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* Hey everybody, this is Mike Bartles from the Hydrologic Engineering Center.
* This lecture is devoted to parametric modeling from a hydrologic and hydraulic modeling

perspective.



Overview

» Describe parametric modeling, its advantages,
disadvantages, and steps.

» Define data requirements and how to develop a data
set for analysis.

» Detail commonly used probability distributions.

= Qutline fitting methods and parameter estimation.
» Explain multiple ways of validating goodness of fit.
= Briefly describe uncertainty.
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This lecture is meant to serve as an introduction and will not be an exhaustive, detailed
look at all the various aspects of parametric modeling.

We won’t be deriving equations or even delving into too much math.

Instead, we’ll talk about the topic from a 30000 ft perspective and focus more on
concepts.

The next few lectures will delve into more detail.



What is a Model?

* A model is a “formal
representation of a theory”
(Ader, Bollen)

= All models are simplifications of "
the real world k7

» Some are better than others...

» Analytical models usually
include general principles and a
set of statements

= Empirical models usually omit
these principles and simply
represent the data i

» Cannot extrapolate (at least easily) :
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* First, let’s discuss what we mean when we talk about a “model” in a hydrologic or
hydraulic modeling context
* A model is a formal representation of a theory
* Take, for instance, infiltration into soil
* Infiltration in the real world is complicated, as shown in the image to the right.
Water with blue dye was placed on top of this soil and allowed to infiltrate over a
few hours. After a while, a backhoe dug this hole and allowed for us to see how far
individual strands of dye had progressed downward.
* A specific representation of infiltration would be the Green and Ampt method
which simplifies this process but still preserves important aspects.
* Modeling allows engineers to estimate the behavior of a system that is not otherwise
captured in time and/or space. Questions that could be answered with a model include:
* What will the river flow be 3 days from now?
* How much runoff will be generated given 20 inches of precipitation over three
days?
* How will the water surface elevation change if a levee were to be constructed?
* What is the likelihood of streamflow exceeding 20,000 cfs?
* Analytical models, like the aforementioned Green and Ampt method, usually include
general principles and a set of statements. This allows for analytical models to be
extrapolated beyond what has been observed, which is of particular interest to us in this
profession given that we’re often times interested in extreme events, like the 1/100 annual
exceedance probability for floodplain studies or the probable maximum flood for dam
safety studies.
* Conversely, empirical models usually omit any principles and simply use the data. This is
analogous to interpolating between known points. However, this leaves us high and dry
when we want to extrapolate because you can’t extrapolate with empirical models or at
least it’s not easy or straightforward.



What is Parametric Modeling?
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* Parametric modeling and analytical frequency analysis are equivalent and
can be used interchangeably

* The result of this type of analysis is a fully parameterized probability
distribution and median values (additional steps can be taken to estimate
confidence limits and mean estimates)

* For something to be parametric, the parameters must be located in “finite
dimensional space”; they cannot be imaginary

* An example of an analytical model is shown on the right, which visualizes the
cumulative distribution function of a fully parameterized log-normal
distribution. The two parameters of this distribution are a mean and standard
deviation. The median values are signified by the red line. Observed data is
shown with the blue bars.



What is Parametric Modeling?
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* A “model”, in the sense that we’re interested in within this set of lectures,
consists of both an analytical distribution and a fitting method.

* The same analytical distribution can be parameterized using two different
fitting methods to produce a different parameterization. This is shown on the
right. The green and red lines are both the same analytical distribution (for
example, Generalized Extreme Values), but they have different
parameterizations because they were fit to the blue observed data using
different fitting methods.

* I'll describe some of the more commonly used analytical distributions and
fitting methods in a future lecture.

* The complement of parametric modeling is fitting an empirical distribution
using graphical techniques. That would be the equivalent of drawing a line of
“best fit” through the blue observed data in the image to the right. However,
like | said before, you can’t easily extrapolate beyond the range of the
observations.



Purposes of Parametric Modeling

= What is the probability that a given flow,
stage, precipitation depth, etc will exceed a
particular value?

= For a given probability, what is the
corresponding flow, stage, precipitation
depth, etc?

= Complement of fitting an empirical distribution using

graphical techniques
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* Parametric modeling is performed all the time by tons of hydraulic engineers
and modelers all across the world.
* Two examples of a commonly asked questions that can be answered using
parametric modeling are:

* “what is the probability that a quantile will exceed some value?” and

* “given some probability, what is the corresponding quantile?”



Purposes of Parametric Modeling

8

74

Frecip-inc {inches)

O O CoTpII

1 T T T T T T T
09999 0.999 099 09 05 01 0.01 0.001 0.0001

Exceedance Probability
o Data (WEIBULL plotting positions) Generalized Pareto Distribution

7 BUILDING STRONG,

®

* This image is an instance of the first question: “what is the probability that a
guantile will exceed XXX?”

* Start on the y-axis at some important value. For example, 4 inches of
precipitation. Then, trace a horizontal line until you intersect the model.
Then, trace a vertical line down to estimate a corresponding probability.

* In this case, there is an approximate 1/50 annual chance of exceeding 4
inches of precipitation.



Purposes of Parametric Modeling
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* This image is an instance of the second question: “given YYY probability,
what is the corresponding quantile?”

* This time, start on the x-axis at some important probability. For instance,
the 1/500 exceedance probability. Then, trace a vertical line upwards until
you intersect the model. Then, trace a horizontal line to estimate a
corresponding quantile.

* In this case, the 1/500 annual exceedance probability precipitation is
approximately 6.75 inches.



= Extrapolation throughout
the entire range of
probability

= Allows for regionalization of
parameters

= Analytical means to
compute confidence limits

» Process the data using
numerical techniques
» No “eyeballing” it
» Provides a consistent
procedure and uniform
estimates
» Important for the NFIP!

Advantages of Parametric Modeling
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* Parametric modeling has many advantages when compared to graphically
fitting an empirical distribution.
* The biggest advantage is that a fully-parameterized analytical distribution
allows the user to estimate quantiles throughout the entire range of
probability from 1 -> 0.
* Also, parameters can be “pooled” and regionalized to improve estimates
everywhere.
* Confidence limits can be computed.
* The calculations that are used to fit an analytical distribution are tractable
and repeatable by other engineers. This isn’t the case when graphically fitting
an empirical distribution.
* This becomes incredibly important when comparing, say, 1/100
annual exceedance probability floodplains in the eastern United States
against those developed on the west coast. They better mean the same
thing in order to prioritize funding for infrastructure or management!



Disadvantages of Parametric Modeling
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* However, there are some disadvantages to parametric modeling when
compared to graphically fitting an empirical distribution.

* First and foremost, a model must be assumed up front. We'll discuss the
implications of this assumption in greater detail later.

* Some data will not be well fit using commonly employed models. This
includes regulated data or stages, which are shown to the right. Notice the
sharp discontinuities and multiple changes in slope throughout the full range
of probabilities. It’ll be really hard to fit a meaningful analytical distribution
to this data.

* A false sense of accuracy can also be inadvertently implied when using
parametric modeling. This is analogous to reporting precision to the millionth
decimal place.

* Finally, computations can take more time than graphical techniques.

10



Parametric Modeling Steps

Representative Data
L] I

EE

1. Develop a representative
data set

2. Select a probability
distribution and fitting
method (“model”)

3. Compute parameters of the
model using the data (i.e. fit
the distribution)

4. Verify appropriateness of
the model

5. Use model to predict
quantiles of interest
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*Now, let’s introduce the steps that are used when performing a parametric
modeling exercise or fitting an analytical distribution.

* First, you must develop a representative data set.

* Second, you must select a probability distribution and fitting method, which
constitutes a “model”.

* Third, you have to fit the selected distribution to the data in order to
compute the parameters of the distribution.

* Fourth, you must verify the appropriateness of the model given the sample.
* And finally, you can then use the model to predict variables (i.e. quantiles) of
interest.

* Each of these points will be discussed in greater detail within the next few
slides.

11



Parametric Modeling Steps

Representative Data
L] I

EE

1. Develop a representative
data set

2. Select a probability
distribution and fitting
method (“model”)

3. Compute parameters of the T — —
model using the data (i.e. fit
the distribution)

4. Verify appropriateness of
the model

5. Use model to predict
quantiles of interest
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*Developing an adequate data set is foundational to any parametric analysis.
You’ve heard the common phrase “garbage in, garbage out”. That can’t be
more true with parametric analyses. If the data is junk, your conclusions will
be as well.



Data Requirements

= Data set must be comprised of homogeneous,
independent, and identically distributed values
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* When performing a parametric analysis, the data must be a representative
sample of the “parent” population and be comprised of homogenous,
independent, and identically distributed values.
* Throughout these lectures, I'll refer to the representative sample, which is
what we typically have to analyze, as a “child” population
* To be representative, the sample should be a random sample of possibilities
from the parent population, which accounts for natural variability.
* The data should not include, or at least minimize, the effects of things like:
* changing land use (including increasing/decreasing urbanization)
* regulation, for example reduction in stages/flow due to upstream
reservoir and/or diversions
* large climactic variations/oscillations
* There are other data considerations, but these are the big ones that we
typically run into as modelers and engineers.

13



Independent and Identically Distributed (lID)
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* The previously mentioned independent and identically distributed, or IID,
data assumption is super important. Let’s talk about the first part, which is
independence.
* When assessing independence, ask yourself: Is each peak unique and
independent? Or are the magnitudes dependent upon one another?
* In the image to the right, certainly the first peak is unique, right? But are the
others truly independent? The third and fourth peaks aren’t. What about the
largest peak? Is that independent?
* In the realm of hydrology and hydraulics, we typically look at the entire
hydrograph shown here as a quote/unquote “event” and extract a peak for
the entire thing.
* The largest peak for the event would be the second peak denoted in the
image to the right.
* We typically extract maxima for the entire calendar year or water year in an
effort to achieve independence because most watersheds settle back to a
quote/unquote “normal state” within a year.
* But, be careful with peaks that are close to your year demarcation.
For instance, when using a water year which begins on October 15t and
ends on September 30t™, be vary cautious to avoid using peaks at the
end of September or beginning of October because you might not be
able to ensure that they’re independent.

14



Independent and Identically Distributed (lID)
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* Similarly, the child population must be an identically distributed sample
of the parent population.
* This means that the sample should be randomly drawn from the parent
population and not, or at least minimize, sampling bias
* If climate varies over time (which it can sometimes do) and the
sample is pulled from one time period that isn’t representative of
the entire range of climactic possibilities, then the data will likely
not be identically distributed
* A classic example of this phenomena is exemplified in the image to
right, which is the annual maximum flow time series for the Red River of
the North at Fargo, ND
* Climactic variations are evident in the sample. Visualize the average
of the data. You can see that the average, or mean, appears to be
increasing over time. Also, look at the variability, or highs and lows.
They also appear to increase over time.
* How do you fit a model to this data set? That’s a very difficult
question to answer adequately.

15



Independent and Identically Distributed (lID)
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* An analysis which used a moving time window was computed for the Red
River of the North at Fargo, ND and shown here.

* In this example, a window length of 30 years was used. After the statistics of
the first 30 year time window were computed, the time window was moved
forward by 5 years and the next 30 year time window was computed. This
process was repeated until the entire data set was analyzed.

* Notice how the mean, which is the blue line, standard deviation, which is the
red line, and skew, which is the green line change pretty dramatically over
time.

* Is the entire 1925 - 2019 time window homogeneous and identically
distributed over time? Probably not.

* But, a follow-up question for you to ponder is, how many violations of the
lID assumption are you willing to live with when doing parametric modeling?
It’s not too hard to nit pick and find little violations of that assumption in most
analyses. In fact, many of the most-commonly used parametric modeling
approaches, for instance Bulletin 17C procedures, includes some tools that
are intended to minimize the negative consequences of this common
violation.

16



Other Data Considerations
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* Some other considerations to keep in mind when analyzing data for a
parametric analysis include the following:
* Multimodal data
* Annual maximum vs. Partial duration series
* Qutliers
* Interval data
* and Data transformations. All of the aforementioned topics will
be discussed in this video.
* However, record extension is such a voluminous topic that this
warrants its own lecture/video series.

17



Multimodal Data
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* First up, is multi-modal data. An example of a multi-modal data set is shown
on the right as a probability density function. Notice the multiple peaks in
this plot? They’re all separate modes.

* Multimodal data is likely caused by a mixed population. If this situation is
encountered, you definitely should work on separating out the various causal
mechanisms into individual data sets.

* Mixed populations can be caused by, for example, a location being subjected
to floods emanating from rain-on-snow events, summer thunderstorms,
extratropical storms (i.e. nor'easters), and tropical storms.

* It’s unreasonable to expect that a single model could fit and accurately
predict the probability distribution of floods due to all of these mechanisms.

* To best predict the exceedance probabilities of flood quantiles of interest
(i.e. what is the likelihood of exceeding XXX cfs in any given year?), it is best to
split the data set into the individual mechanisms, fit a model to each data set,
and combine the results into a single probability distribution using a mixed
population analysis.

* We’ll talk more about how to do that in a later lecture.

18
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» Usually leads to the skew
parameter being
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* An annual maximum series contains one and only one value per year. This is
the most commonly utilized type of data set when estimating flow-frequency
with, say, Bulletin 17C procedures.

* Conversely, a partial duration series can contain more than one value per
year. This type of data is commonly used to estimate precipitation-frequency.
* When plotted together on a normal probability axis, these two types of data,

for the same location and time window, commonly merge somewhere
between the % and 1/50 annual exceedance probability.

* Just to reiterate, the 95% use case when analyzing large or extreme things

will be to use an annual maximum series.

19
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* Up to this point, we’ve been discussing point data.
* However, there are situations in which interval data will be encountered and

must be incorporated.

* In the figure to the right, the open, black circles represent point data where
there is not uncertainty in the actual magnitude.
* The black bars and red rectangle represent interval data where there is

uncertainty in the actual magnitude.

* The Expected Moments Algorithm (EMA) contained within B17C procedures
can natively incorporate both of these data types. Also, other fitting methods
like Maximum Likelihood Estimation can as well.

* More on this to come.

20



Outliers
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* Qutliers are a common occurrence in most data sets

* Sometimes they’re on the high side and sometimes they’re low.

* However, their inclusion, without special treatment, can violate the IID
assumption, specifically the identically distributed part.

* When you encounter them, search for additional data and ask yourself these
questions:

* Is the high outlier(s) rarer than indicated by the
sample? In the figure to the right, this would be
analogous to moving the highest point to a smaller,
or rarer, exceedance probability.
* Is the low outlier(s) more common than indicated
by the sample? In the figure to the right, this would
be analogous to moving the smallest point to a
larger, or more common, exceedance probability.
* Bulletin 17B and C procedures include tools that can be
used to identify and treat these outliers.

21



Data Transformations
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* Sometimes data must be transformed to analyze relative changes instead of
absolute changes. Other times, engineers and modelers are more interested
in obtaining a symmetrical distribution about zero. Also, engineers may
be interested in removing the effects of heteroscedasticity, which refers
to the circumstance in which the variability of a variable is unequal
across the range of values of a second variable that predicts it.
* Think of flow vs stage or something similar where the variability
of flow changes drastically as the stage increases in a typical,
incised cross section with a very wide flood plain.
* For a small change in stage, the corresponding change in flow
could be small or extremely large depending upon whether the
flow is in or out of bank.
* In terms of common transforms, Log base 10 is probably the most commonly
used transform when dealing with flow.
* This transformation allows for the user to analyze relative changes
rather than absolute changes and an example is shown to the right.
* Remember that the mean of the log transformed values is NOT the
same as log of the mean of the values.
* However, this is by no means the only data transform that is used. | list out a
few common transforms at the bottom of the slide.
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*Step 2 is the selection of a distribution and fitting method. When put
together, a distribution and fitting method create a model.
* Step 3 focuses on computing parameters of the model.

23



Examples of Commonly-Used
Probability Distributions
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* Here are some common continuous probability distributions that are utilized within water
resources applications.
* Aside from the familiar Exponential, Gumbel, Normal, and Pearson Type Ill, I'd like to
highlight the extreme value distributions noted at the bottom of the list.
* These distributions are part of the family of three-parameter distributions for
which parameterization schemes were devised by Hosking and Wallis.
* Each has location ¢, scale a, and shape k parameters.
* First is the Generalized Extreme Values, or GEV, distribution.
* This distribution subsumes the three extreme value distributions: Gumbel (EV type
1), Frechet (EV type Il), and Weibull (EV type IlI).
* Which distribution it represents is dependent upon the shape parameter. For
instance, GEV = Gumbel when shape = 0.
* The GEV distribution is commonly used for precipitation-frequency studies within
the U.S. and many other applications like flow-frequency outside of the U.S.
* The GEV distribution was derived by taking the maximum of repeated independent
samples from a homogeneous population, which is what is commonly used to create annual
maximum series.
* Next up is the Generalized Pareto, or GPA, distribution.
* An underlying assumption of the GPA distribution is that subsamples exceeding a
sufficiently high threshold from repeated samples of a homogeneous population will
converge to the GPA distribution.
* In other words, if repeated samples are taken from a population, and only the values in
those samples that are greater than a selected value are retained, then those retained
values will follow the GPA distribution.
* This type of data set is called a partial duration series, which is something that we
discussed in the previous lecture.
* Finally, I'd like to mention the Generalized Logistic, or GLO, distribution.
* Like the GEV distribution, the GLO distribution is commonly used in precipitation-
frequency studies.

24



What is a continuous probability
distribution?
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* Discrete probability distributions are used to describe the expected results
from experiments where only a certain number of outcomes can be realized,
like flipping a coin or rolling a die.

* These distributions aren’t used as much within water resources applications,
but they are still used from time to time to model things like will it rain
tomorrow, if it is going to rain, what type of storm will it be, etc?

* Continuous probability distributions are used much more commonly within
water resources applications. This arises from the fact that we tend to model
phenomena that is comprised of continuous random variables, like
streamflow, precipitation, or stage.

* Similar to a unit hydrograph, the area under the probability density function,
or PDF, must sum to 1. An example of a PDF is shown in the upper right
image.

* Also, the cumulative distribution function, or CDF, must span 0 -> 1 and
cannot decrease. An example of a CDF is shown in the lower right image.
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* Now, let’s discuss fitting methods.

* As mentioned before, the same analytical distribution can be fit to the same
data set using different fitting methods to obtain different parameterizations
and, as such, different quantile estimates.

* When we fit a distribution, we are using the child population because we
don’t know the true parent population. In fact, within all real-world
applications, we can’t know the parent population. We can only know the
parent population in contrived examples.

* Some commonly used fitting methods are method of moments and
Maximum Likelihood Estimation.

* Some special extensions of the method of moments are Linear Moments
and the Expected Moments Algorithm, or EMA.

* Greg will go into more detail regarding Linear Moments and their

applications while Beth will present several videos detailing EMA and it’s uses.
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Method of Moments

= Simple and widely used

» Assume that the parameters of the sample
(child population) are the same as the parent
population

= Equal weights are given to the
transformations of the observations

» Used within Bulletin 17 methods

» EMA also uses method of moments (but iterates)
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* The method of moments fitting method is widely used within water
resources applications because it’s fairly simple and robust.

* The underlying assumption of this method is that the parameters of the
child population are the same as the parent population.

* Remember last lecture when | stressed how important it was to develop an
lID and representative data set? This assumption is the reason why a fair
amount of time should be spent processing your data set.

* Within this method, equal weights are given to the transformations of the
observations.

* As | said before, the method of moments is used within both Bulletin 17B
and Bulletin 17C procedures. However, Bulletin 17C makes use of a
generalization called EMA that allows for the use of some unique types of
data like intervals.
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* Now, let’s step through an example.
* In the upper left image, | have an annual maximum series of streamflow.
* In the lower left image, this annual maximum series has been transformed
to log10 values.
* Next, the (log) parameters of the sample are computed and shown in the
blue text.
* Then, those parameters are used to fit the both the Log Normal and Log
Pearson Type lll distributions in the orange text.
* The Log10Normal does not use the skew parameter; only the LPIII
distribution does (in this case).
* Notice that the parameters of the sample match the parameters of
these two distributions? That’s the consequence of assuming that the
parameters of the child population are the same as the parameters of
the parent population.
* Finally, the fitted distributions are plotted along with the plotting positions
of the data in the right hand image.
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Linear Moments

= A little more complicated but still widely used

» Still assume that the parameters of the sample (child
population) are the same as the parent population

» Used heavily within regional and precipitation
frequency analyses

» Unequal weights given to order statistics of
observations based upon their ranks

» | ess weight is given to the tails of the distribution
» Hosking and Wallis (1990 and many, many oth
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* Linear, or L-moments are widely used in precipitation frequency studies.

* This becomes especially useful when regionalizing parameters.

* This fitting method is an extension of the method of moments in that it still
assumes the parameters of the child population are the same as the parent
population

* However, unequal weights are given to order statistics of observations based upon
their ranks

* In particular, less weight is given to the tails of the distribution

* Hosking and Wallis revolutionized the use of this fitting method along with the
three aforementioned distributions.

* More on this fitting method will be presented within other videos.
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* Here’s an example of L-moments.

* An annual maximum series of flow is used to compute the L-moments

denoted as L1, L2, L3, and L4.

* Then, those L-moments are used to compute the L-moment ratios: L-Mean,

L-CV, L-Skew, L-Kurtosis.

* Using these linear moments, the three parameter GEV distribution can be
parameterized (using a scheme put forth by Hosking and Wallis) and is shown

on the right.
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Maximum Likelihood Estimation

= Much more complicated and not as widely used in water resources
as previous methods

= Though, this method is widely used in other statistical applications
= Can incorporate point, censored, and interval data
= Can integrate arbitrarily complex distributions

= Requires log (actually natural log) likelihood functions (since In() is a
continuous strictly increasing function)
» Calculate the first derivative and set equal to 0 to maximize
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e Maximum Likelihood Estimation, or MLE, is a much more complicated fitting
method than the previous two fitting methods.

* As such, this method has not been as widely used in water resources
applications.

* But, it is commonly used in other arenas, like the financial and actuarial
applications.

* This fitting method, like EMA, is able to incorporate point, censored, and
interval data. However, this fitting method is able to integrate arbitrarily
complex distributions.
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Other Model Considerations

» Regionalization of parameters
» Analysis for ungaged areas
» Historical and Paleoflood data
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* Other topics related to model fitting include regionalizing data, analyzing
ungaged areas, and incorporating historical and/or paleoflood data. Historical
and paleoflood data are oftentimes missing direct observations and are best
represented by interval or censored observations.

* These topics will be covered in additional videos.

* We also have another class dedicated to these topics. If you’re interested,
please check out our Flood Frequency Analysis for more information as well.
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Parametric Modeling Steps

Representative Data
L] I

EE

1. Develop a representative
data set

2. Select a probability
distribution and fitting
method (“model”)

3. Compute parameters of the
model using the data (i.e. fit
the distribution)

4. Verify appropriateness of
the model

5. Use model to predict
quantiles of interest
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* Step 4 emphasizes verifying that the model is appropriate for use with the
data in question.
* Step 5 uses the parameterized model to make predictions.



Model Result Visualization

* There are multiple ways to
ascertain goodness of fit n Data

» Visualize the model results
against the data (multiple ways
to do this)

» Goodness of fit tests
» Kolmogorov-Smirnov
» Chi-Square
* Anderson-Darling

» Split sample tests

= All should be used!

Swve (inches)
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* There are multiple ways in which the model and data can be visualized
together in order to form a qualitatively comparison.
* This includes things like visualizing the model against the plotting positions
of the data, as shown to the right.
* This is the most commonly-used visualization within water resources
applications.
* This type of plot can provide a quick means to weed out bad models.
* For instance, both of the models visualized here are probably not
good choices to represent this data because the tail behavior of both
don’t adequately represent the data, which is usually where we’re most
interested in obtaining estimates.
* However, there are other ways to visualize the data, which we’ll describe on
the next few slides.
* Also, there are numerous quantitative tests, called goodness of fit tests, that
can be used to ascertain the appropriateness of the model.
* Instead of relying on just a single visualization or quantitative test, all should
be used to justify the selection of a model.
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Model Result Visualization
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* Plotting the observed data against the model on a Cumulative Distribution
Function, or CDF, plot and Probability Density Function, or PDF, plot can
provide valuable insight to the goodness of fit provided by the model.

* In the plots shown here, the same model is fit to the same data within a CDF
and PDF plot. Also, the same number of bins and bin sizes are used in both
plots.

* The model appears to fit the data much better within the CDF plot than the
PDF plot, but how much of that visual cue is based upon the chosen bin size in
the PDF plot?

* Perhaps less bins would allow better visualization of the model fit within the
PDF plot.

* You can use different numbers of bins and/or bin sizes when visualizing the
data in this way.

35



Model Result Visualization
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* Probability-Probability, or PP, plots compare the probability of the data
(using the chosen plotting position formula) against the inferred probability of
the model.

* Quantile-Quantile, or QQ, plots compare the values of the actual data
against the inferred value as predicted by the model.

* Both plots are valuable for comparing trends. However, the QQ plot is better
at visualizing tail behavior while the PP plot is better at visualizing and
comparing the “center” of the data.

* In both plots, solid black lines of perfect agreement are included for
comparison.
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Kolmogorov-Smirnov Test
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* Now, let’s talk about quantitative goodness of fit tests.

* First up, is the Kolmogorov-Smirnov, or K-S, test.

* This test is probably the most commonly-used goodness of fit test in water
resources because it’s simple and non-parametric in that it doesn’t rely upon
the assumption of an underlying distribution.

* This test measures the largest difference in the CDF between the model and
the observed data.

* In the example on the right, the largest difference between the CDF of the
model and observed data is approximately 0.05.

* Therefore, the K-S test statistic is 0.05.
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Chi-Square Test
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The Pearson Chi-Square test, which is often shortened to just Chi-Square,
compares the entire model and distribution of data, not just the maximum in the
CDF.

It essentially asks, “Is there a significant difference between the model-predicted
frequencies and the frequencies within the observed data?”

This test first ranks the data then places the values within bins. In HEC-SSP,
exactly five values are placed in each and every bin. This can result in the use of
bins that are not uniform in size. Values can not be shared within bins; every
possible value is in exactly one and only one bin. Finally, the first bin edge has a
CDF value = 0 and last bin has a CDF value = 1.

Once the bins are created, the test statistic is computed using the sum of
squared residuals between the model and data across the entire probability
range. In the figure above, only a few bins are compared with red arrows, but all
bins are compared.

The name “Chi-Square” test arises from the fact that when the number of
sampled elements in each bin is equivalent to the expected value, it is predicted
by the chi-square distribution with n-1 degrees of freedom.
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Other Goodness of Fit Tests

Anderson-Darling

Bayesian Information Criterion
Akaike Information Criterion
Many, many others...

39 BUILDING STRONG,

®

There are many, many goodness of fit tests that have been developed for different types
of data, distributions, and fitting methods. I'll briefly describe three additional tests that
are available within HEC-SSP. This list is by no means exhaustive as everybody and their
brother has a goodness of fit test.
The Anderson-Darling test assesses whether a sample comes from a selected
distribution.
* This test works by first assuming that the data does arise from the chosen
distribution and then tests the data for uniformity with a simple distance test.
Bayesian Information Criterion, or BIC, and Akaike Information Criterion, or AIC,
are similar tests
* Both the BIC and AIC tests make use of likelihood functions, which were briefly
introduced in the last lecture for use with the maximum likelihood fitting
method.
* This means that these tests aren’t appropriate for use with fitting methods like
method of moments, which limits their applicability.
* However, these tests are really cool in that they penalize complex models in
an attempt to weed out overfitting.
* In this case, model complexity refers to the number of parameters. So, if
you use a 3-parameter model like Log Pearson Type llI, it’ll be penalized
more than a 2-parameter model, like Log Normal.
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Uncertainty in Results

» Sources of uncertainty within the results
include (but aren’t limited to):
» Small sample sizes
» Measurement uncertainty
» Choice of distribution and/or fitting method
» Others...

= Not all sources are equal. Some are more
“important” or “dominant” than others. -
(Bl
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There are multiple ways in which uncertainty enters
into Parametric Modeling and 99.9% of the time,
uncertainty should be shown and discussed along with
the results.

Uncertainty in your results can arise from things like
small sample sizes, uncertainty in measurements in
inferences of measurements, and modeling choices.
This is by no means an exhaustive list, but only meant
to provoke some discussion. We’'ll discuss a few of
these sources in more detail in the next few slides.

| gotta mention that not all sources of uncertainty are
equal. Some sources provide greater uncertainty in
different “portions” of the results than others. For
instance, source “X” may provide greater uncertainty
in the more frequent range of the resultant probability
distribution than source “Y”. But, source “Y” provides
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much greater uncertainty in the extremely rare range
of probabilities.
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Confidence Intervals
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* Uncertainty is most commonly visualized using confidence intervals, which
are meant to encompass many sources of uncertainty (but usually not all).
Confidence intervals typically represent knowledge uncertainty, which can be
reduced with additional study (conversely, epistemic uncertainty or natural
variability cannot be reduced with additional study).

* Confidence intervals simply show two values with each side of a “confidence
interval” implying a “confidence limit”. However, in actuality, the true
uncertainty is best represented using a distribution of uncertainty.

* Confidence intervals can be estimated using monte carlo approaches where
multiple samples of the model are made using an effective record length
many, many times. This approach is visualized in the figure within this slide.
Each blue line is a separate sample.

* In specific cases, confidence intervals can be estimated using closed-form
equations. For instance, both Bulletin 17B and Bulletin 17C procedures will
produce confidence interval estimates for the Log Pearson Type llI
distribution. However, closed-form equations aren’t available for all
distributions.

* Both Beth and Greg will go into much greater detail regarding this topic
within later lectures.
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Uncertainty Due to Sample Size
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Parametric modeling uncertainty can also arise from small sample sizes. This
is a very common problem that is encountered in nearly all water resources
applications. From a frequentist standpoint (which | found to be much, much
easier to understand early in my career), as the sample size gets larger and
larger, the uncertainty should get smaller and smaller. Essentially, a model
that is fit to 100 years of data should have tighter confidence intervals than a
model that is fit to 50 years of data, all other things being equal.

To correct for small sample sizes, an expected probability adjustment can be
made. Remember that the result of a parametric modeling exercise is a
parameterized distribution which provides a median quantile estimates. Also,
remember that the median represents the point in which 50% of the possible
values are above that value and 50% of the possible values are below. The
best representation of the true likelihood is the mean.

At the % annual exceedance probability, or AEP, the mean and median values
are the same.

For AEP less than %5, the mean value is greater than the median.

For AEP greater than %5, the mean value is smaller than the median.

However, it’s not necessarily straightforward to estimate the mean, or an
expected probability curve, at the various quantiles of interest. Bulletin 17B
included procedures to estimate the expected probability curve but Bulletin
17C does not.

However, we’ve recently added tools to HEC-SSP to estimate the mean and
produce an expected probability curve when using Bulletin 17C procedures.
The expected probability curve is most often determined using monte carlo
approaches.

42



Uncertainty Due to Measurement Error
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Uncertainty can also arise from errors in the measurements of
the data itself.

For instance, the United States Geological Survey operates a
network of thousands of stream gages throughout the United
States.

At these gages, stages are typically measured, not flow.
Estimates of flow are then based upon the measured stage, an
assumed or measured cross sectional shape, and an assumed or
measured velocity distribution.

The stage is commonly measured in regular intervals, like 5-, 15-
, 60-minutes, while the cross sectional shape and velocity
distribution are measured from time to time and updated when
large changes or floods occur.

The measurements are combined to create a rating curve which
transforms the measured stage to a volumetric flow rate.

This conversion introduces error which carries forward to our
analyses since we commonly fit models to flow and not stage
(since stage doesn’t “behave” as well as flow).

The errors aren’t linear either due to heteroscedasticity, which |

mentioned in the “Developing a Representative Data Set” video.

Remember that common cross section shapes exhibit this
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behavior due to different portions of the channel and
floodplain being active at different stages/flow rates.
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Uncertainty Due to Measurement Error
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A super duper awesome master’s thesis delving into
this topic was performed by a woman from Brazil
named Ana Luisa who came to HEC to work with us
for a short time a few years ago.

Within this study, she incorporated rating curve
uncertainty into estimated flow-frequency curves.
As expected, there is a lot of uncertainty and the
uncertainty becomes larger as the stage and/or flow
rate increases.
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Uncertainty Due to Model Choice

What if all the models fit the
sample reasonably well and
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How much uncertainty is
due to the choice of model?

The problem gets worse
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This problem is encountered
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(not just dam safety)
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eological Survey
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* Uncertainty in your results are also due to the
modeling choices that were made.

* Here’s a commonly encountered problem within
water resources applications: “If all the models
fit the sample reasonably well, how do you have
confidence in your extrapolation?”

How accurately are you predicting?:

* The extents of the floodplain at the 1/500
AEP?

* The likelihood of SWE exceeding 20 inches
given a sample of 15 years?

* This source of uncertainty gets worse and worse with
smaller sample sizes.
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The USGS published a really cool paper that quantified
this uncertainty for several locations in the U.S. and |
show the cover here.
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Uncertainty Due to Model Choice
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* Here’s a screen capture from that paper. In this image, multiple models have
been fit to the same data. These models are visualized as the various solid
and dashed lines.

* At the 1/500 AEP, the different models (excluding the Generalized Pareto
model) predict a range of 450,000 cfs in the instantaneous peak discharge.

* As the AEP decreases or becomes rarer, these differences increase.

* The moral of the story is that, depending upon the model choice, a huge
amount of uncertainty can exist within your quantile predictions, especially at
rare exceedance probabilities.

* If several models fit the sample reasonably well, you must fall back upon the
underlying assumptions of the model when making a determination of which
one is best.

* For instance, this data set is comprised of annual maximum flows.
Therefore, the Generalized Pareto model isn’t an appropriate distribution
choice because that’s only meant for use with partial duration series.
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Combining Multiple Models
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* There are ways to combine multiple models including mixed population
analyses, curve combination, and Bayesian hierarchical modeling. Mixed
population analysis uses the probability of union theory while curve
combination analyses typically use user-defined weights to combine the
multiple inputs into a single resultant probability distribution.

* Bayesian hierarchical modeling is a much more complicated topic and would
take far too much time completely explain than is allowed within this lecture.
In short, this type of analysis combines multiple models using Bayes theorem.
Our colleagues from the Risk Management Center have developed a piece of
software that can perform this type of analysis, which is especially useful for
dam safety applications. If you're interested in giving it a try, reach out to us
and we’ll point you in the right direction.
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Combining Multiple Models
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Mixed populations are prevalent all over the country and as a profession, we’ve kind of
been lax on treating them appropriately.
They really come into play when you start to extrapolate beyond observed data, which is
where we’re commonly interested when regulating floodplains or managing
infrastructure.
As an example, the solid blue line in this figure is a flood-frequency curve that was
realized by fitting a single Log Pearson Type Il distribution to an annual maximum series
that contains more than one type of flood

* This data set is not IID
The dashed red line is a flood-frequency curve that correctly accounts for the possibility
of more than one type of flood mechanism occurring in any given year

* This was computed by “combining” separate flow-frequency distributions using

probability of union

* Data sets and resultant distributions adhere to 11D assumption
The differences between the two distributions get larger and larger as AEP decreases.
Extrapolation is key since we don’t have 100s of years of observed data but we still need
to estimate flow-frequency for AEPs less than 1/100 for many applications
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Summary

» Described parametric modeling, its advantages,
disadvantages, and steps.

» Defined data requirements and how to develop a
data set for analysis.

» Detailed commonly used probability distributions.

» Qutlined fitting methods and parameter estimation.

» Explained multiple ways of validating goodness of fit.
» Briefly described uncertainty.
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| introduced parametric modeling along with some of the theory, advantages, and
disadvantages when using this method.

We talked at length about data that goes into a parametric modeling analysis.

It’s super important to investigate your sample to ensure it’s comprised of independent
and identically distributed values that are representative of the parent population.

We talked about the selection of both an analytical distribution and a fitting method.
When put together, these two create a model from which we can draw conclusions.
We discussed commonly utilized distributions within water resources as well as several
examples of fitting methods.

we talked about the visualization of model results against observed data.

Several qualitative visualization tools were presented in addition to several quantitative
goodness of fit tests.

Remember that when you ascertain whether your chosen model is appropriate for use,
your judgement shouldn’t be based upon a single visualization or quantitative test.
Instead, you should use all of the tools that are available.

Remember that uncertainty arises from multiple sources like small sample sizes,
measurement error, and model choices.

Not all sources of uncertainty are equal.

Also, we briefly talked about combining different models together to form a single
model and what tools are available to perform those combinations.
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