surface was not greater than 6 feet, then control jumps to row 5 and the water surface is checked to see if it is less than 4 feet. If it is, then the gate opening is set to 2 feet. If the water surface is less than or equal to 6 feet and greater than or equal to 4 feet, then control jumps to row 8. Row 8 turns the gate opening "off" so that the current gate opening is kept. The reason for this is explained in the example below:

Say the gate opening is 5 feet and the water surface for a given time step increases to greater than 6 feet. The gate starts opening (based on the opening rate and the length of the time step). Assume that the gate opening has increased to 5.5 feet when the water surface just drops below 6 feet. If nothing is done, the command to open the gate to 10 feet stays in effect (the command does not have to be "renewed" each time step). Row 8 turns the command off and in this example the gate opening will be left at 5.5 feet until the row 4 or row 8 is called. Every time the water surface is between 4 and 6 feet, the command is turned off. If it was already off, then this has no effect.

				Ru	les	
				Rule Operation:	ations	
Boundary Conditions	Boundary Conditions Boundary Condition Types Stage Hydrograph Flow Hydrograph Stage/Flow Hydrograph				Gate Parameters Open Rate (ft/min) Close Rate (ft/min) Max Opening Min Opening Initial Opening 0.5 0.5 30 0 1	
Normal Depth T.S. Gate Openings Rules	Lateral Inflow Hydr. Uniform Lateral Inflow Elev Controlled Gates Navigation Dams			User Varia	Summary of Variable Initializations: able Description Initial Value Rule Operations Rule Operations Rule Operations	
Add RS	Add Storage	Area	Add SA Connection	μ 1 2 3	Operation Pool Stage' = Cross Sections:WS Elevation(Missouri River, Missouri, 811.076, Value at curren 'RunTime' = Time:Hour of Simulation(Beginning of time step)	
River 1 Missouri River 2 Missouri River 3 Missouri River 4 Missouri River	Reach Missouri Missouri Missouri Missouri	souri 879.01 Flow Hydrograj souri 849.9 Lateral Inflow H souri 811.065 IS Rules		3 4 5 6 7 - 8	Structure.Total Flow (Desired) = 60000 I I Start to fill after 11 total days of run time If (RunTime' > 246) And (Pool Stace' < 1205) Then	
Set initial gate parameters					Structure.Total Flow (Desired) = 5000 ElseIf (RunTime' > 246) And (Pool Stage' >= 1205) Then Structure.Total Flow (Desired) = 30000 End If	
HEC	0				Enter/Edit Rule Operations OK Cancel	RAS

The Open and/or Close Rate can be left blank, which means the gate can move to any new setting in a single time step.

The Max and Min Opening will constrain the maximum and minimum gate opening settings. Building on the previous example of opening the gate one additional foot, if the gate was at 3.5 feet and the maximum was set to 4 feet (even though the gate was 6 feet tall), over a five minute period, the gate would open to 4 feet and then stop. If the Max is left blank, then the gate maximum opening is limited only by the height of the gate. If the Min is left blank, then the minimum opening is fully closed (i.e. 0.0).

The Initial Opening provides the first setting for the gate. This opening height will be used during the initial backwater computation. The gate will be left at this setting until it is changed by a rule operation. The Initial Opening is required for all gate groups, if any, in the hydraulic structure and may not be left blank.

In this example, row 7 is getting the wsel at the dam. Row 13 is checking to see if it is 0600 hours. If it is, then rows 17 and 22 are executed. Row 17 computes a new gate opening elevation for the drop gates. The new elevation is 3.5 feet below the wsel at the dam. Row 22 converts the elevation into an actual gate opening and tells the program to use the new gate opening. The final result is that at 0600 hours the drop gates are adjusted to have 3.5 feet of head on them.

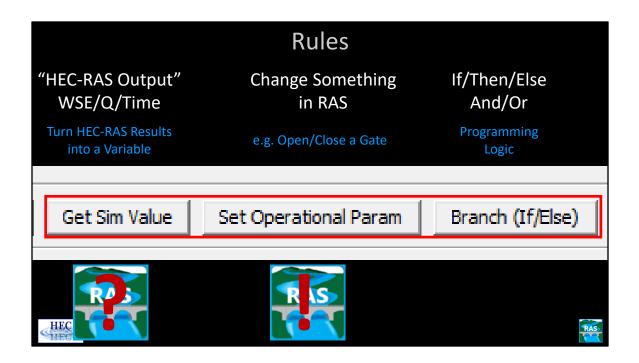
To enter or edit the rule operations, click the Enter/Edit Rule Operations button.

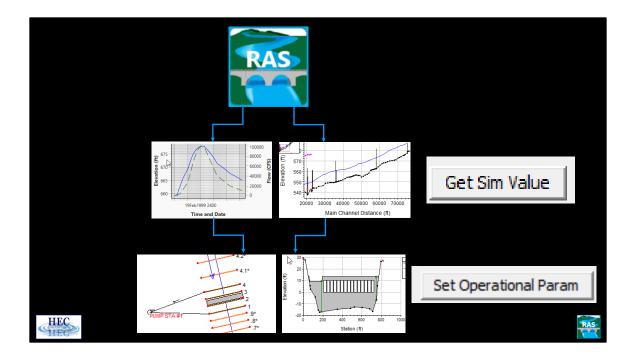
Operat	ion Rules															
											F	Rule Fon	t Size:	10	- 🗆 Bold	Font
row	0	peration				3				1	True	Fa				
			Click o below							' butto	ons					
	New Open	ation	Get Sim Value	Set	Operationa	l Param	Branch	(If/Else)	Math	Table]	Current :	Selection	1 Changes	Enable	Disable
» [Check Ru	ıle Set]				OK	Ca	ncel

	Click on one of the 'Insert New Operations' buttons below to add an operation to this rule set
Insert New Operation Comment New Variable	Get Sim Value Set Operational Param Branch (If/Else) Math Table

Operation Types:

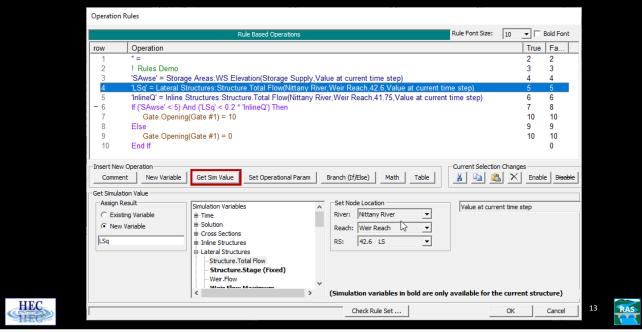
Comment. Provides a user entered line of text (for documentation only).


New Variable. Allows the user to create a variable and give it a custom name.


Get Simulation Value. A variable is set equal to a given value in the simulation, such as the flow at a cross section or the time of day.

Set Operation Parameter. Changes the operation of the hydraulic structure, for example, adjusting the gate height or setting a maximum discharge.

Branch (If/Else). Controls which operations are executed on the basis of an If-Then test (e.g., do different gate operation checks based on seasonal considerations).


Math. Performs math operations such as summing flows or averaging water surfaces. **Table**. This operation allows the user to enter a table and perform table lookups to get a value.

Get Simulation Value Assign Result C Existing Variable C New Variable SAwse	Cross Sections Traine Structures Lateral Structures Storage Areas -WS Elevation -Net Inflow -Total Outflow -Area -Volume Storage Areas Connections	~		
Insert New Operation	w Variable Get Sim	Value Set Op	erational Param Branch ((If/Else) Math Table
-Set Operational Parame Structure.Total Flow (Structure.Total Flow (Structure.Flow Additio Structure.Flow Maximu Structure.Flow Minimu Structure.Total Gate F Structure.Total Gate F	Fixed) Desired) Inal Im Im Flow Flow Maximum	Expression Edit X 10	Branching Operation (It/Else/ElseIt/ Branching Line Type: C If () Then G If () And/Or () Then ElseIf () And/Or () Then ElseIf () And/Or () Then Else C End If	Else/Endif) Expression Edit X 'SAwse' 5

Get Simulation Value

A group of rules for one hydraulic structure is referred to as a rule set. At the start of each time step, each rule set is evaluated to check for changes to the operation of the given hydraulic structure. Rule operations are performed from the first (top) rule to the last (bottom) rule. By default, each rule operation is evaluated once. However, branching operations (If/Then/Else, etc) can cause some rule operations to be skipped. No looping or jumping to prior rule operations is allowed. That is (during a given time step), a rule operation may not be performed more than once.

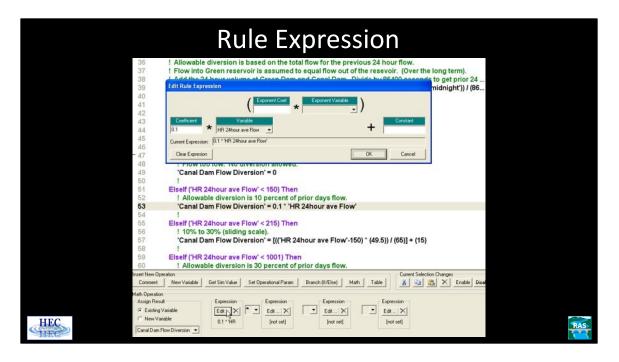
Note: A rule set is only called once during a time step, even if the program iterates during that given time step. (Whatever rules are "in force" at the start of the time step will apply during all the iterations).

The Get Simulation Value operation provides information about the current state of the model. In the above example, the wsel at a cross section just upstream of the dam is being retrieved and stored in a variable named "WSEL at dam."

There are currently seven categories of simulation variables. These are Time, Solution, Cross Section, Inline Structure, Lateral Structure, Storage Areas, and Storage Area Connectors. Clicking on the "+" will expand the list for that category. Continued on next slide...

	Set Operat	ion			
Operation	lules				
	Rule Based Operations	Rule Font Size:	10 💌 🗆	Bold Font	
row 1 2 3 4 - 5 6 7 8	Operation 1 Rules Demo 'SAwse' = Storage Areas:WS Elevation(Storage Supply, Value at current tim 'LSq' = Lateral Structures:Structure.Total Flow(Nittany River, Weir Reach, 42, 'InlineQ' = Inline Structures.Structure.Total Flow(Nittany River, Weir Reach, 42, 'If (SAwse' < 6.) And (LSq' < 0.2 * 'InlineQ') Then Gate Opening(Gate #1) = 10 Else Gate.Opening(Gate #1) = 0	6,Value at current time step)	Tru 2 3 4 5 6 9 8 9	e Fa 2 3 4 5 7 9 8 9	
9		Math Table		0 able Disable	
Weir.C Si Weir.C Si Gate.Flov Gate.Flov Gate.Flov Gate.Flov Gate.Ope Select Ga	(Desired) 40 Maximum Minimum ing V				
Gate openin	height for the gate group. Check Rule	= Set	ОК	Cancel	RAS

To control a given aspect of he hydraulic structure, a Set Operational Param rule operation is used. In the example above, rule 63 is setting the "gate flow desired" to the [previously calculated] value of "Flow New." This will cause the RAS program to adjust the gate settings to get the desired flow. (The actual computed flow may be slightly different due to convergence tolerances and changing water surface elevations.)


There are several different operational parameters that can be set. In addition to setting the gate opening height or having RAS compute the height to get a desired flow, the user can: set a maximum flow, set a minimum flow, fix a given flow, etc.

Variable	Selection
Operation Rules	
Rule Based Operations row Operation 1 ! Rule Demo for Class 2 'SAwatersurface' = Storage Areas:W 3 If ([not set]] (not set]) Then	Rule Font Size: 10 T Bold Font
Edit Rule Expression	
Current Expression:	* Exponent Variable • • • Constant • • OK Cancel
Branching Operation (If/Else/Else/Endif) Branching Line Type: (° If () Then C If () And/Or () Then C ElseIf () And/Or () Then C ElseIf () And/Or () Then C Else C End If	Expression Edit X [not set]

In order to use a variable in an expression, or store the result into an existing variable, the user selects the variable with a pull down menu, as shown.

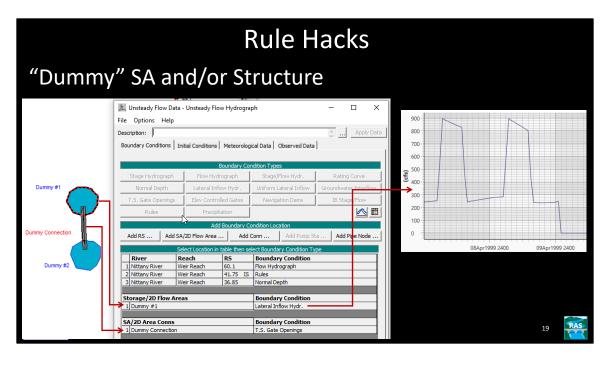
In row 129, there is a two part If/Then. In the first part, the rule operation is checking to see if "Canal Dam Vol since midnight" is greater than or equal to "Canal Dam Vol Diversion." In the second part, it is checking to see if "Green Dam 4 Hour Ave Flow" is less than 10. Since the two different parts are connected with an "Or," if either part is true, the expression will be true and rules 134, 135, and 136 will be executed. In more understandable terms, there is a check to see if the maximum amount of water has been diverted, or if the four hour running average flow at Green dam is below 10 cfs. If either is true, then all of the gates will be fully shut (and no more flow will be diverted for the rest of the day).

	Rules
2	'Pool Stage' = Cross Sections:WS Elevation(Missouri River,Missouri,811.076 'RunTime' = Time:Hour of Simulation(Beginning of time step) Get Sim Value
4	!
6	Structure.Total Flow (Desired) = 60000 Set Operational Param
8	Start to fill after 11 total days of run time
9 10	If ('RunTime' > 246) And ('Pool Stage' < 1205) Then Structure.Total Flow (Desired) = 5000
11 12	Elself ('RunTime' > 246) And ('Pool Stage' >= 1205) Then Branch (If/Else) Structure.Total Flow (Desired) = 30000
13	End If
HEC	16 245

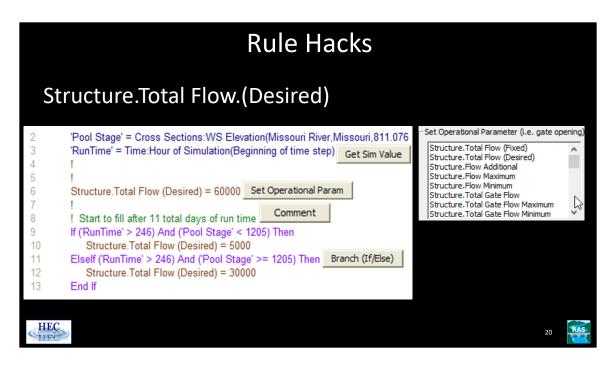
...continued from previous slide:

For all the variables under Time, the user can select to use the time at the beginning of the time step (default), the end of the time step, or the previous time step. For the remaining [non-time] variables, the user can select the current value, the value from the previous time, or a "look back" value.

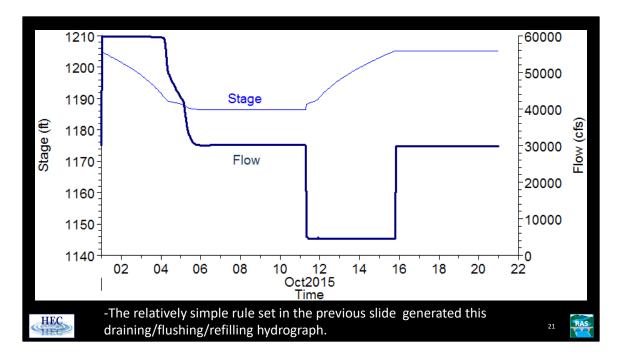
Clicking the **Math** operation button creates a math operation as shown. The result of the math operation can be assigned to either a new variable or an existing variable.


The math operation itself is composed of up to four different "expressions." Each expression that is defined will return a real number. Expressions should be defined from left to right. So if a math operation is composed of two expressions, the left two expressions should be defined and the right two expressions should be left as "[not set]" (i.e. they should be left blank). If more than one expression is defined, then the user must choose an algebraic connector from the drop down menu between them. The choices are: addition, subtraction, multiplication, and division.

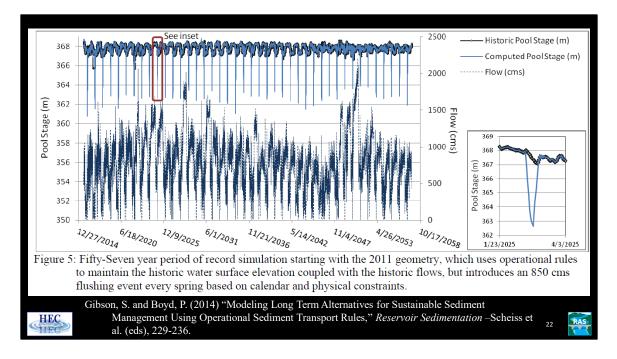
peratio	-		Flov				SIC	
	Rule Based Op	perations		R	ule Font Size	12 -	Bold F	ant
row	Operation	Concernation						-
1	! Get the Hour of the Day	Rule Table						
2	'Hour of Day' = Time: Hour of I	Day		Table	Data			
3	1		1	2	3	4	5	6
4	! Get the average flow at the d			6	12	18	24	
5	! Average flow over an hour is		0 0	0	1000	900	500	
6	'Flow at Inline Weir' = Inline St		20000 1000	1400	2000	1700	1000	
7	I Deside a batter the Flore and	4						
8	! Based on both the Flow and ! Use a 2-way table to look up						_	_
10	'Flow to Divert' = Table Looku			te velue	1			
11 12 13	! ! Set the amount of flow to div Structure.Total Flow (Fixed) =							
Comm	ew Operation nent New Variable Get Sim Value Set	Operational Param	Branch (If/Else)	Math T	able	Current Select	ion Changes	s Ene
			ndicir(incire)	maul 1	aure			
Table Loc Assign		Table (Single Interpolation)	Expression	Expressio	0			
C Exi		Table [2-way Interpolation]		Edt_	×I			
(Ne	wVariable Argument Name:	nine Flow	'Flow at	'Hour of D	an'			
Flow to	Argument Name: H	four			~			
	Interpolate value							
	Enter/Edi	t Table Data	1					
			k Rule Set			ОК	Cano	

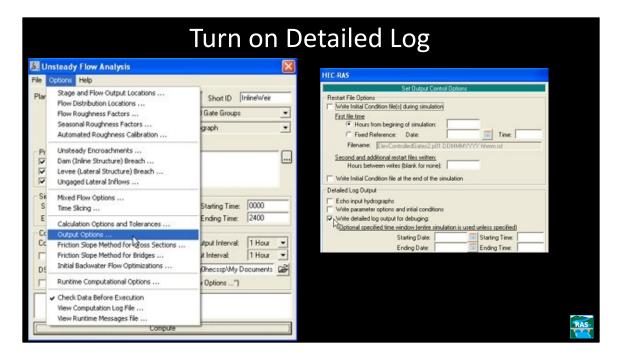

In this simple example, a rule set that is attached to a lateral structure is being used to divert flow from the main river. The diversion is based both on the amount of flow going through a downstream dam and the time of day.

After getting the time of day and the flow at the inline structure, the actual diversion is determined from a lookup table as shown above. So, for instance, if the time is 12 (i.e. 1200) and the flow through the dam is 10,000 cfs, then 1000 cfs will be diverted. In this example, the user has selected to interpolate. So if, for example, the flow was 11000 at 12 hours, then the flow diverted would be 1100 cfs. Instead, the user could have selected "nearest index value" which would have resulted in 1000 cfs being diverted for a main river flow of 11000. This option could be useful, for instance, if the lookup table was being used to set gate openings that can only be opened in discrete amounts.


Note that in row 13, the flow diversion ('Flow to Divert') has been set as a "Total Flow (Fixed)". This means that the flow being diverted by this lateral structure is being entirely controlled by the rules (and the value from the lookup table). There are no gates and no hydraulic computations (e.g. computed flow over a weir).

If you want to write rues against observed or synthetic flow or gate or stage operations that are external to the simulation, you can create a dummy "barbell" – 2 storage areas and a connection that are a closed system outside the model. Then you can bring flows (e.g historical, measured releases) into the storage area and any distance time series (e.g. historical or specified reservoir stage) in as (unusually large) gate openings.


"Desired" flow will aspire to deliver the specified flow, but will not dry out the model to get it.


This is a very simple operation, but it can be difficult to code into RAS a priori, because it is in terms of stage and flow, not gate openings.

Rules can do this work ...

But if a single event is difficult...

This is a 50 year simulation with an automated 2 week, annual reservoir drawdown for sediment management using Operational Rules.

Deciphering (aka debugging) what a complicated rule set is actually doing can be tricky. RAS has a text based output file referred to as the Detailed Log. The operation of each rule in a rule set can be examined on a timestep by timestep basis from this log.

The log output is turned on as shown above.

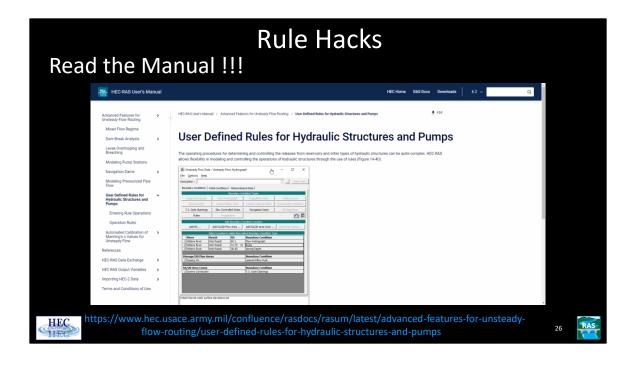
View Detailed Log

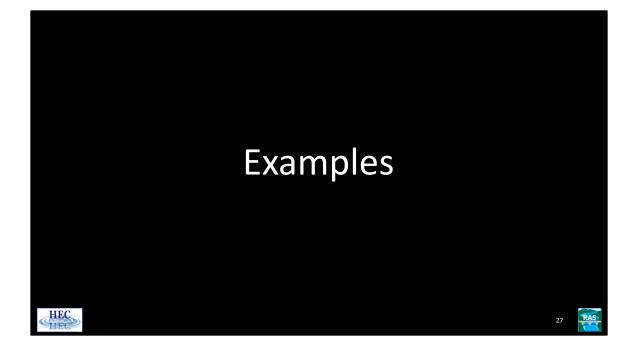
ElevControll	edGates2.	bcoO1 - Note	epad						X
File Edit Format	View He	þ						710000	
	NITE	any River	weir Re	ach					^
Riv. Station 60.1 41.76 41.74 36.85	9.45 6.01	Q 30712. 25499. 25499. 19493.	V 3.47 2.23 3.74 2.18	Riv. St	ation	z	Q	v	
	1	Inline Wei	rs						
RIVER Nittany Rive Left Group	r 41.	.75 2	QTOTAL 5499.31 25499.31	QWEIR 0.00	QGAT 25578.5		MERGENCE 000	QPIPING 0.00	
Hydrographs	written	at 21	.00hours.						
*** Sta	rt of N	ew Time St	ep ***						
Rule Se	t for N	ittany Riv	er Weir Re	ach 41.75					
0001 0002 Tru 0003 SET	e 6.0 G	010225 > ate.openin		EL = 6.010 up = 10.	225				
		So	lving for	Time windo	w = 2:	1.00000	to	21.08333	~
<								>	1.12

Every rule that is executed will be shown—as will the result of that rule. The output shown above is taken from the previous rule data set that opens the gate when the WSEL is greater than 6.0 feet.

Rule 1 is executed and the variable WSEL is set to the current water surface which is around 6.01 feet.

Rule 2 is executed and this rule is True because the value of the first expression (~6.01) is greater than the second expression (6.0).


Rule 3 is executed and the gate opening for the Left Group is set to 10 feet.


No other rules are executed for this rule data set (for this time step). Use the find function to locate when things happen. For instance, the string "0002 True" was searched on to find this location in the log file.

Note: having detailed (debug level) output for the rule data set directly available within the GUI is already on the RAS "wish list".

	Vi	ew HDF Rul	e	О)u	tp	u	t							
	🖺 Rul	e Descriptions at /Results/Unsteady/Output/O	- 0		×										
Recent Files D\Classes_Unsteady 2022\5.1 Introduction	Table	Import/Export Data Data Display													
Series.p01.hdf															
	-														
> 🖕 Geometry	0-ba	sed												Add A	t
~ 🗧 Results															
> 🛍 Post Process		1													
> 🕒 Summary															
 ✓ Geometry Info 	0	Row# 0013 Day		L.	2										
 Geometry into Geometry into Geometry into 	1	Row# 0015 If/Then Test													
~ 🗑 Output Blocks	2	Row# 0018 Gate TS			-			_							
~ 🙀 Base Output	-													- 0	×
Summary Output															~
 	4	Row# 0028 If/Then Test	hat Ko	4	0	7 🔷 🗘	1	-							
> Coss Sections	5	Row# 0032 Flow TS	0-based				•								
- GRUIE Sets	6	6 Row# 0037 Gate.Flow (Fixed) Drop Ga						1							
~ 🗑 Nittany River Weir Reach 41.75	7	Row# 0039		0	1	2		3	4	5	6	7		8	£^
Rule Descriptions Rule Operations	8	Row# 0044 Gate.Flow (Fixed)	0.0		0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0		.0
	9	Row# 0050 Gate.Opening Rate	1 8.0		8.0		5.2291665 5.2291665 0.0 5.4791665 5.4791665 0.0			0.0	0.0	0.0	0.0		.0
	10	Row# 0051 Gate.Closing Rate	3 8.0		8.0	5.72916				0.0	0.0	0.0	0.0		.0
	11	Row# 0055 Gate.Opening Drop Gates	4 8.0 5 8.0		8.0	5.97916 5.7525		979166 7525	50.0 0.0	0.0	0.0	0.0	0.0		.0
	10	Row# 0060	6 8.0		8.0	5.49166				0.0	0.0	0.0	0.0		.0
	12	R0w# 0000	7 8.0		8.0	5.2225	5.2	2225	0.0	0.0	0.0	0.0	0.0		.0
			8 8.0		8.0	5.31916				0.0	0.0	0.0	0.0	-	.0
			9 8.0 10 8.0		8.0	5.44 5.56916	5.4 367 5 F		0.0	0.0	0.0	0.0	0.0		.0
HEC			11 8.0		8.0	5.69	5.6		0.0	0.0	0.0	0.0	0.0	0	.0
HEC			<			-									```

Results from rules is also sent to the HDF output file which can be opened with HDFView. The output for rules in the HDF file is more cryptic than the text based log file. However, the log file contains a lot of output for each time step that is not related to rules and it can be tedious to find how the rule set is operating over time. The HDF file concentrates all of the output for a given rule set into a single HDF data set.

River: Nitrary River: Reach: Weir Reach: Weir Reach Res: 4175 Gate Group: Left Group Image: All 25 Upstream WS levation Reference: Based on upstream WS Boundary Conditions Upstream WS levation at which gate begins to oper: 6 Upstream WS elevation at which gate begins to oper: 6 Upstream WS elevation at which gate begins to close: 4 Gate Opening Rate:(It/min): 0.1 Gate Opening: 10 Minimum Gate Opening: 10 Initial Gate Opening: 2 OK Cancel River: Reach River: Reach Notary River: 10 Nitrary River: 10 Mitary River: 10.1 River: Reach River: Reach OK Cancel	Elevation Controlled Gates				Section and	a hard and the second	Data - Un	isteady Flow Hyd	irograph	
Reference: Based on upsteam WS Image: Condition Types Upstream WS Elevation Reference Upstream WS Elevation Reference Stage Plythograph Upstream WS elevation at which gate begins to open: 6 Normal Depth Upstream WS elevation at which gate begins to open: 6 Normal Depth Gate Opening Rate(It/min): 0.1 Image: Condition Location Gate Opening: 10 Rules Add Boundary Condition Location Minimum Gate Opening: 2 Add Boundary Condition Location Initial Gate Opening: 0 River: Reach OK Cancell Select Location in table them select Boundary Condition Nittary River: Weir Reach 50.1 Flow Hydrograph			_	1 T			Initial Con	ditions]		
Upstream WS elevation at which gate begins to open: Upstream WS elevation at which gate begins to close: 4 Gate Opening Rate (It/min): Gate Opening: Gate Opening: Gate Opening: Initial Gate Opening: OK Cancel Biver Reach River Reach Stage Pythod gate How Hydr Unitom Lateral Info Cateral Info Cateral Info Normal Depth Lateral Info Normal Depth Lateral Info Normal Depth Lateral Info Normal Depth Lateral Info Normal Depth Lateral Info Normal Depth Lateral Info Add Boundary Condition Location Add Storage Area Add Storage Area Add Storage Area Add Storage Area River Reach Storage Area Add Storage Area Storage Area Storage Area Add Storage Area Storage Area Storage Area Add Storage Area Storage Area Storag	Reference: Based on u	upstream WS		•				Charles and the second second	andition Types	
Uptream WS elevation at which gate begins to close: 4 Normal Depth Lateral Inflow Hydr. Uniform Lateral Inflo Gate Opening Rate (It/min): 0.1 T.S. Gate Opening: Navigation Dams Gate Opening: 10 Rules Navigation Dams Minimum Gate Opening: 2 Add Boundary Condition Location Initial Gate Opening: 2 Add Boundary Condition Location OK Cancel Select Location in table them select Boundary Condition Nitrary River Weir Reach 50.1 Nitrary River Weir Reach 50.1 Nitrary River Weir Reach 41.75			Ic.	_		Stage Hydrograph			Stage/Flow Hydr.	1
Uppream Wo are value at which gate begins to clobe: 14 Gate Opening Rate (IV/min) Gate Opening Rate (IV/min): Gate Opening: 10 Minimum Gate Opening: 10 Minimum Gate Opening: 2 Initial Gate Opening: 2 OK Cancel Navigation Dams Rules Add Bounday Condition Location Add Storage Area Add			_	_		Normal Depth Late		ateral leftow Huttr	Uniform Lateral Inflow	1
Gate Doring Rate (k/min): Maximum Gate Opening: Initial Gate Opening: OK Cancel NK Cancel Ntary River Reach RS Boundary Condition River Reach 901 Flow Hydrographi 1 Nitary River Weir Reach 41.75 IS Elev Controlled Gate		gate begins to close:	-	_	_					-
Maximum Gate Opening: Initial Gate Opening: OK Cancel Add RS Add Stotage Area. Add SA Connection Select Location in table then select Boundary Condition River Reach RS Boundary Condition Nitary River Weir Reach 50.1 Flow Hydrograph 2 Nitary River Weir Reach 41.75 IS Elev Controlled Gate			1997		_		F E8	ev Controlled Gates	Navigation Dams	_
Minimum Gate Opening: Initial Gate Opening: OK Cancel OK Cancel DK Cancel			-			Rules				
Initial Gate Opening 2 OK Cancel Add RS Add Storage Area Add SA Connection Select Location in table then select Boundary Condition River Reach RS Boundary Condition 1 Nitrary River Weir Reach 60.1 Flow Hydrograph 2 Nitrary River Weir Reach 41.75 IS Elev Controlled Gate			10				0	Add Boundary D	Condition Location	
Initial Gale Upening 2 OK Cancel Select Location in table then select Boundary Condition River Reach RS Boundary Condition 1 Nitary River Weir Reach 60.1 Flow Hydrograph 2 Nitary River Weir Reach 41.75 IS Elev Controlled Gate			2			Add BS	1 32	Id Storage Area	Add SA Connection	10
Biver Reach RS Boundary Condition 1 Nitary River Weir Reach 60.1 Flow Hydrograph 2 Nitary River Weir Reach 41.75 IS Elev Controlled Gate	Initial Gate Opening:		2		-					-
1 Nittary River Weir Reach 60.1 Flow Hydrograph 2 Nittary River Weir Reach 41.75 IS Elev Controlled Gate		OK		ancel]						pe
2 Nitary River Weir Reach 41.75 IS Elev Controlled Gate						and international statements and in the statement of the		and the second se		_
										_
							Twee nee	2011 1 20:00	Triang curve	-
RAS					RAS					

In this, and following, slides, the gate control will be switched from elevation control to a rule set that has the same basic functionality.

		Gate	Param	neters				
Rule Operations								
Description: Duplicate	behavoir of elevation controlled gate.							5 3
			Gale Parameters					
Location	Open Rate (It/min)	Close Rate (It/min)		Opening	Min Opening		Initial Open	ing and
1 Drop Gates	0.1	close note (rome)	0.1	10	Paroperary	2	milia open	2
		Sim	mary of Variable Initializa	Contract of the second s				
User Variable		300	Description	With				Initial Value
1			Description					Initial value
<u> </u>			Rule Operations					
	24		nue operations					
tow Operatio	n							True Falte
<								
<u>c</u>								>
		E	nter/Edit Rule Operation	5			OK.	Cancel

The gate opening rates, maximum, minimum and initial gate opening are entered.

Next, the Enter /Edit Rule Operation button is clicked.

	Rule Based Operations	 Rule Font Size:	14 V Bold Font
row Opera	ation		
1 "=			
Inset New Operation	Variable Get Sim Value Set Operational Param	Current Selection	
Comment New	VariableGet Sim VelueSet Operational Param	Current Selection	
	VariableGet Sim ValueSet Operational Param	<u>x na m</u>	Enable Disable
Comment New Get Simulation Value Assign Result C Existing Variable	Simulation Variables # Time		Enable Disable
Comment New Get Simulation Value Assign Result	Simulation Variables + Time + Solution + Cross Sections	<u>x na m</u>	Enable Disable
Comment New Get Simulation Value Assign Result C Existing Variable	Simulation Variables # Time # Solution # Closs Sections # Inline Structures	<u>x na m</u>	Enable Disable
Comment New Get Simulation Value Assign Result C Existing Variable	Simulation Variables + Time + Solution + Cross Sections	<u>x na m</u>	Enable Disable

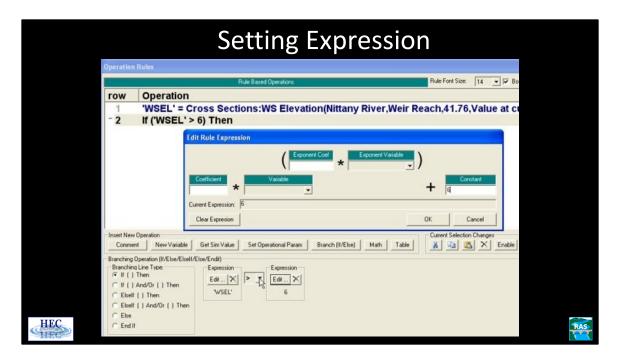
The first rule that is needed is the water surface elevation immediately upstream of the inline structure.

Clicking the **Get Sim Value** button, as shown, will start the creation of the first rule.

row 1	Operation 'WSEL' = 0	Rule Based Op			Rule Font Size: 14 💌	Bold Font
	a contract of a second second second second second					
1	'WSEL' = C	cross Sections:WS				
la cast M						
Insert New Comme	Dperation t New Variable	Get Sim Value Set Operati	onal Param Branch (If/Else)	Math Table	Current Selection Changes	inable Disable
Comme Get Simula Assign F	t New Variable on Value esuit ng Variable	Get Sim Value Set Operati Simulation Variables # Time # Solution # Cross Sections	Set Node Loc	ation		nable Disable

On the left, beneath where it says "Assign Result", a descriptive variable name should be entered (in this case, WSEL).

Under Simulation Value, the Cross Section tab should be expanded and WS Elevation chosen.


Next, the river station just upstream of the inline structure is selected from the pull down menu.

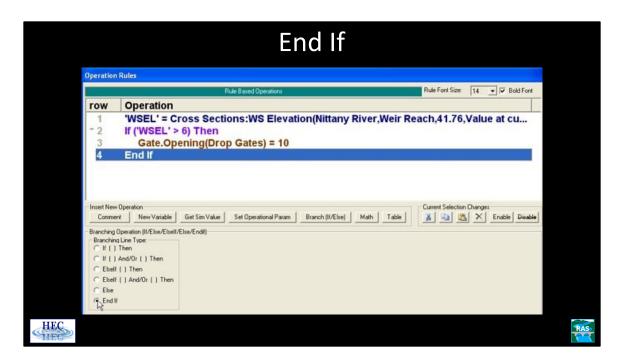
On the right, the default "Value at current time step" should be left asis. This gets the water surface at the start of the timestep. Other choices would get a previous water surface or a lookback/time-averaged water surface.

Operation R	ules					
			Rule Based Operation			Rule Font
row	Operation					
- <mark>1</mark> - 2	If ([not set]	[not set])		vation(Nittan	y River,Weir	Reach,41
	Edit Rule Expr	ession	/ Exponent Coef	Exponent Va	ariable 💧	
				*	<u> </u>	
	Coefficient	* WSEL	nable		+	Constant
	Current Expression	wsel'	-13-			
Insert New O	Clear Expresion	1			OK	Cancel
Comment	New Variable	Get Sim Value	Set Operational Pa	Branch (If/Else	e) Math Table	<u>x</u> 4
Comment Branching Op Branching L (* If () Tr (* If () Au (* Elself ((* Elself (eration (II/Else/Elself/ ine Type: ten td/Or () Then	Get Sim Value	Set Operational Po Expressi Edit [not se	×		
		[not set]	[not se	1		

The next step is to add a rule that checks to see if the water surface is high enough that the gates need opening.

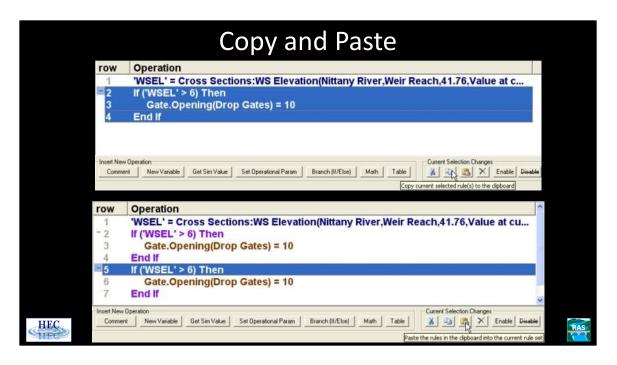
Clicking on the **Branch (If/Else)** button, will start the second rule. The If test compares the value of two different "Expressions". Clicking on **Edit** underneath the Expression on the left will bring up the Edit Rule Expression editor as shown. Clicking on the **Variable** pull down menu will show all of the variables in the rule data set. In this case there is only one. Selecting the variable WSEL (which is created by rule 1), allows the value of the water surface to be compared to the second expression. Since the water surface is the desired item, the rest of the fields are left blank. (If it was desired, the Variable could be multiplied by a Coefficient, raised to an Exponent, and/or a Constant added.

For this If test, the check is to see if the water surface is greater than 6.0 feet. Between the two Expression buttons, there is a pull down menu that is used to select the ">" (greater than) operator.


The right **Edit** Expression is clicked and the number 6 is entered in the Constant field.

	Set Gate C	pening		
Operation Rules				
	Fule Based Operations	Rule Font Size:	14 V Bold Font	
row Operati	on			
	= Cross Sections:WS Elevation(Nitt L' > 6) Then	any River,Weir Reach,41.76,V	alue at cu	
	Opening(Drop Gates) = 10		1	
Inset New Operation	Edit Rule Expression	+ 10		
Set Operational Parameter (i				
Set Uppealone? Paintered Gate Flow Meximum Gate Flow Maximum Gate Down Minimum Gate Uppening Nave Gate Down Paint Gate Cosing Paint Gate Cosing Paint Gate Cosing Paint Gate Dening Rate Gate Dening Rate Gate Dening Rate	Expression EdtX			
Gate opening height for the ga	le group.	Check Rule Set	OK Cancel	RAS

The next rule is to set the gate opening height when the water surface is above 6.0 feet.


Clicking the **Set Operational Param** button will display the menu on the lower left and the Gate.Opening operation is selected. If there is more than one gate group, the proper gate group can be chosen by the drop down menu under the Select Gate Group.

The gate opening is set to 10.0 feet using the expression editor.

Every If rule must have a corresponding End If.

Click the **Branch** button, which initially creates an If rule. Change this rule to an End If by the selecting the End If radial button as shown.

Another conditional must be created to close the gates when the water surface gets low enough.

The quickest and easiest way to do this is by making a copy of the existing rules (that open the gates), and then editing the copy. Highlight rules 2 through 4 by clicking on rule 2 and then pressing the down arrow while holding the shift key (shift + down arrow). Next, click on the **Copy** button, then move the cursor below row 4 (as if a new rule was to be made using one of the standard Insert New Operation) and then click on the **Paste** button.

The keyboard shortcuts Ctrl+X and Ctrl+V, can be used instead of clicking on the copy and paste keys.

Copying existing rules using the Ctrl+X and Ctrl+V shortcuts (and then editing the copy) can save a lot of time and effort.

	Edit	Values	
	Luit	values	
row	Operation		
1	'WSEL' = Cross Sections:WS Eleva	ation(Nittany River,Weir Reach,41.76,Value at current time step)	
- 2	If ('WSEL' > 6) Then	Edit Rule Expression	
3	Gate.Opening(Drop Gates) = 10		
4	End If	Exponent Coel Exponent Variable	
- 5	If ('WSEL' < 4) Then		
6	Gate.Opening(Drop Gates) = 10	Coefficient Variable Constant	
7	End If	×	
Insert New	Operation	Current Expression: 4	
Commer	nt New Variable Get Sim Value Set Operational Param	Clear Expression OK Cancel	
(€ IF () () IF () () Elself	And/Or () Then		
row	Operation		
1	'WSEL' = Cross Sections:WS Eleva	ation(Nittany River,Weir Reach,41.76,Value at current time step)	
- 2	If ('WSEL' > 6) Then	Edit Rule Expression	
3	Gate.Opening(Drop Gates) = 10		
4	End If	Exponent Coel	
- 5	If ('WSEL' < 4) Then		
6	Gate.Opening(Drop Gates) = 2	Coefficient Variable Constant	
7	End If		
Insert New	Operation	Current Expression: 2	
Comme		Clear Expression OK Cancel	RAS

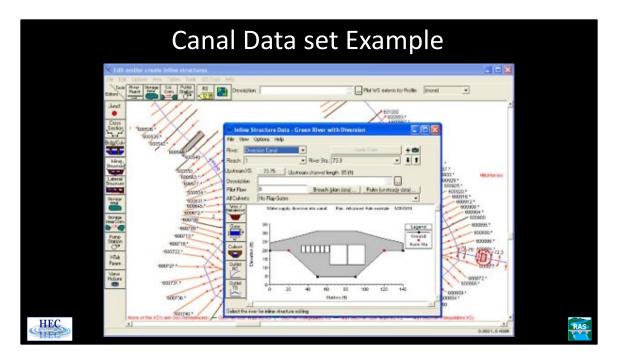
The next step is to edit the just copied rules.

The 6 needs to be changed to a 4 (in the If rule), the operand needs to be changed from a greater than to a lesser than, and the gate opening value needs to be changed from 10 to 2.

Operatio	n Rules	
	Rule Based Operations	Rule Font Size: 12 💌 🔽 Bold Font
row	Operation	
Comm	If ('WSEL' > 6) Then Gate.Opening(Drop Gates) = 10 End If If ('WSEL' < 4) Then Gate.Opening(Drop Gates) = 2 End If	ttany River, Weir Reach, 41.76, Value at current time step)
	Result Simulation Variables # Time # Solution # Solution # Solution # Solution # WS Elevation # Row - Row - Row - Row Change - Flow Change - WS Enror - Flow Enr	Set Node Location Value at current time step Rive: Nittary Rive: Reach: Wei Reach Rs: 41.76 No inconsistencies were found in the current rule set CK (Simulation variables in bold are only available for the current structure)

Finally, it is a good idea to click on the **Check Rule Set** button. RAS will check for any basic errors in the rule data set. (For instance, if there is a If rule that does not have a corresponding End If.) If the Check Rule is not performed at this stage, RAS will still perform the check at run time. Errors will generate a message for the user about the problem. The Check Rule button is a short cut that allows the user to identify problems while the Operation Rule editor is still open.

	Rule Based Operations	Rule Font Size: 14 💌 🔽 Bold Font
row	Operation	
1	'WSELatDam' = Cross Sections:WS Elevation(If ('WSELatDam' > 6) Then	Nittany River, Weir Reach, 41.76, Val
3	Gate.Opening(Left Group) = 10	
4	Elself ('WSELatDam' < 4) Then	
5	Gate.Opening(Left Group) = 2	
6	End If	
Insert Nev Comme		Current Selection Changes
Branchine C If () C If () (• Elself	And/Or () Then () Then () And/Or () Then () And/Or () Then () And/Or () Then	


In addition to If/Then, the rules also allow for If/Then/Else and If/Then/ElseIf/Else type constructions (as well as nested If/Then statements).

	Not Set										
row	Operation		*								
- 2	If ('WSELatDam' > 6) Then										
3	Gate.Opening(Left Group)	= 10									
4	Elself ('WSELatDam' < 4) Ther	n	8								
5	Gate.Opening(Left Group)	= 2									
6	Else		ш,								
7	Gate.Opening(Left Group)	= [not set]									
8	End If		-								
Insert New	Operation	Edit Rule Expression									
Comme	nt New Variable Get Sim Value Set Operati	Exponent Coef Exponent Variable									
- Set Operat	ional Parameter (i.e. gate opening)										
Weir.C Si Weir.Sub Gate.Flov Gate.Flov Gate.Flov	(Fixed) [not set]	Coefficient Variable Current Expression: [not set]	-								
Gate.Flov Gate.Flov		Clear Expresion OK Cancel									
Select Ga											
Gate:	Left Group 💽										
HEC			RAS								

If the user has entered an Open Rate (or Close Rate), then this rate will restrict how quickly the gate is allowed to open. For instance, if the gate is currently opened to 4 and the WSEL has just gotten above 6, then the gate opening will be set to 10, but it may take several time steps for the gate to reach this value, which is referred to as the gate opening target position.

Once a gate opening target position has been selected, it will, by default, continue to that target position.

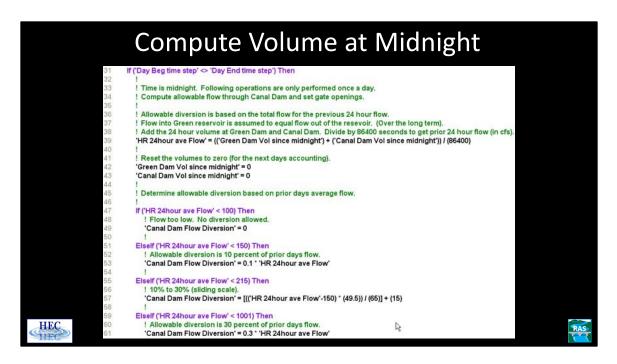
Continuing with the example, after several time steps the gate might be open to 5 and the WSEL may have dropped to 5.9. However, the gate will continue to open to 10 unless some other operation overrides the target position. Setting the gate opening to "not set" (by leaving the Expression editor blank) will "turn off" the gate opening. So if the WSEL has just dropped below 6, then row 7 will turn the gate opening off and the gate will remain at its current opening of 5 until the WSEL is again greater than 6 or less than 4.

The canal data set (which is included as one of the sample data sets when RAS is installed) provides a good example of the sophisticated operations that are possible with the advanced rule capability.

In this data set, the rules are being used to allow RAS to model a reservoir and a water supply canal in Florida. The Florida water district has a complicated operating agreement that it must conform with.

A reservoir has been modeled as a series of cross sections. A water supply canal leaves the side of the reservoir. This has been modeled with a junction and an inline structure (shown above and red circle) on the diversion canal. The main dam on the reservoir is further downstream (and is not shown on the above graphic). The flat terrain (river gages suffer backwater effects far upstream of the dam) and the large groundwater flows make measuring inflows to the reservoir difficult. Instead, the inflow to the reservoir is assumed to be equal to the outflow (the outflow from the main dam plus the outflow through the water diversion canal). The water district's allowable diversion is based on the previous day's outflow (midnight to midnight). Additionally, the water district is not allowed to divert water when the outflow from the main dam is too low. (The flow at the main dam is reduced when the reservoir drops too low—so, the water district is, indirectly, prevented from making diversions when the reservoir water surface is low.)

Rules 3 through 5 create three variables. New variables are most often created with a Math or Get Sim Value operation. However, it is sometimes convinent to have the variable creation be its own rule. Note: the Initial Value = 0 sets the variable equal to 0.0 at the very start of the simulation (the very first time the rule set is called for the first timestep). Afterwards, the variable will keep its value between time steps (e.g., if it equal "5" at the end of the first time the rules set is called, it will equal "5" at the start of the next time). To set it equal to 0.0 at the start of each time step, a Math operation should be used.


Rule 10 gets the length of the time step with a Get Simulation rule. A math operation is then used to compute the length of the time step in seconds.

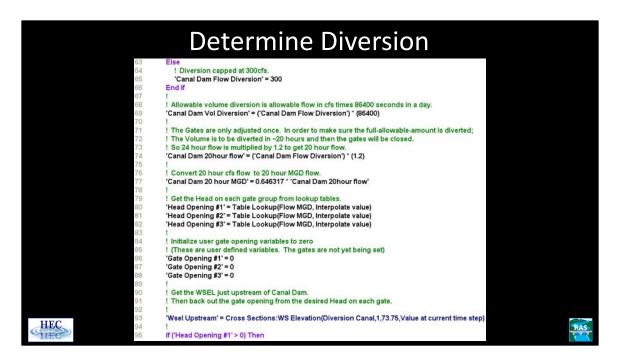
Rules 16 and 17 get the outflow from the main dam and the diversion canal.

Rules 20 and 21 add the volume of outflow (for this time step) to the current volume. The "current volume" is the volume of outflow since midnight.

Rules 26 and 27 get the day of the month at the beginning of the time step and the end of the timestep. If the data set is using 15 minute time steps, at some point the beginning of the timestep will be at 11:45pm and the end of the timestep will be at 12:00am. When that happens, the beginning day of month will not equal the end. Beginning might be 5 and ending 6, or beginning could be 31 (or 30 or 28) and the end will be 1 (the first of next month).

Note: The rules use a 24 hour clock, so in the above example, the timestep would actually be at 23:45 and 00:00.

Rule 31 checks to see if it is midnight. When the timestep starts and ends on different days, it is midnight.


Rule 39 computes the total average outflow for the previous 24 hours (in cfs).

Rules 42 and 43 zero out the volume variables for use for the next day.

The methodology for determining the allowable diversion is based on the amount of outflow. No diversion when the flow is less than 100 cfs (rule 47). 10% of the previous days flow when the flow is between 100 and 150. A sliding scale (from 10% to 30%) when the flow is between 150 and 215. 30% for flows between 215 and 1000 and a maximum of 300 cfs (for flows over 1000).

and the second second	tules											
			Rule Based	Operations					Rule Font Siz	e: 12		dFont
row	Operation											^
54	1	No. Contraction			20							
55	Elself ('HR 2				n							
56		30% (slidir										
57	'Canal Da	m Flow Di	version	= [(('HR	24hour a	we Flow'-	150) * (49).5)) / (6	5)] + (15)			
58 59		-	Floud	10041 Th								
60	Elself ('HR 2	le diversio				we flow						
61		m Flow Di					w'					
Insert New 0									Current Select	tion Chanc	201	370
Comment		Get Sim Value	Set Ope	rational Param	Branc	(If/Else)	Math Ta		8 0	X	d	Dicable
Math Operati	on											
Assign Re	puit	Expression	presenter (Expression		Expression	1	Expressio	n			
(* Existin		Edit X	· ·	Edit 🗙	1 -	Edit X	+ -	Edit	×			
	ariable	'HB 24hour		49.5		65		15				
C New V		HH 24hour		40.0								

Up to four separate expressions can be combined into a single Math operation.

Rule 69 converts the allowable diversion from cfs to a daily volume.

The gates are adjusted at midnight and are left in place until the allowable diversion has taken place. The gate flows are computed so that the diversion will take approximately 20 hours. (If the flow was based on a 24 hour diversion and the gate flow was slightly less than assumed, then the gates would either have to be adjusted on the fly or the full, allowable diversion would not take place).


Rule 77 computes the 20 hour flow on a MGD basis.

	Get	Hea	ad fro	m Loc	bk	up Ta	ble	
Operation F	ules							
			Rule B	ased Operations	Rule Ta	-Ma		le
row	Operation				Kulle To	2010-22		_
77	'Canal Dar	n 20 hour M	GD' = 0.646317 * 'C	anal Dam 20hour		Table D	ata	
78	1					Flow MGD	Head Opening #1	-
79	! Get the H	lead on eacl	h gate group from	lookup tables.	1	0	0	
80			able Lookup(Flow		2	9.96 13.08	1,2	
81			able Lookup(Flow		4	15.08	1.4	
82			able Lookup(Flow		5	20.13	1.6	
83	1				6	24.01	1.8	
84	I Initialize	user date of	pening variables to	zero	7	28.11	2	
85			ned variables. The		9	32.43 36.94	2.2	
86		ning #1'=0		gutto uro not jot	10	41.65	2.6	
87	'Gate Oper				11	46.54	2.8	
88		1110 #2 = 0			12	51.61	3	
89	Gate Oper	iiig #5 = 0			13	56.22 64.85	2	
90	: Catthe M	ICEL in the	ostream of Canal D		14	54.85 73.88	2.2	
90					1.0	83.29	2.6	
91	: Then bac	ck out the ga	ate opening from t	te destred Head o	17	93.08	2.8	
Insert New 0					18	103.21	3	
Comment	New Variable	Get Sim Value	Set Operational Param	Branch (If/Else) Ma	19 20	110.82	2.4	
- Table Looku					20	124.94 139.61	2.6	
- Assign Re		One Dimer	nsional Table (Single Interpol	tion) Expression	22	154.82	3	
C Existin			nsional Table (2-way Interpol		23	170.54	3.2	
(€ New V			me: Flow MGD		24	186.76	3.4	-
		Againent Na	ne. provinsio	'Canal Dam		000 10	OK Cancel	
Head Oper	ning #1	Interpolate v	alua	-			Carco	
		Interpolate v	diuc	-				
		E	nter/Edit Table Data					
		-						

The inline structure has three different gate groups (that are used in normal operations). The gates are overflow (drop) gates.

For each gate group, the water district has a table that shows the amount of head that should be on that gate group for a given flow.

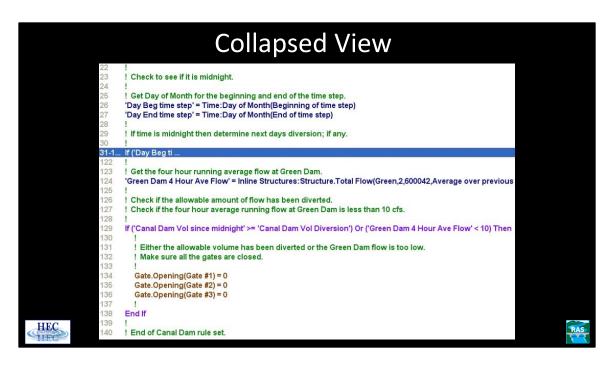
Rule 80 computes the amount of head needed on gate group #1 using the lookup table (shown above). The value that goes into the lookup table (input) is determined by the expression editor. In this case it is the "Canal Dam 20 hour MGD" variable (which the first part of the name can just be seen left of the lookup table). The result of the lookup (output) is stored in a new variable, "Head Opening #1".

The head on the drop gate is the upstream water surface minus the gate opening height minus the invert elevation of the gate. Rearranging, gives the gate opening to be equal to the head plus the invert minus the upstream water surface as computed in rule 100.

Rule 100 computes the desired gate opening. Rule 105 actually sets the gate opening to the value that was computed by rule 100.

The computation for the gate opening involves two different variables (Head and WSEL), which meant that two different "Expressions" had to be used. The Set Gate Opening command can only use a single Expression. So a Math operation was used (which can have up to 4 different variables/expression) in rule 100 to compute the value that was used by rule 105.

Shut Gates wo Operation 'Green Dam 4 Hour Ave Flow' = Inline Structures:Structure.Total Flow(Green,2,600042,Average over previous time window,4,0) 124 126 Check if the allowable amount of flow has been diverted. 127 ! Check if the four hour average running flow at Green Dam is less than 10 cfs. 128 If ('Canal Dam Vol since midnight' >= 'Canal Dam Vol Diversion') Or ('Green Dam 4 Hour Ave Flow' < 10) Then 129 130 ! Either the allowable volume has been diverted or the Green Dam flow is too low. ! Make sure all the gates are closed. 133 Gate.Opening(Gate #1) = 0 134 135 Gate.Opening(Gate #2) = 0 136 Gate.Opening(Gate #3) = 0 137 138 End If 139 140 ! End of Canal Dam rule set nsert New Operation Current Selection Changes 🔏 🐴 🏝 🗙 Enable Disable Copy descriptions to Clipboard Comment New Variable Get Sim Value Set Operational Param Branch (If/Else) Math Table Get Simulation Value Set Node Location Assign Result Inline Structures ^ Average over previous time window • C Existing Variable Structure. Total Flow River: Green • Lookback Start (hrs ago): 4 Weir.Flow New Variable Reach: 2 • Lookback End (hrs ago): Weir.Flow Maximum Green Dam 4 Hour Ave Flow 600042 IS + RS Weir.Flow Minimum HEC


There are two different triggers for shutting the gates:

One trigger is the first part of rule 129. It checks to see if the allowable volume of water has been diverted. If it has, then rules 134-136 make sure all the gates are closed.

The other trigger is based on the outflow from Green dam. When the flow at Green dam is below 10 cfs, the water district must stop diverting water. (This only happens at low reservoir levels.) However, it is possible for the reported flow at Green dam to briefly drop below 10 cfs, either because of a switch in gate operations or because of a "missing value" from the remote data operation. To accommodate this, the water district does not have to stop the diversion until the average flow over 4 hours has dropped below 10 cfs.

Rule 124 computes a running, 4 hour average of the flow from Green dam. Looking at the lower right of the above screen shot, the Lookback period is from 4 hours ago to the current time step (0 hours ago).

The second part of rule 129 checks if this 4 hour average is below 10 cfs. If it is, all of the gates are closed.

The rules between an If/Then and it corresponding End If can be collapsed and/or expanded. This is done by clicking on the "+/-" to the left of the row number. This option can make viewing complicated data sets easier. (The rules are still active.) All of the rules that are involved in the once daily computations (at midnight) have been collapsed, above.