Partial Duration Series and Peaks Over Threshold

Flood Frequency Analysis PROSPECT May 2022

Gregory S. Karlovits, P.E., PH, CFM Statistical Hydrologist US Army Corps of Engineers Hydrologic Engineering Center

Purpose

- Understand a different approach for estimating flood frequency
- Identify when applying peaks over threshold can be beneficial

Outline

- 1. Peaks over threshold approach
- 2. Models for partial duration series
- 3. Computing AEP using partial duration series
- 4. Why PDS?

Peaks Over Threshold Approach

Peaks Over Threshold

- Choose a high flow value as a threshold
- Keep all independent flood peaks greater than the threshold
- Varying number of floods per year
 - 0 or more

Peaks Over Threshold

Apple River at Hanover, IL 15000 -Daily Average Flow (cfs) 0002 5000 -0 -1950 1975 2000 2025

Year

Partial Duration Series

- The collection of independent peaks over a sufficiently high threshold is called the *partial duration series* (PDS)
- Number of events can be different than in the annual maximum series (AMS)

Inference Assumptions

- Sample is representative of population
- Sample values are independent
- Sample values are identically-distributed

Representative Sample

- High threshold ensures sample made only of floods
- Too high of a threshold limits sample size
- Violation: model for population doesn't actually represent it

Identical Distribution

- High threshold ensures sample made only of floods
- May still be a mixture of flood-generating mechanisms
- Violation: population model misrepresents extremes

Independence

- Floods you keep should be independent of others
- Enough time passes between floods
- Hydrograph sufficiently recedes between floods
- Violation: we think large floods happen more often than they actually do

Independence

Filtering Peaks in HEC-SSP

- Threshold
- Time between peaks
- Magnitude difference
 - Recede below a threshold
 - Recede by x cfs
 - Recede by y% of peak

Filter	×
Dates and Threshold Peaks Starting Pool Stage/Elevation	
Annual Maxima	
Filter to Annual Maxima	
Start of Year (DDMMM):	01Jan
Peaks Over Threshold (Partial Duration)	
Filter Data by Peaks Over Threshold (Partial Duration)	
Minimum Threshold (cfs)	0
(Leave Blank to report all peaks)	
Duration of time between peaks (days)	0
(Leave Blank to report all peaks)	
Method for Computing Magnitude Differential	
Method for Computing Magnitude Differential (Leave Blank to report all peaks)	
Defined Threshold Value (cfs)	0
Differential of Peak (cfs)	0
Percent of Peak	0
OK Cancel	Apply

Filtering Peaks

Filtering Peaks

Choosing a Threshold

- Sufficiently high threshold necessary
 - Helps with assumptions
 - Makes our model work
- Too high a threshold results in small sample sizes

750 cfs 11 days minimum separation 250 cfs minimum recession 318 events

1,250 cfs 11 days minimum separation 250 cfs minimum recession 220 events

2,500 cfs 11 days minimum separation 250 cfs minimum recession 93 events

Choosing a Threshold: Ideas

- Minimum annual maximum value
- Bankfull discharge
- Mean rate = 1 event / year (# events = # years)
- More "advanced" diagnostics
 - Pareto shape plot
 - Mean excess plot

Other Diagnostics: Pareto Shape Plot

- Compute PDS for varying thresholds
- Fit generalized Pareto distribution to each
- Plot threshold vs. Pareto shape parameter
- Check for flat spot or change in shape

US Army Corps of Engineers®

Threshold (cfs)

Other Diagnostics: Mean Excess Plot

- Compute PDS for varying thresholds
- Compute mean amount peaks exceed threshold
- Plot threshold vs. mean
- Check for linearity or change in shape

Result

- Collection of IID flood events
- Variable number of events per year
- All events greater than a specified threshold
- Partial duration series (PDS)

Models for Partial Duration Series

Flood Frequency Guidance: Review

Annual maximum series (AMS) +

Log-Pearson type III distribution (LP3) +

Expected moments algorithm (EMA) =

Bulletin 17C

Partial Duration Series

- Distribution of independent values exceeding a threshold
- Probability of exceeding a value, given it's already exceeded threshold
 - $P(X > x | X > x_0)$
- Need two things:
 - Distribution of those values
 - Distribution of counts per year

Counts

- 0 or more events per year in PDS
- Two key questions:
 - Probability of at least one event in a year?
 - Typical number of events in a year?

Counts

- Threshold choice affects count distribution
- Usually assumed to have a Poisson Distribution

of Engineers®

Distribution of Values

- Model magnitude of values greater than threshold
- Tend to cluster close to threshold

Distribution of Values

- Lean on extreme value theory
 - We have a model for this situation!
- Generalized Pareto Distribution (GPD)
 - 3 parameters: ξ (location) α (scale) κ (shape)

Vilfredo Pareto

US Army Corps of Engineers®

Distribution of Values

• Cumulative probability, given the values exceed the threshold

NOT AN AEP

Apple River Partial Duration Series

Interpreting the Distribution

- 50% of floods that exceed 1,250 cfs are greater than 2,330 cfs
- 1% of floods that exceed 1,250 cfs are greater than 13,400 cfs

Apple River Partial Duration Series

Computing AEP from PDS

Annual Exceedance Probability

- AMS analysis provides AEP events
- PDS analysis provides conditional exceedance events

• We need AEP for things like annualized damages!

Computing AEP from PDS

- Two general approaches:
- Empirical
- Analytical
- "Annualization"

Empirical Annualization

- Langbein (1949) and Takeuchi (1984)
- Assume storm per year counts have a Poisson distribution
 - One parameter $\boldsymbol{\lambda}$
 - PDS CDF G(x), AMS CDF F(x)
- $F(x) = e^{[-\lambda\{1-G(x)\}]}$

•
$$G(x) = \frac{\ln[F(x)] + \lambda}{\lambda}$$

Applying Empirical Annualization

- Get AEPs you want to compute
- Convert them to PDS CDF values
- Plug them into your GPD distribution quantile function
- Can also be used to plot observed peaks
 - Convert the plotting positions

Analytical Annualization

- Stedinger et al. (1993), Madsen et al. (1997)
 - Generalized Pareto + Poisson → Generalized Extreme Value
- Have:
 - Poisson parameter λ
 - Generalized Pareto parameters ξ , α , κ
- Get:
 - GEV parameters ξ^* , α^* , κ^*

$$\xi^* = \xi + \frac{\alpha}{\kappa} (1 - \lambda^{-\kappa}) \qquad \alpha^* = \alpha \lambda^{-\kappa} \qquad \kappa^* = \kappa$$

Applying Analytical Annualization

- Compute equivalent GEV parameters from GPD/Poisson
- Plug AEP values into GEV quantile function

Fit and Annualization Example

- Apple River at Hanover, IL
 - 246 mi²
 - WY1935-2021
 - Daily average flows
 - Unregulated
 - Little urbanization

Apple River at Hanover, IL

Observed Events (Hirsch-Stedinger plotting positions)

Filtering for PDS

- Threshold = 1,250 cfs
 - Based on shape plot, mean excess plot
- Time between events 11 days
 - $[5 + \ln(DA)]$ guideline
- Recession threshold 250 cfs
 - Flow must go below threshold between events

Apple River Partial Duration Series

of Engineers

Apple River Annual Maximum Series

Apple River Annual Maximum Series

Why PDS for Streamflow?

Partial Duration Series Limitations

- Usually has to be done on daily average data
 - Instantaneous data have a short record
 - Requires approximation of peaks
- Takes extra work to ensure independence
- Some subjectivity involved
 - Choosing a threshold and separation criteria can be hard!

PDS with Instantaneous Data

- Shorter record, but
- No conversion

Approximating Peaks

Partial Duration Strengths

- Sample sizes often larger than AMS
- More samples of floods
- Automatic rejection of small annual maxima
- Lower error in estimating rare quantiles in many circumstances
- Samples are easier to sub-divide
 - Good for mixed population analysis

Mixed Population

- Split the PDS by flood-causing mechanisms
- Bigger sample size for each part compared to splitting AMS

Seasonal Analysis Example (Apple River)

Season 1

- Nov Apr
- 1.75 events/year
- Mean event = 2,800 cfs
- Snow/synoptic meteorology

Season 2

- May Oct
- 1.10 events/year
- Mean event = 3,500 cfs
- Convective meteorology

Apple River Season 2 Partial Duration Series

Flow (cfs)

- Analytical annualization
- Compute mixed curve from equivalent GEV

Questions?

