Introduction to Block Maxima

Flood Frequency Analysis PROSPECT May 2022

Gregory S. Karlovits, P.E., PH, CFM Statistical Hydrologist US Army Corps of Engineers Hydrologic Engineering Center

Purpose

• Understand a fundamental technique in statistical hydrology

Outline

- 1. Block maxima
- 2. Annual maximum series

Block Maxima

Block Maxima

- Break a sample into equal sized parts
 - Parts can't overlap
- Take the largest observation from each part

Block	Maximum Value
1	117.7
2	110.9
3	112.2
4	115.9
5	107.3
6	122.5

Why?

- Helps with the "IID" assumption
 - Observations are:
 - Independent
 - Identically-distributed
- Lets us look at behavior of large observations (i.e. floods)
- The math is "friendly"

Example

Kindergartners

Class 1	Class 2	Class 3
Class 4	Class 5	Class 6

US Army Corps of Engineers® Each kindergartner has a height of N(42.8, 1.76) inches 20 children / class Children are randomly assigned to a class

Example

Class	Max Height (in)
1	47.5
2	46.2
3	46.6
4	45.7
5	45.9
6	46.2

Time Series Block Maxima

- Selected block size is a unit of time
- Blocks should be **homogeneous**
 - Make sure the largest value in each block means the same thing
 - If your process repeats with a regular cycle length, use that as the block size

Annual Maximum Series

Annual Maximum Series

- Block maxima where the groups are years
 - Water year
 - Calendar year
- Collect up the maxima and analyze them
- 1 observation per year

Water Year

- Split the year during the driest part
- Make sure one flood event doesn't create maximum in two years
- October 1st is the traditional break point
- Check your flow record!

Year-Over-Year Plot

Water Year

	/Ced		2					
File Edit View								
				Cedar Rive				
Ordi	na	Date	Time	FLOW				
				USGS				
	20	27 Feb 1922	24:00	19.000				
	21	04 Apr 1923	24:00	15,700				
	22	22 Aug 1924	24:00	24,500				
	23	18 Jun 1925	24:00	12,200				
	24	21 Sep 1926	24:00	9,450	1			
	25	25 May 1927	24:00	11,500				
	26	29 Aug 1928	24:00	28,500	1			
	27	18 Mar 1929	24:00	59,600				
	20	21700 1000	21.00	12,200				
	29	28 Nov 1931	24:00	16,300				
	30	02 Apr 1932	24:00	18,600				
	01	01/ipr 1000	24.00	07,200				
	32	09 Apr 1934	24:00	8,440				
	33	08 Mar 1935	24:00	25,800				
	34	15 Mar 1936	24:00	22,700				
	35	09 Mar 1937	24:00	36,300				
	36	21 Sep 1938	24:00	12,800				
	37	18 Mar 1939	24:00	18,800				
	38	21 Nov 1940	24:00	5,440				
	39	06 Nov 1941	24:00	13,400				
	40	03 Aug 1942	24:00	32,900				
	41	31 Mar 1943	24:00	15,400				
	42	18 Jun 1944	24:00	28,400				
	43	19 Mar 1945	24:00	49,600				
	44	09 Jan 1946	24:00	26,000				
	45	15 Jun 1947	24:00	53,300				
	46	20 Mar 1948	24:00	32,500				
	47	08 Mar 1949	24:00	28,500				
	48	11 Mar 1950	24:00	32,400	Y			

Limitations

- Non-maximum events in a year can be larger than annual maxima
- Some small annual maximum events will not be floods

Questions?

