Correlation

Flood Frequency Analysis PROSPECT May 2022

Gregory S. Karlovits, P.E., PH, CFM Statistical Hydrologist US Army Corps of Engineers Hydrologic Engineering Center

Purpose

 Understand how to measure the strength of relation between two variables

Outline

- 1. Definition/understanding correlation
- 2. Measuring correlation
- 3. Visualizing correlation, transformations

Defining and Understanding Correlation

Background

- Correlation is a *multivariate* concept*
- Two or more variables coincident in some way
- Each variable has its own sample of multiple data points

"Co-relation"

• When variable X departs from its mean, does variable Y depart from its mean in a similar manner?

Correlation

- How can we **quantify** the strength of a relationship between two variables?
- Does not imply causation...

Data

- Two or more variables coincident in some way
- Example here: coincident in time
- Correlation measured on coincident pairs of data

WY	Marshalltown	Marengo
1993	20400	38000
1994	6420	8350
1995	4330	9210
1996	5970	10900
1997	8890	10200
1998	12600	19500
1999	9790	11600
2000	5790	6290
2001	7910	9540
2002	2750	5180
2003	5420	8880
2004	8330	14600
2005	7240	8130
2006	3610	4580
2007	16900	15900
2008	22400	51000
2009	10100	15500
2010	12100	16200
2011	6480	9950
2012	2400	3430
2013	25500	37200
2014	24500	26800
2015	14300	13000
2016	16800	19000
2017	8510	12300
2018	9000	20800
2019	15700	18400
2020	9250	15000
2021	2010	5040

Computing Correlation

Population Covariance

- How much do two variables vary from their mean at the same time?
 - Notated *cov*[*X*, *Y*]

•
$$\sigma_{xy} = cov[X, Y] = E[(X - E[X])(Y - E[Y])]$$

- where *E*[*X*] is the *expected value* of random variable *X*
- cov[X, X] = var[X]

•
$$\sigma_{\chi\chi} = \sigma_{\chi}^2$$

Sample Covariance

• Sample
$$s_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})$$

$$s_x^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$$

- Note:
 - $s_{\chi\chi} = s_{\chi}^2$
 - Has units of (unit of x) * (unit of y)
 - No bounds on range of values

Correlation

- Normalization of covariance to be on the range [-1, 1]
- Normalize using the product of the two variables' variance

Three Ways to Measure Sample Correlation

- Pearson's product-moment correlation coefficient (r)
- Kendall's rank correlation coefficient (τ)
- Spearman's rank correlation coefficient (ρ)

Pearson's Correlation Coefficient

- Measurement of <u>linear</u> correlation between two variables
 Performs badly in non-linear situations
- Normalization of covariance between variables

•
$$\rho_{X,Y} = \frac{cov[X,Y]}{\sqrt{var[X]}\sqrt{var[Y]}}$$
 $r_{Xy} = \frac{\sum(x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum(x_i - \bar{x})^2}\sqrt{\sum(y_i - \bar{y})^2}}$

US Army Corps of Engineers® R: cor(x) x is a data frame with 2 or more columns

Kendall's Tau

• Measurement of ordinal association between variables

•
$$\tau = \frac{2}{n(n-1)} \sum_{i < j} sgn(x_i - x_j) sgn(y_i - y_j)$$

Term is -1 if both x and y do not increase (or decrease), +1 otherwise

• Special modifications for ties $(x_i = x_j \text{ or } y_i = y_j)$

US Army Corps of Engineers®

R: cor(x, method = "kendall") x is a data frame with 2 or more columns

Spearman's Rho

- Pearson's correlation on rank-transform of the data
- Assesses monotonic relationships whether or not they are linear

•
$$\rho = 1 - \frac{6 \sum d_i^2}{n(n^2 - 1)}$$
 where $d_i = rank(X_i) - rank(Y_i)$

Special modifications for ties

US Army Corps of Engineers®

R: cor(x, method = "spearman") x is a data frame with 2 or more columns

Product-Moment vs Rank Correlation

Visualizing Correlation

Visualizing Correlation

- Is there a pattern between X and Y?
- Is it positive (large X tends with large Y)?
- Or is it negative (large X tends with small Y)?
- Is it linear?
 - Can it be transformed?

Correlation = 0.25

Is this linear?

Transformation

- Use a monotonic function on the variables to improve linearity
 - Only affects Pearson (linear) correlation!
- Two common functions:
 - Logarithm
 - Exceedance probability/standard normal
 - (requires a probability distribution)

Exceedance Probability Transform

Correlation in two-site peak streamflow?

- Start with log transform
- Consider exceedance probability transform
 - Fitted log-Pearson type III distribution

Questions?

