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When fitting a flood frequency curve to data, the picture we’re accustomed to seeing is the
fitted curve and the confidence interval. This lecture explored the uncertainty in this
process, both what defines the confidence interval and what exists but does not inform the
interval.

56 years
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Experiment: 1000 years of data, sampled from LPIIl with known parameters
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This is a statistical experiment in which we start with a KNOWN probability distribution,
and randomly sample many “years” of data from it. We can perform parameter estimation
on that sampled data, and see how well we can predict the true values that in this case are
known.

This example samples 1000 “years” of peak annual flows from an LP3 distribution with
mean=4, standard dev=0.5, and skew=0.4 Note the occurrence of spans of time that are
not representative of the full data set (225 to 425 has mostly very low events, and 650 to
700 has very high events.)
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Experiment: 1000 years of data, sampled from LPIIl with known parameters
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This is a statistical experiment in which we start with a KNOWN probability distribution,
and randomly sample many “years” of data from it. We can perform parameter estimation
on that sampled data, and see how well we can predict the true values that in this case are
known.

This example samples 1000 “years” of peak annual flows from an LP3 distribution with
mean=4, standard dev=0.5, and skew=0.4. Parameters are re-estimated each year, with
each additional value. Mean and standard deviation are estimated well with 50 to 100
years of data. However, skew does not stabilize until 300 to 400 years of data are available.
The 1% (100-yr) and 4% (25-yr) events are also shown, with the 1% event being much more
sensitive to the erratic skew value.

Note how the occurrence of a large flood event impacts the skew estimate. Note how a
span of years without large events affects the skew estimate.

Note the occurrence of spans of time that are not representative of the full data set (225 to
425 has mostly very low events, and 650 to 700 has very high events.)

This example is meant to display our uncertainty in our frequency curve estimate, even
with 100 years of data available to us. The example actually underestimates our real
uncertainty because it represents an ideal case in which the distribution truly is a
LogPearson lll. In reality, the choice of LP3 is a simplification that introduces additional
error.
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Experiment: 1000 years of data, sampled from LPIIl with known parameters
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This is a statistical experiment in which we start with a KNOWN probability distribution,
and randomly sample many “years” of data from it. We can perform parameter estimation
on that sampled data, and see how well we can predict the true values that in this case are
known.

This example samples 1000 “years” of peak annual flows from an LP3 distribution with
mean=4, standard dev=0.5, and skew=0.4. Parameters are re-estimated each year, with
each additional value. Mean and standard deviation are estimated well with 50 to 100
years of data. However, skew does not stabilize until 300 to 400 years of data are available.
The 1% (100-yr) and 4% (25-yr) events are also shown, with the 1% event being much more
sensitive to the erratic skew value.

Note how the occurrence of a large flood event impacts the skew estimate. Note how a
span of years without large events affects the skew estimate.

Note the occurrence of spans of time that are not representative of the full data set (225 to
425 has mostly very low events, and 650 to 700 has very high events.)

This example is meant to display our uncertainty in our frequency curve estimate, even
with 100 years of data available to us. The example actually underestimates our real
uncertainty because it represents an ideal case in which the distribution truly is a
LogPearson lll. In reality, the choice of LP3 is a simplification that introduces additional
error.
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Experiment: 1000 years of data, sampled from LPIIl with known parameters
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Simplification of the previous slide, which removes all but the 1% event line for a clearer
view.

NOTES FROM PREVIOUS SLIDE:

This is a statistical experiment in which we start with a KNOWN probability distribution,
and randomly sample many “years” of data from it. We can perform parameter estimation
on that sampled data, and see how well we can predict the true values that in this case are
known.

This example samples 1000 “years” of peak annual flows from an LP3 distribution with
mean=4, standard dev=0.5, and skew=0.4. Parameters are re-estimated each year, with
each additional value, and the 1% value of the LP3 computed. Note how the occurrence of
a large flood event impacts the skew estimate as so the 1% value. Note how a span of
years without large events affects the skew estimate.

Note the occurrence of spans of time that are not representative of the full data set (225 to
425 has mostly very low events, and 650 to 700 has very high events.)

This example is meant to display our uncertainty in our frequency curve estimate, even
with 100 years of data available to us. The example actually underestimates our real
uncertainty because it represents an ideal case in which the distribution truly is a
LogPearson lll. In reality, the choice of LP3 is a simplification that introduces additional
error
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Sample Size?

Same data, sliding 100 year window and 50 year window
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In the previous graphs, the effect of the increasing sample size obscures the effect of
individual events on the parameter estimates. In these two graphics, a single sample size is
maintained, and the “window” is moved across the data set. The plotted value is at the
end of the window it represents, so the relevant window is to the left of the value.

Note the greater variability in the estimates using 50 years of record, as compared to using
100 years. Note the still large amount of variability in the 100 year estimates. The impact
of individual large events is now clearer, as is the effect of periods without large events.

Note the decrease in the skew estimate (and 1% event) between the previously noted low
years of 225 to 425, and the rise between 650 and 700, as many large events are included.
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What about a more negative skew?
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How does the skew of the data set affect the uncertainty in the estimate? The previous
samples are from a distribution with a positive skew of 0.4. Next we compare to samples

from a distribution with a negative skew of -0.4.

Note that these are the skews of the logarithms of the flows. On a linear scale, the skew is
positive in both cases, as seen in the image on the right.
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y=+0.4

What about a more negative skew?
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When skew is more negative, change has less influence on the 100-yr event

Although the parameter traces can no longer be seen on the slide, estimates of mean and

standard deviation are unaffected by the change in the skew coefficient, and are
reasonable with 100 years of record. The estimate of skew coefficient is equally as
variable with the negative as the positive value of skew coefficient.

However, the 1% event (at the upper end of the distribution) is much less variable with a
negative skew than a positive skew, being less sensitive to the skew coefficient. The result
is that a frequency curve with negative skew is less uncertain for the less frequent events
(the upper end) than a curve with positive skew. The negatively skewed curve has more

uncertainty at the low end, which we don’t see here.
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What about a more negative skew?
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When skew is more negative, change has less influence on the 100-yr event

Just changed the vertical axis on the lower plot from 0 to 500,000 down to 0 to 200,000
cfs. This shows that on the scale of interest, the 1% estimate seems as variable.
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The order in which events occur has an effect on the how the parameter estimates develop
and change over time, although for any individual estimate (for example, at year 150) the
order of the years included is irrelevant.

These graphics show the same 1000 years of artificial data, randomly shuffled to create a
new time series of the same events. Note the difference in early estimates (within the first
100 years) in the first graph, in which no large events occur, and then third graph, when
large events occur early.
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When fitting a flood frequency curve to data, the picture we’re accustomed to seeing is the
fitted curve and the confidence interval. This lecture explored the uncertainty in this
process, both what defines the confidence interval and what exists but does not inform the
interval.
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Uncertainty in Frequency Estimates

Definition:

Uncertainty is the degree to which we are unsure of an estimate,
guantified by an estimated error

The estimated error is often stated in terms of an interval, but is
more completely defined by a sampling distribution

The uncertainty in a frequency curve (or, probability distribution)
is strongly driven by the question of whether the sample is
representative of the population

13
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Goals

e To understand the causes of uncertainty in
estimating a frequency curve, or other probability
distribution

e To become familiar with the uncertainty in each
aspect of estimation

e To understand the confidence interval and
uncertainty distribution around our frequency
estimates

14
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Topics

Motivation
Contributing Factors

Quantifying Sampling Error
Sampling Distributions
Confidence Intervals

Uncertainty in Frequency Estimates
Analytical
Expected Probability
Graphical

15
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Factors Contributing to Uncertainty

1. Measurement Error
— How well are large flows measured?

2. Model Error

— Does the log-Pearson type Il distribution really describe
annual peak flow frequency? Some other distribution?

— What method is used to estimate parameters?

16

The distribution we choose to model our data has an impact on the resulting estimates of
extreme probabilities, and we do not know the actual parent population distribution, if
one of the common analytical choices is even a reasonable fit.

There are also various methods of estimating the parameters of the chosen distribution,
such as Method of Moments with product moments, Method of Moments with L-
moments, Method of Maximum Likelihood, etc that will sometimes provide different
estimates. Which is the best choice?
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This is a data set of annual maximum flow shown with linear and with log axis, and
histogram of both flow and log flow.
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This is a data set of annual maximum flow shown with linear and with log axis, and
histogram of both flow and log flow.

This figure contains several different distributions fit to this data set. Some, such as Normal
and Gumbel, are clearly unreasonable because they suggest negative values. The others
are reasonable in the middle of the curve, but can differ quite a lot at the extreme tails.

We are often most interested in the extreme upper tail of maximum data, so these
differences are notable.
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Factors Contributing to Uncertainty

1. Measurement Error
— How well are large flows measured?

2. Model Error

— Does log-Pearson Il distribution really describe flow
frequency? Some other distribution?

— What method is used to estimate parameters?

3. Sampling error

— Error in estimates of distribution parameters due to limited
sample size, causing possibly unrepresentative sample

— this is the primary factor we dquantify 19

We also have significant error in our estimates due to the lack of adequate data from which
to estimate probability distributions. Since our sample size increases with observations
made over time, this error is referred to as time sampling error -- the error from a short
record. Even what seems to be a long record is still much shorter than we would prefer.

This lecture is primarily concerned with time sampling error.

L 3.4 Uncertainty in Frequency Estimates B.Faber

19



Topics

Motivation
Contributing Factors

Quantifying Sampling Error
Sampling Distributions
Confidence Intervals

Uncertainty in Frequency Estimates
Analytical
Expected Probability
Graphical

20
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Sampling Distributions

Definition 5

A sampling distribution gives us a description of the
uncertainty in an estimate of a population value from a
sample of size N often summarized by standard errvor

The estimate may be of a

— distribution parameter, or

— moment (e.g., the mean), or

— a probability (e.g., likelihood of exceeding 1000 cfs)
— aquantile (e.g., the 1%-chance event)

21

A sampling distribution give us a description of the uncertainty in the estimate of a
distribution parameter or quantile.

The sampling distribution just describes how wrong we might be when estimating a
parameter from a limited sample. We're going to study it with Monte Carlo simulation —
this time generated samples of a particular size, again and again, and seeing how well they
estimate the parameter. That will help us learn about the error in estimating the
parameter.
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Properties of Estimators

e Choosing an estimator is the subject of statistical
estimation theory

e Estimation theory provides criteria for the selection of
an estimator of a population value

e \We'll focus on consistency and unbiasedness

e We’'ll use estimation of the MEAN as an example to
work through

22
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Estimator Consistency and Unbiasedness

Consistency

As the number of observations becomes very large, the T repeated
estimated value approaches the population value this phirase a

. .. (
— the estimate gets better as the sample size increases lot on W\OM“\{‘

Unbiasedness - has vo bias

The expected value (or the average of many instances)
of the estimator equals the population value

— even with small N, the estimator has no expected error
— “aiming at the right target”

23
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Estimating the Mean
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However, equation (2) is biased

An example of an inconsistent estimator of the mean is the
average of the largest and smallest values

24

Both of these estimators are consistent, in that they improve with sample size N, in spite of
the fact that the N-9 in the denominator of the second estimator makes it biased, always
overestimating the mean. While the bias is there, the -9 becomes less relevant as N gets
large.
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Creating a Sampling Distribution

X =—

Consider the sample mean, an 1 Z %
unbiased estimator of the pop. mean N

Let’s examine properties of estimating
the mean from 10 data points

— There exists an actual “population”
probability distribution of X

— The distribution of X has a mean p

here, distribution
of X is Normal

and standard deviation ¢

— As an experiment, we'’ll generate
10-member random samples of flow X
from the distribution of X above, 100 times

25

We’re going to construct the sampling distribution — this is the Monte Carlo simulation.
We’re going to generate random samples, compute and estimate of the mean, and see

how wrong they are.

The idea of the sampling distribution will be developed by looking at an estimate of the
mean from 10 sample members. We can do a statistical experiment with a know
distribution to examine the formation and properties of the sampling distribution of this

estimator.

The experiment will start with a known distribution, and create random samples of 10

members each.
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Creating a Sampling Distribution

i=N histogram of)?
— _ 1 ; _

— Compute an estimate of the mean, X, X = Nz X; with N = 10

from each sample of 10 i=1 u = Population

1
M

— A frequency analysis of the 100 estimates | ean

of X (one from each 10-member sample) !

would result in this histogram ] ! ]
— the average of 100 X would be close to the estimate of X

population value of the mean, u

— By CLT, the histogram of X could be
approximated by a Normal distribution

26

The experiment will start with a known distribution, and create random samples of 10
members each, and estimates the mean (using the sample average) of each sample. Done
100 times, this produces 100 estimates of the mean, each from a sample of size 10. This
pink histogram is made up of the 100 estimates of the mean. It will be centered at the
population values, because the estimator is unbiased.
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Central Limit Theorem

e The central limit theorem states that
if we have a large number of
independent, identically distributed (I11D) random variables,
the distribution of the sum is approximately Normal,
regardless of the underlying distribution.

e The larger the sample size, N, the closer to Normal
(i.e., the better the approximation)

27

L 3.4 Uncertainty in Frequency Estimates B.Faber

27



Sampling Distribution for the Mean

— CENTRAL LIMIT THEOREM: Since the =N
estimator adds identical R.Vs,'as N T = lz X. distribution of
becomes very large, the distribution N - ! sample means, X

of X is Normal, with mean equal to the
population value.

— The pink distribution to the right is the
sampling distribution for the sample
mean, X

estimate of X

The standard deviation of the
distribution-of-sample-means is equal to O = —F=—
VN

28

Because the Central Limit Theorem tells us that our sample of sample means is
asymptotically Normal, we switch the histogram to a Normal distribution. It is centered on
the known mean of the original distribution. Its variance is equal to sigma-squared/N.
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probability per unit value

of X

population
distribution

(o)
—

variable value X

29

The PDF of the parent population.
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probability per unit value

population
distribution

30

variable value X

The population distribution is shown as the darker PDF. The sampling distribution of the
estimate of the mean, X-bar, with sample size N=10 is shown as the lighter PDF (similar to
the histogram on the last slide). If sigma is the standard deviation of the population
distribution, then sigma divided by the square root of N is the standard deviation of the
sampling distribution of X-bar.

The lightest PDF is the sampling distribution of the mean with sample size N=50. Note the
uncertainty in the estimate is much smaller with a larger sample size. The standard
deviation of the population distribution, sigma, is now divided by the square root of 50,
rather than the square root of 10. A smaller standard deviation of the sampling
distribution means that the error in the estimate is smaller, and therefore the estimate is
better.
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Demo of Sampling Distributions:
—estimating the mean from sample size N

Sampling Distribution
= Distribution of Uncertainty

31
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When distribution of X isn’t Normal

e There exists an actual “population”
probability distribution of X

here, distribution
of X is NOT
Normal

¢ This time, the distribution of X is
NOT Normal

— The distribution of X still has a mean p and
standard deviation ¢

— With the same experiment, assume that we
have 100 different 10-member random
samples of flow X from the distribution of X

32

This is the same as the previous development of the sampling distribution of the mean,
except the starting distribution is not Normal.
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Sampling Distribution for the Mean

Because the estimator is unbiased, as the distribution of sample

number of 10-member samples becomes means, X, isn’t quite
Normal

very large, the mean of the sample is equal
to the population value.

For small N (< 30), the sampling distribution
for the mean is not quite Normal (CLT says

Normal approx not good enough) —
estimate of X

The standard deviation of the distribution-
of-sample-means is equal to o

Cx =——
A \/ﬁ 33

When the sample size is small enough, such as 10 members, the sampling distribution is
not quite Normal. Sample size must be larger than about 30 to see that the sampling
distribution of the mean will be Normal, even when the original distribution is not.
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probability per unit value

population
distribution
of X

variable value X

For small N of 10, the sampling distribution of the mean is not quite a Normal distribution
with the underlying PDF is not Normal. But for N as large as 50, the sampling distribution
of the mean has reached a Normal distribution, and would regardless of the population
distribution.
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Sampling Distributions

Sampling distribution for the Sample Mean

The standard error ¢ of sampling distribution of the

sample mean, X, is given by -

N

Where G is the population standard deviation of the random
variable X

)

If X is Normally distributed, then the sampling distribution for the mean
is exactly Normal, regardless of the sample size

If X is not Normal, sampling distribution is only Normal as N - o

35
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Sampling Distributions

Sampling distribution for the Standard Deviation

When X is Normally distributed, the standard error o for
the sample standard deviation, Sx, is given by

o)
GS -

' 4/2N

2
The sampling distribution of (N —1)(8—)‘) is distributed as
(¢}

chi-square, given that X is normally distributed

36

The spread of the sampling distribution of the estimate of standard deviation, Sx, is very
similar to that of X-bar, except divided by the square root of 2N rather than N.

While the sampling distribution of X-bar is Normal, the sampling distribution of Sx is chi-
square.
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Sampling Distributions

Sampling distribution for the Skew Coefficient

The standard error  for the sample skew, g or G, is
given by

_ 6N(N -1) 1

"g‘J(N_z)(NH)(NH)“m

The formula is applicable asymptotically for any random
variable

37

Note that the sampling distribution of the skew estimate, G, is also proportional to one
over the square root of N.
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Sampling Distributions

Sampling distribution for the Relative Frequency, Proportion

The standard error G for relative frequency as an
estimate of probability is given by

_ (pd=p) 1
P N \/ﬁ

)

The sampling distribution is approximately Normal
for N*p>5 and N*(1-p)>5

38

For relative frequency, the sampling distribution becomes approximately Normal only when
N*p>5 and N*(1-p)>5
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Sampling Distributions

In General

Standard error ¢ of the estimate for parameters, moments
or probabilities is proportional to

1

JN

So, Mean Squared Error, MSE is proportional to 1/N

39
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Estimation
Matrix

How well am |
estimating it?
sampling
distribution of
estimator

What am |
1 estimating?
How?
A 4
mean star.1da'1rd skew — parameter
_ deviation
X S g — estimator
(T;i::,;‘) n G biased!
standard o o 1
error y— y— —
®Rmse) | VN V2N VN
skew 0 varies varies

40

Summary of sampling distribution parameters of distribution moments. Across the top is
mean, standard deviation and skew, as parameters of the parent population. Down the
side are the parameters of the sampling distributions of the estimators of the parent

population parameters.
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Confidence Intervals

Purpose
Estimate an interval that contains the population
value with some probability, based on sample

statistics
- based on sampling distribution

this would be a
centered interval

= 1

N
\ 4

42
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Confidence Interval for the Mean

The sampling distribution of the estimate of the mean, X is
Normal as N = oo, by Central Limit Theorem.

Considering Standard Normal Z ~ N[0,1], build an interval
than spans desired percent of the distribution, e.g. 90%

Standard Normal PDF 1-ais the desired

probability within

o o .
p=§ 1-a p=§ the interval, so
5% 90% ) 1-a. = 90%,
5% o = 10%,
Z, Z ., /2 = 5%
2 2 43

We’ve established that the sampling distribution for the mean is Normal, centered on the
population value.

For a Standard Normal variable, Z. We know that 90% of the Standard Normal distribution
lies between -1.645 and +1.645. To generalize, in this example alpha = 10%, 1-alpha = 90%.
Half of alpha is sectioned off each tail of the sampling PDF to form a range of 90% in the
center.
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Confidence Interval for the Mean

standardize X by subtracting its mean and dividing by its
standard deviation: X —

Z_Gx/‘/_

90% of the standard Normal distribution exists between
Z . and Z 5., which are equal to -1.645 and 1.645, so

Z~N(0,1)

% a=10%
Pl-1645 < 22 1 645| =090 1-a=00%
2, X/ VN Z,, a/2=.05,1-0/2 = .95

a4

If standardize the Normal sampling distribution of X-bar by subtracting the mean and
dividing by the standard deviation, create a Standard Normal variable, Z. Then can build
the confidence interval using values of Z.

We know that 90% of the Standard Normal distribution lies between -1.645 and +1.645, so
90% of our standardized variable Z also lies in that range.

To generalize, in this example alpha = 10%, 1-alpha = 90%. Half of alpha is sectioned off
each tail of the sampling PDF to form a range of 90% in the center.
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Confidence Interval — Student’s t

BUT, sampling distribution of X is only Normal as
N - oo For smaller N, nearly Normal, use Student’s t

Approximate o by Sx. Form a similar test statistic:

X —

= 2
Sy/VN

where t, , follows a Student’s t distribution with N-1
degrees of freedom

(note: Student is a pseudonym for W.S. Gosset, writing in 1908)

45

For small sample sizes that do not achieve exactly a Normal distribution, the Student’s t
distribution is used in place of the Standard Normal. The sample estimate of standard
deviation, S, is used in place of the true value, sigma. The Student’s t distribution is
dependent on sample size, or degrees of freedom.
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Confidence Interval for the Mean

PDF of “standardized” X, estimate of the mean

1-o is the

p=% ng desired
1-a 2 probability
within the

t t interval

% N1 1% N-1
2 2

A two-sided confidence interval can be formed by stating:

X—u
P tay ;<

<t =1—-a«
2 Sx/VN  1gN-1

46

Half of alpha is sectioned off from each tail of the PDF. The Student’s t value at alpha/2 and
at 1-alpha/2 are read from a table, and used in place of Z.
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Confidence Interval for the Mean

Rewrite equation in terms of an interval on the pop. value

Sx

t
JN 2N~

which states that the probability that the population mean is
contained in the interval shown is equal to 1-a

Sx
PIX— 1<u<X+—Nt1_a =1—-«a

7’N_1

Note

In classical statistics, the confidence interval is the
random variable (and changes with the sample), not the
population parameter

47

The interval is rearranged to isolate the mean, mu. The edges of the interval can be
computed from sample estimates and a table of the Student’s t distribution for the sample
size.

In classical statistics, the correct way to describe the confidence interval is that there is a 1-
alpha chance (ie, 90% chance) that the constructed interval, based on estimates from a
random sample, spans the population mean. We do NOT say that there is a 90% chance
that the population mean is in the interval. The difference in language is because the
probability is associated with the random variables, which in this case are the sample
estimates, described by their sampling distributions. The population mean is not
considered a random variable, as it has a single value.

In Baysian statistics, the population parameters are instead considered the random
variables, whose distributions are improved and refined by the information in the sample.
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Confidence Interval for the Mean

Example:
X=1.1, S=0.47, N=19, o/2=0.05 (for 90% interval)

From a table of the Student t, noting that this distribution is
symmetrical,

t0.05,18 = To.o5,18 = 1.734 for N-1=18

The confidence interval on the population mean becomes

0.47 0.47
Pl1.1- 221 734 < u<1.1+ 221 734 | = 0.90
{ 19 H J19 }

P[0.91<1<1.29]=0.90

48
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Values have been generated by use of computer routines for the inverse

Note -

t-distribution. A few values for exceedance probabilities of 0.005 and less

may differ plus or minus 0.00] from published tables.

Table of the Student’s t distribution from EM 1415. Note that only half the distribution is

listed (probabilities below 0.5) because the distribution is symmetrical.
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Uncertainty Due to Sampling Error

Confidence intervals provide a measure of uncertainty
due to sampling error (limited sample size)

sample size = 25 sample size =100 sample size = 1000

51

A sample has to be quite large to well represent the distribution it is drawn from. Note the
histogram generated from the sample of N=25 does not closely resemble the parent PDF,
while the sample of N=500 is more representative.

Confidence intervals on the estimates of distribution parameters and quantiles offer a
description of the error caused by estimating with a small, unrepresentative sample.
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Exploring Uncertainty

Creating a random sample from a known distribution

Return Period 2 5 10 20 100 1000

. . 1000000
Similar to the
moving window in " __ original curve
the motivation ... B 30randomly sampled flows ,//E//

H ¢ flows as sample of 30 * “ H
Slld_es' butan 100000 +—= — pew curve - = Parametrl,c,
entire new sample _ ’ Bootstrap

. &
each time g
3
[T

+ independent 10000

—don’t see effect -
_______ >
of each value
1000
0.99 95 9 08 0.5 02 .1 .05 0.01 0.001
52 Exceedance Probability 0.025  0.004

This slide depicts a statistical experiment to explore the uncertainty in all quantiles of a
frequency curve, for a sample of size N = 30.

The pink frequency curve is specified as known. 30 pseudo random values U[0,1] are
generated, and used as exceedance probabilities to sample 30 random annual maximum
flows from the pink frequency curve, shown as light blue points. Note the smallest
sampled exceedance probability is 0.004, producing a fairly large flow.

Next, the pink curve is put aside, and the 30 flows are plotted using median plotting
positions in dark blue. Note that the point that was generated with exceedance probability
0.004 is plotted as the largest in 30 as 0.023. The sample values are used to estimate
mean, standard deviation, skew coefficient and the resulting LP3 curve shown in dark blue.

This dark blue curve is a possible outcome of 30 years of record of a stream the had the
initial pink curve as its population annual maximum flow frequency curve. This possible
outcome is an overestimate of the specified “true” curve.
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Creating a random sample from a known distribution
Return Period 2 5 10 20 100 1000
1000000
""" ~ ——original curve
O 30 randomly sampled flows A
¢ flows as sample of 30 // ”Pa ra metric
100000 +— S
o T newounve — i Bootstra pn
Kl
g
[T
10000
A4
1000
099 95 9 08 0.5 0.2 .11.05 0.01 0.001
53 Exceedance Probability 0.072

This is another example of the statistical experiment in the previous slide. In this case, the
smallest exceedance probability is 0.072, which provides a smaller than expected

maximum flow value. As a sample, the 30 randomly sampled values produce a fitted LP3
curve that is lower than the “true” pink curve.
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Creating a random sample from a known distribution
Return Period 2 5 10 20 100 1000
1000000
" ——original curve
O 30 randomly sampled flows A
¢ flows as sample of 30 //
100000 = —newaurve - }’Ej =
_ o=
]
A
g
[T
10000
i
1000
099 95 .9 08 0.5 0.2 .1 .05 |[0.01 0.001
54 Exceedance Probability 0.022

“Parametric
Bootstrap”

This is another example of the statistical experiment in the previous slide.
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Uncertainty in a frequency curve estimated
from 30 years of data

1000000
Curvyes estimated
. from 30 data points “Parametri
£ 100000 arame IS
z Bootstrap
s
=]
c
c
S 10000
©
Q
o
1000

.99 95 .9 .75 5 25 01.06 .01
est. probability of exceedance

55

These estimated frequency curves are each based on a separate 30-year sample from the
assumed parent probability distribution, shown as green rather than pink on this slide.
Note they are all closer to the parent distribution near the median, and farther at the tails.
As the assumed parent curve has a slightly positive skew, the uncertainty is greater on the
upper end (less frequent events) than the lower end.

If the estimate of the 1% event from each sample is compiled, another probability
distribution results from that compilation. This is a sampling distribution PDF that, if the
skew coefficient is zero, is a non-central t distribution, as shown. A similar PDF exists at
every quantile along the frequency curve.
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Factors Affecting Frequency Curve Uncertainty

Uncertainty for a sample estimate of a statistic is proportional

to: 1 ie, sample estimates of
the mean, standard dev,
/N skew, exc.prob, & quantiles

Uncertainty in estimates of exceedance probabilities
or corresponding quantiles (flows) increases with:

e distance from the sample mean
® increase in variance

® increase in absolute value of skew

56

Recall from earlier, the standard deviation of the sampling distribution of each of the
parameter estimates is proportional one over the square root of the sample size, N.

The previous slide shows the larger uncertainty at the upper and lower tail than the mean
or median. The next slide shows larger uncertainty with larger variance. Uncertainty in the
upper tail increases with positive skew and uncertainty in the lower tail increases with
negative skew.
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Flow Frequency Curve

Return Period 2 5 10 20 50 100200 500
100000 mMm4m@™m™mm™ @ ™ ™ ™ ———F——————— —t—t—
1 i iR
I i Y NP2 D
---|larger - Fo-
- - N s Rl 7/77 -
---| standard deviation F-------1--->7 A
| gives avas
1000001 | larger uncertainty

Streamflow (cfs)

10000 -

1000

99 95 95 80 50 20 10 5 2 10502
Exceedance Frequency 57

These curves have the same mean and skew coefficient, but the steeper green curve has
larger variance (standard deviation) than the flatter red curve. As can be seen by the wider
confidence interval, the larger variance produces greater uncertainty in the estimated
frequency curve. It is intuitive that a more variable distribution will be more difficult to
estimate accurately with a given sample size than a less variable distribution.
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Frequency Curve Uncertainty

e The uncertainty around a flow-frequency curve is skewed
(asymmetrical)

e B17B used the non-central t
distribution to characterize
the uncertainty in a
LogPearson type3, rather
than Normal or Student’s t Exceedance Probabilty

non-central t distribution

Prob (density) median estimate of
Discharge 0.01 discharge

Uncertainty

A Discharge B 58

While the sampling distribution of the mean estimate, X-bar, is Normal, and for the
standard deviation estimate, S, it is chi-square, the sampling distribution for a quantile (ie,
1% event, etc) is the non-central t distribution if the log-space skew coefficient is zero (ie,
the log Normal distribution). Non-central t distribution is asymmetrical, and is dependent
on the probability p and the skew g.

Note: the probability distribution around the 1% event in the upper graphic should be
interpreting as a bell curve that comes out of the page. It is redrawn in the second graphic
in only 2 dimensions, and so is flat on the page.
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Uncertainty in a frequency curve estimated
from 30 years of data

1000000 \ 5%

Curves estimated
from 30 data points

8 100000
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est. probability of exceedance
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These estimated frequency curves are each based on a separate 30-year sample from the
assumed parent probability distribution, shown as green rather than pink on this slide.
Note they are all closer to the parent distribution near the median, and farther at the tails.
As the assumed parent curve has a slightly positive skew, the uncertainty is greater on the
upper end (less frequent events) than the lower end.

If the estimate of the 1% event from each sample is compiled, another probability
distribution results from that compilation. This is a sampling distribution PDF that, if the
skew coefficient is zero, is a non-central t distribution, as shown. A similar PDF exists at
every quantile along the frequency curve.

The center 90% of the PDF can be delineated, generating an interval that captures 90% of
these estimates. The same 90% interval can be delineated at each quantile, and
connected, forming the 90% confidence interval for the entire frequency curve. This
description is turned around in practice, and the 90% interval is drawn around the
estimated frequency curve, defining an interval that has 90% chance of spanning the
parent population curve.
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17C Update to Confidence Limits

e Bulletin 17B confidence limits are based on a LogNormal
distribution, which has log-space skew = 0 and no skew
parameter

— With no skew parameter, it therefore does not recognize or
incorporate uncertainty in skew, and so underestimates the
overall quantile uncertainty

e In 17C, EMA produces confidence intervals that are more
correct in this aspect

— and also incorporate regional skew and historical info

60
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Uncertainty in a frequency curve
estimated from 30 years of data
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30-year sample estimates of the population frequency curve, from 3 slides ago.
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Uncertainty in a frequency curve
estimated from 60 years of data

“Parametric
Bootstrap”

62

60-year sample estimates of the population frequency curve. Note, estimates are closer to
the assumed parent population frequency curve. This result demonstrates that estimates
are better with a larger sample of the parent population, and our confidence intervals

become narrower.
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Uncertainty in a frequency curve
estimated from 120 years of data

“Parametric
Bootstrap”
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120-year sample estimates of the population frequency curve. Note, estimates are closer
yet to the assumed parent population frequency curve. This result demonstrates that
estimates are better with a larger sample of the parent population, and our confidence

intervals become narrower.
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Flow Frequency Curve

Return Period 2 5 10 20 100 1000
100000 — ’k ﬂ* — ﬂ 77777
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We’ve noted that the sampling distribution of a quantile is asymmetrical. This slide shows
the asymmetrical PDFs at 1% and 5%, and the resulting confidence interval for the entire

curve.

Note, for an asymmetrical distribution, the median is not equal to the mean.
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Flow Frequency Curve
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The uncertainty in the frequency curve can also be considered in the exceedance
probability of a particular flow, shown here at the estimate of the 1% flow but existing
along the length of the curve. Like the distribution drawn as uncertainty in the flow
guantile, the PDF is asymmetrical.
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Expected Probability Adjustment

Adjusts the frequency curve from the median to the mean of
the uncertainty distribution at each probability or flow

In the asymmetrical PDF of uncertainty in exceedance probably of a given flow, the mean is
not equal to the median. The estimated flow frequency curve is at the median of the
sampling distribution, and the mean of that distribution is a larger exceedance probability
at the upper tail of the distribution.

The mean of the uncertainty distribution is the unbiased estimate of the frequency curve.
When considering future outcomes from the probability distribution, and using the
frequency curve to perform cost benefit analysis around the country, we prefer an unbiased
estimate.

The “expected probability adjustment,” shown as the dashed blue curve, moves the
frequency ordinates from the median (the computed curve) to the mean of the uncertainty
distribution.
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Flow Frequency Curve
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Due to the direction of the asymmetry in the frequency curve uncertainty, the expected
probability curve is higher and to the left at the top, and lower and to the right at the
bottom. At the median, where the uncertainty PDF is symmetrical, there is not adjustment.
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Expected Probability Adjustment

e The expected probability adjustment makes the frequency curve
unbiased, in that it brings the estimate to the mean or expected
value of probability

e This is the recommended curve when uncertainty is NOT carried
forward into further analysis

— Unfortunately, FEMA did not agree with its use in flood mapping

e For an analysis that does incorporate frequency curve uncertainty
(HEC-FDA, HEC-WAT/FRA, RMC-RFA), the same effect is achieved,
and the adjusted curve is not needed

e Dam safety PA does need an expected probability curve

69
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Expected Probability Computation

NOTE: the expected probability curve no longer has the original
distribution, ie, it is not LP3.

How do you compute it?
1. B17B had an adjustment, but without skew uncertainty
2. Integrate the uncertainty CDF at each probability or flow
— B17C output, repeated to get additional EMA confidence intervals- I3
3. Use a similar Monte Carlo as creates confidence intervals

— But, after refitting the LP3 frequency curve for each sample of size N,
resample values from the new curve. Repeat for all curves, then pool and

plot those values
70
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The black frequency curve as the originally estimated LP3 curve. Monte Carlo simulation is
used to resample sample size N values and fit a new potential LP3 (step 1), and then
resample 1000 values from the new curve (step 2). This two step process is repeated 1000
times, and all the step 2 sampled values plotted as the light blue points. This traces out the
expected probability curve.

Confidence intervals can also be estimated at each quantile of the step 1 curves by
spanning 90% of the values.
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Confidence Intervals
Graphical Frequency Curves

e For the distribution of uncertainty around an analytical frequency
curve, B17B made use of the fact that the distribution is like a
logNormal distribution (so, used the non-central t distribution)

— We also looked at a parametric bootstrap (Monte Carlo) approach

e Graphical frequency curves are purely empirical (have no
distribution equation), and so we can not use a similar approach

e We need a “distribution-free” or “non-parametric” approach

— order statistics and binomial
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An example of a graphical frequency curve, including plotted points. The increase in the
curve at 4% is likely due to exceeding the capacity of a flood protection reservoir.
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Graphical Frequency Curve Uncertainty
— Order Statistics Method

Order statistics:

e rank the observed data from smallest to largest, Y,, ..., Yy
Binomial distribution:

e for a given exceedance probability, p

e for each ordered sample member, Y; (wherej=1, ..., N),
determine the probability that it is less than the quantile Y

* After computing for each j, have a CDF and PDF for Y,

* P(Y;<Y,) = P(j or more observations <Y )

— the probability that any one observation is less than Y, is 1-p
N

N i N—i note: we can approximate this sum
* ID(Yj s Yp) = z (i)(l p)'p with the incomplete beta function 75

1=]

The first step is the same as plotting the points to draw the graphical curve — rank the
points from smallest to largest. This is referred to as an order statistics approach.

The uncertainty distribution is based on the binomial distribution. How likely is it that, in
an N member sample, j values meet a certain criteria, given a probability 1-p of meeting
that criteria? (As an example, how likely that 7 of 10 coin flips are heads, given a 50%
chance of heads?)

The criteria of interest is that the sample member is below quantile Yp. The probability of
interest is 1-p of being less than Yp. For sample member Yj to be below Yp, at least j
members of the sample must be below Yp, because sample members are in order.
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Graphical Frequency Curve Uncertainty
— Order Statistics Method
Y60
Ysg I v
this value is Yeq 0.04
designated Yyg —7 For Ycg to be less than Y, at least 58 values would need to
because 58 values be less than Y,,,
are less than or
equal to its value, If only 57 values are less than Y,, Y.; would be greater than Y,,
and 2 values are We don’t know the value of Y, but we know it’s exceeded
greater with probability 0.04
Y 60
3 Pr(exactly 58 values < Y,) = [58](1—.04)58.042
Y
2
Pr(more than 58 values <Y,) =
Yl 60 60 . .
Z[ _ J(1—‘o4)6°".04' = P(Ysg < You)
i=se\ | 76

An example of application of the binomial distribution.

For a 60 member sample, the value Y58 is the third largest, with 2 values higher and 57
values lower. What is the probability that Y58 is less than the 4% exceedance event (25-
year event), or Y.04? For Y58 to be less than Y.04, at least 58 members of the sample must
be less than Y.04 — 58, 59, or 60 members must be less.

The likelihood of any sample member being less than Y.04 is (1-0.04). The equations above
show first the likelihood that exactly 58 sample members are less than Y.04, and then the
likelihood of 58, 59 or 60 sample members are less than Y.04, and so the probability that
Y58 is less than Y.04.
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Graphical Frequency Curve Uncertainty
— Order Statistics Method
Yeo Yeo
Yeq Foragivenpandy,.. Ye, area=p =5%
Ysg Yeg
Y, estimate Y, estimate
Y Y
Y2 Y2 area=p=5%
Y Y,
0 prob that ordered value is less than Y, 1 prob per unitY 77

Having computed the binomial for P(Yj < Yp) for each Yj, a cumulative distribution is
formed. For each sample member Yj, we show the probability of being less than quantile
Yp. The cumulative distribution (CDF) can be turned into a PDF as shown on the right, by
computing probability increments. The PDF of Yp can define the uncertainty around the
frequency curve, and so the 5% tails are defined, with 90% of the probability contained
within.
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Graphical Frequency Curve w/ uncertainty
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When each of the constructed PDFs is placed around the quantile Yp, we see this graphic.
Notice that the PDF can only be described for a given sample member, so it cannot be
defined above or below the range of the data. This limit is particularly insufficent for the
low frequency events.
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Graphical Frequency Curve Uncertainty
— Order Statistics Method

Need an uncertainty estimate for beyond the range of the data

Asymptotic approximation (large record length) for standard
error of plotted quantile (flow or stage)

» _p(l-p)
C =12
Nf?
where o = standard deviation of estimate of flow or stage for

exceedance probability p
N = systematic record length

f, = estimated slope of frequency curve
(probability density function) 79

Because the order statistics PDF can only be defined for the range of the sample data (or a
pseudo sample generated at regular plotting positions), another method must be used to
approximate the uncertainty beyond that range. The above formula is an estimate of the
standard deviation of the uncertainty distribution around quantile Yp. Note, thisis not a
distribution, just the standard deviation. This SD estimate tends to be paired with an
assumed Normal distribution of uncertainty.
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Graphical Frequency Curve Uncertainty
— Order Statistics Method

Confidence intervals are constructed assuming that
sampling error follows a Normal distribution

i.e., symmetrical

Note that this is a distribution-free confidence interval and
will be much wider than that obtained when the
distribution is assumed (e.g., wider than for the logNormal
distribution using the non-central t distribution)
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Because the constructed PDFs are incomplete, practice is to compute the standard
deviation of those PDFs, and use it to define a Normal distribution of uncertainty around
the graphical frequency curve. The standard deviation from the asymptotic approximation
is used the same way for the higher quantiles (lower frequencies). The result of this
practice is that the uncertainty distribution is symmetrical, which is not a good assumption.
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Graphical Frequency Curve w/ uncertainty
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Graphical Uncertainty using Order Statistics

Limitations
e Not useful beyond the range of observations

— Extrapolate beyond the range of data using an asymptotic
approximation of variance, with aNormal distribution

— The standard deviation of the Normal Distribution is set equal to
that of the order statistic estimate near the observation extremes

Advantage

e Limits uncertainty when regulation moderates flows or in
overbank areas (is narrower where curve is flatter)
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