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Goal

+ Because backgrounds differ, as does current use of
these topics....

+ ...we'll revisit concepts in probability and statistics, to
bring us to a common jump-off point for upcoming
material

We all have different backgrounds and experience with probability ideas, so
this review of the college course will hopefully bring us to a similar place.

This lecture is kind of a slow walk through the basic topics, to give a chance
to dwell on the ideas a bit. Much or most of it will be summarized more
briefly in later lectures.
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Important Relationship — Statistical Tuferevce

observations
statistics
probability
probability
relationships

Consider how statistical inference is used to estimate probabilities of
occurrence of random hydrologic variables....

....and how probability distributions are used to “predict” likelihood of
future random occurrences

This is an idea that summarizes the relationship between probability and
basic statistics. We use statistical analysis to estimate probability from data
or observations, and then use that probability description to determine the
likelihood or frequency of future observations. Once those future

observations occurred, we can use them to improve probability estimates,
and so on...
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Topics of Discussion
+ Describing probability

e Definitions
e Discrete and continuous random variables

+ Estimating probability from observations
+ Review common probability distributions

+ Inferring probability distributions, parameters
e Sample moments
e Using statistical tables for Normal distribution
+ Long-term Exceedance Probability
+ Basic Relationships — jump to Greg
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Definitions

+ Probability, Frequency

+ Random

+ Random Variable

+ Probability Distribution

+ Natural Variability

+ Knowledge Uncertainty

+ Population and Sample

+ Parameters and Statistics
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Probability

+ A measure of likelihood or chance of an outcome
or event

+ Magnitude: 0 £ probability <1
0% < probability < 100%

won't will
happev happev

+ Probability of all possible outcomes = 1

. what’s really important in our dealings with probability is where the
estimates come from.
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Frequency

+ The rate at which something random happens,
or how often it happens

e generally based on a given data set or sample
+ Used to estimate probability

+ In the Corps, “frequency” is often used
interchangeably with “probability”

How likely something is to happen is closely tied with how often it happens.
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Random

1. Lacks a clear purpose, intention or method.

2. Has no pattern, is unpredictable
...but frequency of outcome might be predictable

3. Happens by chance rather than by plan
4. Qutcome is uncertain

5. Has a probability of occurrence

There are many definitions of “Random.” Some outcomes are naturally
random. But the word is sometimes used to describe a process so complex
we can’t understand it completely enough to predict.
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Random Variable, RV

*

A number you don’t know, yet

*

A variable that’s subject to chance, and can take on
different values with associated probabilities

*

Use RV to describe something that:
+ naturally keeps changing, or
+ we can’t estimate well

We describe a random variable with a
probability distribution: outcome vs probability

*

Any value that’s relevant to our analysis, that either hasn’t happened yet or
can’t be measured accurately, is a random variable.
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Probability Distribution

+ A relationship between a random variable’s value
and probability

+ A function that describes all possible values of a
random variable, and their likelihoods

+ We use probability distributions to describe what is
random, and what is unknown
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Aleatory

Natural Variability Uncer-taiuty

Some variables are naturally random in that they
change or vary unpredictably through time or space

Examples

e annual peak streamflow

e channel roughness, which can be affected by a flood event
e soil properties (vary v space, vot time)

When dealing with hydrologic phenomena such as flood events, natural
variability tends to be things that vary from flood event to flood event.
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Epistemic

Knowledge Uncertainty Uncertaivty

The degree to which we are unsure about any
parameters and relationships used in computation:
economic, hydraulic or statistical

Might be reducible with more information...

Examples

estimates of probability
value of structures in flood plain

channel roughness, which we don’t know precisely

a model that is too simple

When dealing with hydrologic phenomena such as flood events, knowledge
uncertainties tend to be things that are true across all flood events, but just
aren’t known or able to be estimated well.
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Population and Sample

+ Parent Population - the “universe”

- all possible outcomes of a RV, and their likelihoods Population

- sometimes, a probability distribution

+ Sample - a subset of the parent population
- observations (measurements) of the variable

- results of an experiment

- a representative sample will maintain the statistical
parameters of the population

important duestion: is the sample
representative of the population?

As an example, for flood frequency the population is any flood that could
occur in the watershed, and how likely each magnitude is. The sample is
what’s been observed.
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Parameters and Statistics

+ Parameter
e A descriptive measure of a POPULATION

+ Statistic
e A descriptive measure of a SAMPLE

A sample statistic is often used to estimate a
population parameter
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Estimating Probability

¢ System characteristics

e Physics of the system (very intuitive)
¢ Judgment, Analysis, Experience in similar situation

* Observations (using Statistics)

e Recorded data

Streamflow gage
Economic surveys

e Data from experiments

L1.1 - Basic Probability and Statistics
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Topics of Discussion

+ Describing probability
¢ Definitions
e Discrete and continuous random variables

+ Estimating probability from observations
+ Review common probability distributions

+ Inferring probability distributions, parameters
e Sample moments
e Using statistical tables for Normal distribution
+ Long-term Exceedance Probability
+ Basic Relationships — jump to Greg
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(2

probability mass function, PMF

Probability
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1

1/6 = 0.167

2 3 4
Face Value

5

Rolling a 6-sided Die: Physics

Central Tendency:
expected value, mean

Ll:zpixi =

= Probability weighted sum of
all possible outcomes

=(1/6)*(1+2+3+4+5+6)
=35

This is the estimate of probability that results from recognizing the simple
system of a 6-sided die suggests that each side is equally likely. Therefore,
the total probability of all outcomes of 1.0 divided by the 6 possible outcomes
provides probability 1/6 for each outcome.

The mean of the discrete distribution is the probability weighted sum of all
possible outcomes, and is not necessarily a possible outcome.
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Rolling a 6-sided Die: Experiment

histogram - estimate of PMF
025 Central Tendency:

0.22

021 _ expected value, mean, average

R R _ sample
= z PiXj = X = estimate

of mean

0.2

i€l
= Probability weighted sum of
all outcomes
=(0.21*1) + (0.09*2) + (0.12*3)
Y e +(0.20%4) + (0.17*5) + (0.22*6)
=3.67

(2

Observed Frequency

Sample size = 100

This is the same example of the 6-sided die, with probability estimated by
experimentation. This method is only possible with systems that can be
repeated replicated at will, to produce a sample. The relative frequency of
each possible outcome is used to estimate the probability of each outcome,
with the resulting histogram becoming the estimate of the PMF. The sample
estimate of the mean is either the probability weighted sum computed with
estimated probabilities, or simply the average of all outcomes.
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Probability Estimates from Data

Use Relative Fredquency

Estimated Probability = # of Occurrences

# of Independent Trials

Relative Observed
Frequency Frequency

# times rolled that value
# of rolls

for the 6-sided die:

Relative frequency is a very simple but very effective means of estimating
probability from a random sample.

L1.1 - Basic Probability and Statistics
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Part 1 of Excel Exercises

+ Excel function =RAND() produces a value equally likely
between 0 and 1, i.e., a Uniform[0,1] random value

1.000

0.833 OOVISid@Y‘
cumulative | ** watural
probability | o0 variability

0333 and knowledae

o uncertainty..,

0.000

1 2 3 4 5 6
outcome

After repeatedly rolling a real 6-sided die to estimate probability, we’'ll be
using Excel to simulate the rolling of a 6-sided die using pseudorandom
numbers.
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Single Experiment, 100 rolls Probability of Rolling a 4 'wff100 rolls
03 0.3 rom
90% confidence interval >
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s - g “ 1 [] []
. E w " ., = u
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o
- . . c
. . o
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c
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o 13 . .
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2 &
o
e
0 0
1234567 8 91011121314151617181920
Outcome trial number

These are images from the Excel exercises. A reason for repeating an

experiment in which we estimate probability from a limited sample, rather

than just pooling all the samples for a better estimate, is to explore the

uncertainty in an estimate from a limited sample.

These figures show single-sample histograms on the left for increasing
sample size, and 20 replicates of the experiment on the right. From

repeating the experiment, we see how much error is in our estimates from
limited samples and can draw 90% confidence intervals. The interval shows
the range in which 90% of random sample estimates of probability will fall,

but can also be drawn around a single estimate as an interval for the

“population” probability.

L1.1 - Basic Probability and Statistics
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+these outcomes are
mutually exclusive and exhaustive

Die #2

@0& 1 2 3 4 5 6
12 3 4 5 6 7
23 4 5 6 7 8

Die#d 3|4 5 6 7 8 9

4|5 6 7 8 9 10

56 7 8 9 10 1

6|7 8 9 10 1 12

Rolling 2 Dice: Physics & Experiment

36 possible rolls resulting from 2 random numbers, but
here we’re interested in the SUM of both dice.

only 11 possible outcomes

Expected Value of the Sum =
2¥1[ 3+ 3%2 /5 + 43/, +
5%4/36+6%/36+ 7%/ 36 +
8%5/36+9%/36+ 10%%/35 +
11%2/,c + 12%Y/, =7

This is a similar system using two dice, and computing the sum. The system
is simple enough to estimate probability from the basic understanding.

There are 36 possible rolls, as each value on die 1 can be paired with each
value on die 2. There are 11 possible sums, between 2 and 12. The
likelihood of each possible outcome is simply the number of ways to produce
that outcome, divided by the 36 possible outcomes, with 7 the most likely as

6 out of 36.

L1.1 - Basic Probability and Statistics

22



L1.1 - Basic Probability and Statistics

Rolling 2-dice, PMF from physics

PMF = Probability Mass Function

0.2

0.18

0.16

0.14

0.12
0.1 1
0.08 -

0.06 -

Probability of Each Outcome

0.04 g
0.02 |

2 3 4 5 6 7 8 9 10 11 12

refer to spreadsheet experiment...

This is the PMF of the sum of two dice, estimated by understanding the
simple system. It can also be estimated by repeated random sampling, like
the just-completed workshop, as shown in a spreadsheet.
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0.4 1

Frequency Estimate of Rollinga 7

Number of o3

T's
0.2 Jh\u
Number of ,

Rolls
0.1

1000 2000
Number of Rolls

3000

4000

Estimated Probability of Rolling a 7

The ERROR in
our estimate of
probability from
a limited sample
decreases as
sample size
mcreases

This figure shows how, in using repeated random sampling to estimate
probability, the estimate gets closer to the true value as the number of rolls

increases.
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Central Tendency Parameters

Mode = most likely

Median = 50% of prob above,
50% of prob below

Mean u = prob weighted sum of outcomes
(expected value)

For an asymmertrical distribution, they are vot...

For a symmetrical distribution, these are the same.
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PME 0.17
. 0.16
ACCU m u Iatl ng é: ZE - 0.14 0.14 -
Probability - CDF
% 0.06 0.06 0.06
g 0.04 003 0.03
Cumulative Distribution o I I
Function _ ° 2 3 4 5 6 7 8 9 10 11 12

Outcome

probability of being ) 097 100

0.92
less than or equal to a o> CDF o
e —— - 0.72
value 7 ves
non-exceedavce |
probability g -
0:2 0.17
01 oo
o w= M
5 6 7 8 9 10

2 3 4 11 12

Probability Less Than
o
o

Outcome

It is sometimes more useful to work with cumulative probabilities. The
Probability Mass Function (PMF) displays the probability of a discrete
outcome occurring. The PMF can be accumulated from the bottom into a
Cumulative Distribution Function (CDF) that displays the probability that an
occurrence is less than or equal to than each discrete outcome. The
probability of an occurrence less than or each to 5 is the sum of the
probabilities of 2, 3, 4 and 5. The sum of all possible outcomes is 1.0, and
so the CDF spans the range between 0 and 1.
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0.18 17
" 0.16 . PMF
0.14 0.14
Accumulating : o
§ 0.12 0.11 0.11
Probability - CDF o
% 0.06 0.06 0.06
§ 0.04 .03 0.03
Cumulative Distribution o ] ]
H 2 3 4 5 6 7 8 9 10 11 12
Function — o
probability of being L 1 05
greater than or equal to > s CDF
E - 0.72
a Value E o7 0.58
exceedance g o
. 5 i 0.42
probability z o
S 0.3 =
Can be called g I I R
Complementary CDF e i
Outcome

Sometimes the probability of being greater than or equal to some value is
more interesting than less than. So we can accumulate the PMF from the
top to compute the probability of an occurrence greater than or equal to each
possible outcome. The produce is still a Cumulative Distribution Function,
but is sometimes referred to as a complementary CDF.
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Continuous Random Variables
the dice were a DISCRETE randowm variable

>

QOutcome of a trial is a real number.

L 4

Probability distribution is a continuous function.

*

Probability of an exact number is zero!

*

Thus, we are interested in incremental or cumulative

probabilities: P[2.5<X<3.5]=0.4 (Incremental)
P[X<3]=0.7 (Cumulative)
P[x=2] =0
Relationship: P[2.5<X<3.5]=P[X<3.5]-P[X<2.5]
mcremental cumulative

Continuous random variables have an infinite number of possible outcomes,
making the probability of any exact outcome equal to zero. Therefore, we
work with either cumulative or incremental probabilities with continuous
random variables.

L1.1 - Basic Probability and Statistics
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Defining a Continuous Distribution

o
[N

Probability Density Function

(PDF), f(x), defines the probability of
occurrence for a continuous random
variable.

area wnder curve = probability

P(x;<X<x,)

o
o =
[ o

Probability per Unit Value
o
&

Cumulative Distribution Function )
(CDF) = [ PDF, F(x) = P(X < x), is the g o 71
probability the random variable is p(x1<_X:(xle))=
less than some value

curve = probability

Probability Less Than

These are the basic images and definitions of the Probability Density
Function and the Cumulative Distribution function for a continuous random
variable.
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Definition of PDF and CDF

A Probability Density Function (PDF), f(x), describes the
probability of occurrence for a random variable.

A Cumulative Distribution Function (CDF), F(x) is the probability
of being less than some value:

Equation: 9
F =P[Q<q] = f d
Q(q) [Q=aql f x(x)dx the integral
which reads: %\—// is the CDF

The probability that Q (e.g.,flow) is less than or equal to q (e.g.,
1000 cfs) is equal to the integral of the probability density function
(PDF), from minus infinity to q

The CDF is the integral of the PDF, and a probability for a given value is the
integral up to that value.

L1.1 - Basic Probability and Statistics
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Example CDF

The Normal Distribution CDF

1 —(x=)?
P[QSq]=Fq(q)=\/ﬁj je 202 dx

— 00

The parameters of the density function (u, the mean and o, the
standard deviation) will be discussed later.

Note, for Normal, you’ll probably never work with the function
itself...

The equations for the Normal distribution are awkward. We typically use a
tabulation, or an approximation.

L1.1 - Basic Probability and Statistics
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Topics of Discussion

+ Describing probability
¢ Definitions
e Discrete and continuous random variables

+ Estimating probability from observations

+ Review common probability distributions

+ Inferring probability distributions, parameters
e Sample moments
e Using statistical tables for Normal distribution
+ Long-term Exceedance Probability
+ Basic Relationships — jump to Greg
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Probability Estimates from Data

Estimated Probability = # of Occurrences

# of Independent Trials

= Relative
Frequency

Relative Frequency is a very simple but very effective method of estimating
probability from observations. Outcomes that are more probable to occur
more frequently.

L1.1 - Basic Probability and Statistics
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A Key Point

+ As the number of observations becomes very large, the

estimate of probability by relative frequency approaches
the true value - population value

+ Problem: we usually have relatively little data.

As an estimator, relative frequency improves as the number of observations
increases. This is true of most of the estimators we will use this week.
Unfortunately, except with systems that can be made to produce an outcome

at will, natural systems provide us a limited number of observations that only
increases with time.
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Probability Estimates from Data

note: this variable is continuous, rather than discrete as the 6-sided die

10000

2000 85 years of annual peak flow data

8000

7000

6000

5000

4000

3000

2000

Annual Peak Streamflow (cfs)

1000

o ALLLILALALALALALE | [T L i [N LT

This is an example data set of the annual maximum flow value of each year
for an 85 year period of record. Note this is a continuous random variable,
because flow can be any value in the range of possibility.
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Probability Estimates from Data

Observations of Flow

20
1 18

Istoaram
count ] M 0/\
15

Number of | note: this
times flow ] variable is

is in the 10 continuous,
interval, in rather than

85 obs discrete as the

\ > ] 6-sided die

divide comt
by®5+ o0 1 2 3 4 s 6 7 8 9

get relative
freaquewcy

Flow, in thousands of CFS

One way to view the variable probabilistically is to discretize the range and
produce a histogram. We see higher bars where there are more
occurrences, implying higher probability of those values. The histogram is
an estimate of the PDF.

L1.1 - Basic Probability and Statistics
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Histogram
Estimating the Probability Density Function, PDF

+ Histogram or, class interval analysis

 Placing observations in intervals (bins) and calculating
relative frequency results in a histogram of the
observations

« As the number of observations becomes very large, and
the interval becomes very small, the histogram
approaches the probability density function for a
continuous random variable.

We’'ll see this phrase “as the number of observations becomes very large” a
few times in the next few slides. Estimators that get better with more data
are called “consistent” estimators.

L1.1 - Basic Probability and Statistics
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Density function (PDF) vs. histogram

histogram of
very large
sample

area under the
probability density
function is
probability, and so
the area under the
entire curve is equal
to 1.0

Relative Frequency per unit

< q Value

The green PDF is a parent population, and the purple histogram represents
a very large sample from that population. This is intended to show that for a
very large sample, the histogram approaches the PDF.

L1.1 - Basic Probability and Statistics
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Cumulative Histogram

Cumulative Count Cumulative Frequency

Observations of Flow Observations of Flow ,
0.96 °

0.91

Count
Cumulative Frequency

7

ol 1 1 | | | [ [ | |

Flow, in thousands of CFS Flow, in thousands of CFS

Histograms can be accumulated for continuous random variables in the
same way they are for discrete random variables, and are an estimate of the
CDF. This is the cumulative histogram of the sample of 85 values, as count
on the left and as relative frequency on the right.
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Cumulative Histogram vs
Cumulative Distribution Function, CDF

1 -
But, not always the
best way to estimate
> the CDF for a
s smaller sample
g
I
2
3
3
0
Value

Similarly, the green CDF is a parent population, and the purple cumulative
histogram represents a very large sample from that population. This is
intended to show that for a very large sample, the cumulative histogram
approaches the CDF.

However, the cumulative histogram is not the ideal representation of the
CDF...
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Another Estimate of CDF

100

40

30

cumulative frequency 2

20

10

90 |

80

70

60

50

adjust bins for 1

¢ ®

observation each Vs

plot every value! &

3

have a histogram }“

Q-

bar for every

data point j‘

’l

4

2000 4000 6000
Annual Peak Streamflow (cfs)

8000

10000

A better estimate of the CDF involves plotting all the data points, rather than
condensing them into a histogram. It generalizes the histogram idea by
assuming that bins are sized such that there is exactly one value per bin.
This is the sample of 85 values. The vertical lines are an approximation of

showing this as a form of cumulative histogram.
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Another Estimate of CDF

10000
9000 )
*
*

8000 -

7000
7 —
L 6000 RS
z , e
S then we switch A
= 5000 -
E the axes.|.. o
2 4000 e
5 .".M
% 3000 paon?™ each event ]
o = .
= 2000 pooto® receives equal |
2 o probability of 1/N
£ 1000 “,,'

*
0
0 0 40 60 80 100
i 0
cumulative frequency A)

In this method of estimating the CDF, the axes are switched to put the
variable on the vertical and frequency on the horizontal. Note that
cumulative frequency increases by the same amount with each event,
because the count of events equal to or below that value is increasing by 1
each time.
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Another Estimate of CDF

Return Period 1.5 2 5 10 20 50 100200 500

10000

9000 -

. *

8000 11~ change to Normal ool

7000 |- ili i
7 probability axis... e
< 6000 u
8
S &
E 5000 7
£ 4000 /
e / Norwmally-distributed data
% 3000 . )
o Wl lots as straight live
o
— “1‘
5 2000 o
=] L aad
S +*
£ 1000 e L

il
o
1 5 10 20 50 80 90 95 98 9999.599.8
cumulative frequency %

Next, the formerly linear probability/frequency axis has been turned into a
Normal Probability axis. Note, this axis scaling brings values in the middle
closer together than the ones at the tails farther apart. Normally distributed
data will plot as a straight line on a Normal probability axis.

The Normal probability axis is scaled based on the Normal PDF that can be
seen sitting on the horizontal axis. Starting on the left, the value on the axis

represents the area under the PDF that has been accumulated by that point.

5% of the area has been accumulated to the left of where the axis shows 5.
50% has been accumulated to the left of where the axis shows 50. So, plot
a probability where that PDF has accumulated that probabilty.

The Normal probability axis is actually linear in the standard Normal deviate,
Z, which will be discussed in later slides.
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Plotting the Data Itself — Plotting Positions

We estimate cumulative probabilities of the data points using
Plotting Positions — by the relative frequency of sample values

With histogram analysis, we estimated the cumulative distribution
function CDF by:

for 4 = upper edoe of a biv
=P < - — where m = number of values less than q
P [Q q] N N = total number of values

With plotting positions, consider one observation per bin, for N bins

The estimated probability is still: m  Wherem=rank
p=P[Q<qil == smallest = 1,
N largest =N

for q; = sample member

In general, we’re using relative frequency to estimate the probability of being
less that a certain value by how often the observations WERE less than that
value, given our available data. That probability estimate by relative
frequency is called a PLOTTING POSITION, because is defines where to
plot the observation on the probability axis.

For a histogram, we compute that relative frequency at the edge of every
bin. The probability that variable Q is less than value q is the number of
values that were less than q. m is the number of values less q, and is the
sum of all histogram bins below q. N is the total number of values. m/N is
thus the relative frequency of values less than q.

For a plotting positions, we compute that relative frequency for every
member of the sample. The probability that variable Q is less than value q is
still the number of values that were less than g. We sort the observed
values and rank them from 1 to N. The rank, m, is the number of values less
than or each to that observation. N is the total number of values. m/N is thus
the relative frequency of values less than q, which is now computed for every
sample member, rather than only for every bin.

L1.1 - Basic Probability and Statistics
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Plotting Positions

Want to avoid a value equal to 1 (N/N)!

Some common plotting positions:

Weibull p = N+1 mean estimate of probability

Medi _m=03 dian esti babili
edian p = NTO04 median estimate of probability

Hirsch-Stedinger based on threshold-exceedance

where m =rank
N = total # of values

Since either the largest or smallest event will have rank m = N, the simple
m/N plotting position can equal 1.0. For non-exceedance, this implies that
it's impossible to have an event larger than the largest in the record, which is
a poor assumption. Even for exceedance, the assumption that we can’t
have an event smaller than the smallest is problematic, and either way, this
outcome implies a bias in all of the plotting positions.

There are many other plotting positions derived using m and N that have
good properties. Weibull and Median, shown on this slide, are commonly
used. Weibull estimates the mean of the PDF describing the uncertainty in
the estimate of probability, which means it is unbiased. Median provides the
median of the PDF of uncertainty, which is a good comparison to fitted
analytical probability distributions.
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Flow Frequency Curves

Return Period ~ 1.25 2 5 10 20 50 100200 500 ‘
10000 ‘ ’ ;

2nd largest in 85 largest in 85 years,

9000
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- | N
years, prObablllty‘CE & probability =~ 1/85
so00 || Changetoprob | <2/85:24% o 2 1.2%
RS
000 || Breater than, « o
iy 1 1
8 P[Q>q] = m/N R |
< 6000 | [ o
z L ’/’ o
t 5000 — m = rank 7 e
& 4000 |+ largest=1 / ot
[72] 1 1
% 3000 | Smallest=N / 1
e Yl 1
= 2000 o -
g .ov" : :
£ 1000 | T -
id 1 1
Fa 1 1
99 95 90 80 50 20 10 5 2 10502
100 Annual Exceedance Probability % 024 .012 0

The next adjustment is switching from P[Q>q], the probability of being less
than, to P[Q>q], the probability of being greater than. We do this by sorting
the data from high to low, so m represents the number of values greater than
or equal to.

The axis is now Exceedance Probability (the probability of being greater), but
has been reversed so that zero is on the right. There is now also an upper
horizontal axis showing return period. Return period is the average number
of years between exceedances of the flow value, and is equal to 1/
exceedance probability. Note that the largest sample member plots as the
largest in 85 years, and plots at approximately 1/85 = 1.2 % chance of
exceedance. The second largest sample member is equaled or exceeded
twice in 85 years, and so plots about 2/85 = 2.4 %. Each sample member
plots at the relative frequency of exceedance of its value as defined by its
rank in the sample.
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Cumulative Distribution Function

We can estimate a CDF from ranked observations
versus plotting positions.

As the number of observations becomes very large,
the estimated cumulative distribution function
approaches the true cumulative distribution
function for a continuous random variable

- population CDF
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Lecture 3.1

Assumptions

+ What did we just do?

+ Treated observations as a random, representative sample
of the population of interest

+ We assumed the sample is IID

annual peak flows are random and independent
peak flows are identically-distributed — homogeneous, stationary

sample is adequately representative of the population

estimate of the distribution improves with sample size

we compute confidence intervals to quantify our error (uncertainty)
due to NOT la@ivn@ representative

Not so much that they ARE identically distributed as that it is reasonable to

fit a single distribution to them.

ID: All value from the same prob distr. OR, all values can be effectively
represented by the same probability distribution
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Flow Frequency Curves

Return Period ~ 1.25 2 5 10 20 50 100200 500
10000 o
[ .oooo' *
_ “‘/
s w’
2 £ last change is a log axis for flow
£ 1000 |
£ [ o
S e
o
< ’
[«4]
o
99 95 90 80 50 20 10 5 2 10502

Annual Exceedance Probability %

The final axis adjustment is to put streamflow on a log axis. Often this brings
the plotted data closer to a straight line, which would imply a log Normal
distribution or something close to it. In the case of this data, it is more
curved on a log axis.

So far, we've done an empirical analysis in which we’ve looked only at the
data set itself and made no further assumptions. The next step is estimating
an analytical probability distribution for this data, which is the green line on
the plot.
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Alternate Labels for Frequency Axis

Avnal
Exceedance Probability = Prob. of being greater than value

Exceedance Frequency = Exc. Probability * 100
%-Chance Exceedance = Exc. Probability * 100
Return Period =1 / Exceedance Probability
Recurrence Interval = 1 / Exceedance Probability

Exceedance Interval = 1 / Exceedance Probability
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Return Period 2 5 10 oo 100 1000
100000
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Exceedance Frequency in Percent

This figure shows a fitted analytical distribution and a 90% confidence
interval, which we’ll discuss further in later slides. Once we have an
estimated probability distribution, it is a relationship between our variable
(annual maximum flow) and probability that can answer questions in either
direction. We can specify flow and determine its exceedance probability,
and we can specify exceedance probability and determine the flow that has
that probability, called a flow quantile.
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Topics of Discussion

+ Describing probability
¢ Definitions
e Discrete and continuous random variables

+ Estimating probability from observations

+ Review common probability distributions

+ Inferring probability distributions, parameters
e Sample moments
e Using statistical tables for Normal distribution
+ Long-term Exceedance Probability
+ Basic Relationships — jump to Greg
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Some Continuous Distributions
¢ Uniform:
, £ these are
+ Triangular: o
probability
; density
¢ Norrai\loztssmw £ functions
oA (PDFs)
+ Log-Normal:
log of variable is .
Normally distributed

In this lecture, we'll be looking at these four common probability distributions.
These are useful for different purposes. Some can be used for describing
hydrologic variables, and others are more useful to describe uncertainty
distributions.
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Uniform Distribution

) + Interpretation:
e All valuesinrange are
PDE CPF equally likely
+ Parameters:

Probability per unit of X

ﬁ =) e Range [a,b] [min,max]
+ What is the mean,
median, mode?
a " Vaeotx b + What does the CDF look
like?
f(x) = fora <X<b
b—a

0  otherwise

A common use of the Uniform distribution with min and max of 0 and 1,
designated as U[0,1], is for generating values to act as cumulative
probabilities to randomly sample from any probability distribution for Monte
Carlo simulation, as we did with the dice-rolling spreadsheet.
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Triangular Distribution

+ More informative than

_ﬁﬁ(x) ' uniform distribution
CVF + Parameters:
PDF e Mode ¢

e Range [a,b] [min,max]

Probability per unit of X

+ May be asymmetrical

+ In this case,
‘ 0 .
a ¢ Vaheofx b Mode < Median < Mean

+ What does CDF look like?

f) = — 28~ e 0 forx<ax>b
X) = (b—a)(c—a) orx C, or x a,Xx

20-% 2

DI orx > c, o-2) orx=c

The triangular distribution can be useful in describing uncertainty around an
estimate because it can be either symmetrical or asymmetrical.
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l.l,t‘ VaIueofX‘

1 —(X—u)2>

X) = exXpl\————
fO) = = p( -

Normal (Gaussian) Distribution

Most common distribution found
in nature, very useful

Has a defined shape, eqn

Parameters:
e Mean p
o Variance o? (standard deviation ©)

Symmetrical
e Mean = Median = Mode
o Skew coefficient =0
Scalable from Standard Normal
Mean =0, St.Dev = 1
What does CDF look like?

The Normal distribution is useful both to describe variables and to describe

uncertainty.
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Normal to Standard Normal and back

Standard
Normal

Z > X=Zc+p

(X-u)=Z~N(0,1) Normal X~ N(u, o)

(¢)
. _/N

-10 4 0 4 10 20 30 40 50 60 70

This slides shows the transformation between Normal and Standard Normal
distributions. Since Standard Normal has mean of zero and standard
deviation of one, we produce a Standard Normal variate by subtracting the
mean and the dividing by the standard deviation. We transform back to the
Normal distribution by multiplying by the standard deviation and adding back
the mean.

NOTE, the area under a PDF is 1.0, and so the two PDF in this image
SHOULD have the same area. They do not, to make an easier image to
read, but note that the red PDF should be much lower.
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Normal Distribution

95% of Normal PDF is
within 2 standard
deviations of the mean

|
|
|
|
|
>
|
[}
I
1
1

l€—>

I
|
|
|
1
1
1
1
1
1
:
<>

(@)

<>

L = mean

o = standard
deviation
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LogNormal Distribution

Probability per unit of X

Value of X

1
f(x)=—eXp<

—(In(x) — u)2>
xV2mo

202

The LOG of the variable X has
a Normal distribution

natural or base-10 logarithm
Has a defined shape, eqn

Parameters:

e Mean of logX=p

o Variance of logX = 62 (st.dev &)
Has “fixed” skew defined by
pand o
Can’t be less than zero!

What does CDF look like?

A log transform of the Normal distribution is useful when a variable has a

positive skew and cannot have values less than zero. The parameters are

based on the log transform of the variable.
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Parameters and Statistics

+ Parameter
e A descriptive measure of a POPULATION

+ Statistic
e A descriptive measure of a SAMPLE

A sample statistic is often used to estimate a
population parameter
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Topics of Discussion

+ Describing probability
¢ Definitions
e Discrete and continuous random variables

+ Estimating probability from observations
+ Review common probability distributions

+ |Inferring probability distributions, parameters

e Sample moments

e Using statistical tables for Normal distribution
+ Long-term Exceedance Probability
+ Basic Relationships — jump to Greg
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Flow

1

Exc. Prob.

0

Probability Distribution for Flow

This is our “model” of probability

Defines probability of exceedance as a function of
flow (or vice versa).

cumulative
fumction:
CDF

A probability distribution is just another kind of model that represents the

relationship between the variable of interest and its probability of occurrence.
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Distribution Fitting Procedure

' which
Selection distribution?
Calibration | —» ¢5Tmate
parameters
Sample
Verification| —> compare to
/ < plotted data
observations Prediction| —  define
dquavtiles

Quantile = value exceeded with a certain probability, p

We use the same steps in fitting a probability model as we do in developing
other models. All steps are based on the sample of data that we assume is
representative of parent population probability distribution.

We select a probability distribution, estimate its parameters from the sample,
compute the CDF of that distribution, and compare that CDF to the sample,
either as histogram or plotted points.

Because of how they’re defined, the “prediction” step comes before the
“verification” step because the CDF (the quantiles) must be computed before
it can be compared to the data.
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Elements of a Distribution

+ Equation
Defines the relationship between the variable and cumulative
(or exceedance) probability

+ Parameters
A parameter is a coefficient in the equation

Example: Exponential Distribution
cumunlative distribution
funetion CDF

Flow = _log(lipr"bq duantile function

Probability< =1 — e~ ?Flow
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Challenges in Fitting a Distribution

+ Form (equation) of parent population’s distribution
not known. — Selection

+ Parameters of parent population’s distribution not
known, and estimated from a small sample.
— Calibration

+ Most interested in extremes (tails), which have the
most error from calibration, selection @~ —— Prediction
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Selection of Distribution

0.3 -
sample size = 65
0.25 -
observed histogram
0.2
0.15 -

Normal PDF
0.1 -

0.05 -

Observations (relative frequency)

150 200 250 300 350 400 450 500 550 600 650

Annual Volume (thousand AF)
West Branch, Oswegatchie River, Harrisville, NY

This is the histogram of a 65 year record of annual flow volumes for a river in
New York. By examining the histogram as a first step, we can decide what
of the distributions we’ve looked at might be reasonable.

Uniform is clearly incorrect. Triangular is possible, but there are more values
cluster in the middle, which is closer to Normal. It's not completely
symmetrical, with a longer upper tail than lower, but perhaps close enough
that the sample could have been generated by a symmetrical PDF.

The example will proceed with fitting a Normal distribution to the 65-member
sample of flow volume.
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+ Central Tendency

+ Asymmetry
symmertrical?

Calibration:
Estimating Distribution Parameters

Can estimate parameters using sample statistics.
The general descriptive parameters are:

+ Dispersion or Spread how wide? (scale)

(shape)

LA

PDF

Distribution
Moments

These description parameters are also known as the MOMENTS of the

probability distribution.
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Central Tendency Statistics

Mode = most frequently occurring

Median = middle of ranked list
(50% of data above, 50% of data below)

Mean X (average) = sum of values

expected value number of values

These are the statistics of central tendency as estimated from a sample.
The earlier mention of the these measures described their definitions for a
probability distribution. These sample statistics can be used to estimate the
distribution values.
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Sample Mean, X  expected value

Central value statistic
15" moment

Sample mean is an estimate of population mean, p abont O

1 N
X = —z Xi )_< - ﬁ
N i=1 Xbar mMuyq

where: X, = sample member, i
N = sample size

el

Sample mean is also known as expected value, and is noted as X-bar, or
whatever variable designation with a bar over it.

A change in the mean moves the PDF left (for lower) or right (for higher).
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Dispersion Statistics

Standard Deviation, S = average distance

from mean

Variance, S? = (standard deviation)?
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Standard Deviation, S

Dispersion Statistic (average distance from mean) 274 novnewt

Sample standard deviation S is an estimate of about vmean
population standard deviation,

N

1 _ ~

Sy = —ZX-—X2 Sy=0
1=

where: X; = sample member, i
N = sample size

X = sample mean

Standard deviation, noted S, is the average distance from the sample mean.
Because the sum of distances from the sample mean is equal to zero, this
estimator squares the distances Xi — Xbar to remove the sign and make all
values positive. After averaging, the square root it taken to return the metric
to the original unit of the variable. The equation divides by N-1 rather than N
as a correction for bias, to produce an unbiased estimator.

A change in the standard deviation makes the PDF narrower (for smaller) or
wider (for larger).
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Asymmetry - Skew Coefficient, g

Asymmetry statistic, skew coef. = g 24 ormewt

Sample skew is an estimate of population skew, vy, about wmeav
but is volatile for small samples

N
N (Xi_i)3 g:y

(N—1)(N=2)S3

g

¥<0

where: X, = sample member, i
N = sample size
S = sample standard deviation

Normal Distribution

The skew coefficient again uses distances from the sample mean, but cubes
them, which reestablishes the sign (positive or negative) and exaggerates
the value. Values far from the mean, above or below, have more influence
on the statistic than values close to the mean. More values far above the
mean than far below the mean will produce a positive sum, and more values
far below will produce a negative sum.

N-1 and N-2 are again corrections for bias. But with a single N on top and
two Ns on the bottom, this is still an average cubed distance from the mean.
Finally, it is divided by the standard deviation cubed, both normalizing the
value and making it dimensionless (unitless).

A symmetrical sample will have a skew of zero, because the distances
above and below the mean are balanced. Values much larger than the
mean, producing a positive skew, show as a long upper tail and short lower
tail. Values much smaller than the mean, producing a negative skew, show
as a long lower tail and short upper tail.
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Distribution Moments

* First moment: mean
= 1
*X= EZ%\LlXi

» Second moment: variance
1 N
¢ S2 = E21=1(Xi )?

° = Li N . 3
8 = mpmp 53 2= Ki — )

e Third standardized moment: skew
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Distribution Parameters

CDF, fredueney curve form
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Earlier slides showed the sample statistics, and the parameters they
estimate, on the PDF form of the distribution or sample. This figure shows
them on the frequency curve form, which is the CDF with the axes switched
to put the variable on the vertical and probability or frequency on the

horizontal.

A change in the mean moves the frequency up or down. A change in the
standard deviation changes the slope of the frequency curve. A larger
standard deviation produces a steeper slope that spans a wider range of the
variable on the vertical axis. A smaller standard deviation thus produces a

smaller slope.
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Distribution Parameters

CDF, freduency curve form
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100 X probability of exceeding

Earlier slides showed the sample statistics, and the parameters they
estimate, on the PDF form of the distribution or sample. This figure shows
them on the frequency curve form, which is the CDF with the axes switched
to put the variable on the vertical and probability or frequency on the
horizontal.

A Normal distribution has a zero skew, and plots as a straight line on a
Normal probability axis. A positive skew produces an upward curvature, as
the long upper tail reaches higher vertically on the right. A negative skew
produces a downward curvature, as the long lower tail reaches downward on
the left, and the short upper tail pulls downward on the right.

As a mnemonic, positive skew is happy and produces a smiling upper
curvature, and negative skew is sad and produces a frowning downward
curvature.
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Topics of Discussion

+ Describing probability
¢ Definitions
e Discrete and continuous random variables

+ Estimating probability from observations
+ Review common probability distributions

+ Inferring probability distributions, parameters
e Sample moments
e Using statistical tables for Normal distribution

+ Long-term Exceedance Probability
+ Basic Relationships — jump to Greg
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Computing Quantiles _ specify p, compute Q,

prediction

Normal Distribution, N[u,c]
discharge of Q — M +7 c— standard
specified «—— P p deviation

probability / \

(quantile) mean Standard Normal Dev, N[0,1]:
number of standard
deviations away from the
Why? mean use estimates:
Equation is ugly, A _
and can’t be c p = prob Qp =X+ ZPS
solved for Q, greater
noooQ Q

The Normal distribution has an equation that is hard to work with, and so we
generally work with the Standard Normal distribution that is fully tabulated in
all statistics text books. The Standard Normal distribution has mean of 0
and standard deviation of 1, and is referred to as Z. Zp is the value for a
given probability p.

To produce a quantile from the Normal distribution for probability p, we first
look up the value Zp from the Standard Normal, then multiply it by our
standard deviation and add our mean. The Z value can be interpreted as the
number of standard deviations above or below the mean.
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Normal to Standard Normal and back

Standard
Normal

4 > X=40+2Z*5

(X-u)=Z~N(0,1) Normal X~ N(u, o)

(o) /QJJG
<€ _/

-10 4 0 4 10 20 30 40 50 60 70
(X -40)=2 N(40, 5)
5

This slides shows the transformation between Normal and Standard Normal
distributions. Since Standard Normal has mean of zero and standard
deviation of one, we produce a Standard Normal variate by subtracting the
mean and the dividing by the standard deviation. We transform back to the
Normal distribution by multiplying by the standard deviation and adding back
the mean.

NOTE, the area under a PDF is 1.0, and so the two PDF in this image
SHOULD have the same area. They do not, to make an easier image to
read, but note that the red PDF should be much lower.
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Selected Values of Zp

Probability of Return Period, Standard Normal
exceeding, p 1/p Deviate, Z(p)
0.75 1.333 -0.67
05 ) 0.00 values from
Stavdard
0.25 4 0.67
—  Norwmal
0.1 10 1.28 distribution
0.01 100 2.33
0.001 1000 3.09

Here we have several exceedance probabilities, the associated return

periods 1/p, and the Zp value.
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Quantile Computation

Quawtile % =397
Prob of | Return Z(p) w+ Z(p)*o S=77
exceed, p| Period from sample N[397,77] N(u.0)

0.75 | 1.333 | -0.67 | 397+ (-0.67)(77) = 345

0.5 2 0.00 | 397+ (0.00)(77) = 397
0.25 4 0.67 | 397+ (0.67)(77) = 449
0.1 10 128 | 397 +(1.28)(77) = 496

0.01 100 233 | 397 +(2.33)(77) =576
0.001 | 1000 | 3.09 | 397+ (3.09)(77) =635

A fourth column is added showing the transformation from the Standard
Normal back to the Normal distribution using the computed sample mean
and standard deviation. Mean + SD * Zp produces the quantiles of the
distribution, given the sample statistics shown.

Sample statistics computed as sample mean Xbar = 397, sample standard
deviation S = 77 and sample skew coefficient g = 0.4. Note, the skew
coefficient is not a parameter of the Normal distribution, which has a skew
coefficient of zero, and so was not used here.
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Verification

0.3
mmm observed histogram
——Normal PDF

0.25

0.2 4
X =397

0-15 1 S= 77

0.1

Observations (relative frequency)

0.05 -

150 200 250 300 350 400 450 500 550 600 650
Annual Volume (thousand AF)

The blue PDF is the computed Normal Distribution, compared to the sample
histogram. How well does the distribution agree with the data?

Sample statistics computed as sample mean Xbar = 397, sample standard
deviation S = 77 and sample skew coefficient g = 0.4. Note, the skew
coefficient is not a parameter of the Normal distribution, which has a skew
coefficient of zero, and so was not used here.
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Verification

0.2
0.3 4
04 -
0.5 4
0.6 1

Exceedance Frequency

0.7
0.8 -
0.9

04 tom===mmmmmmmmmm oo A

Normal CDF X=397
= ! Observed S=77

£
il v v

100 200

300 400 *9%%60 57800 700

Annual Volume (thousand AF)

This is the CDF form, plotted with the sample values against median plotting
positions. How well does the distribution agree with the data?
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650 - Normal CDF
= Observed
— 576 €t=q==q=-p====------- —k----- ——-we-5
% 550 .
©
C [
o 496 €T—T-—"--T----- il nliied nidadagsy ey
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|
]
150 -
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Exceedance Frequency

This is the frequency curve form, plotted with sample values versus plotting
positions. How well does the distribution agree with the data? This seems a
good fit except the highest three points, as expected when the original
histogram showed a longer upper tail than lower.
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Goodness of Fit

X =397
5= 77 Vol~N(397,77)
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Q-Q plot
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Exceedance Probability from Normal Distribution
based on sample volume

Another way to assess how well the distribution fits is with Goodness of Fit
tests. These two plots compare the sample values to what a Normal
distribution would have expected the sample values to be.

The QQ plot shows the sample data on the vertical axis, paired with the
value of the Normal distribution that goes with its plotting position on the
horizontal axis. The closer to the straight 1:1 line, the better the fit. We
often compute a correlation coefficient for the pairs, with a value closer to 1.0
showing better fit, to have a numerical value of fit to work with.

The PP plot is similar, with the plotting positions for any 65-member sample
on the vertical, and the cumulative probabilities of the fitted Normal
distribution for each of the sample members on the horizontal. Again, a
correlation coefficient can be used to produce a numerical value of the fit.
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Computing Quantiles: LP3

Log-Pearson type Il is similar to Log-Normal, w/skew

standard
mean deviation
T aY p = exceedance
Xp =10810Qp :@ Kp,&@ probability
0 = 1 X+Kp,GS K, is a lookup
Qp 0 value from B17B

Remember normal distribution frequency equation...

Qp = QHZy5

The LogPearson lll curve is estimated by computing its quantiles. Recall the
estimation of the Normal distribution curve, defined as the mean plus Zp
standard deviations, where Zp is the “standard normal deviate” for probability

p.

The LogPearson lll curve is estimated in the same way, except that the
deviate K is based on both probability p and skew g.
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+ Part 2 of Excel Exercises

fitting probability distributions
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Topics of Discussion

+ Describing probability
¢ Definitions
e Discrete and continuous random variables

+ Estimating probability from observations
+ Review common probability distributions

+ Inferring probability distributions, parameters
e Sample moments
e Using statistical tables for Normal distribution

+ Long-term Exceedance Probability

+ Basic Relationships — jump to Greg
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Long-term Exceedance Probability

In addition to annual probability, interested in probability
of occurrence within a longer period of time

e Also, larger probabilities are more understandable

Example: What is the probability that a house in the
1% (100-year) floodplain will be flooded at least once in
a 30-year period? (..at the edae of the 17% floodplain)

+ Start with the probability of flooding in any one year

+ Apply the binomial distribution for a 30-year period...
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assumes independence

Binomial Distribution .
of trials

P[x successes in N trials] = [1;]] p*(1—p)N X

N! -

= number of ways to get

where: = —— . .
x!' (N —x)! x successes in N trials

p = probability of success in a single trial

Example: P[2 successes in 3 trials | p = 0.4]

31!

= m (04)2 (1 - 0.4)3_2

-1-0 /7
:?j =3 (0.4)2(0.6)* \ \ probability of

1 fail
= 0.288 probability of ature

2 successes

wWnN =
O =
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Long-term Exceedance Probability

x=0
+ Prob of no exceedances in N years is

(1 - p) N (x=0, where p = probability of exceedance)

+ Prob of one or more exceedances in N years is
1-(1-p)V (complement of noneis at least 1)  X=1, ..., X=30

=> Prob of one or more “1%” floods in 30 years is Answer is:
1-(1-0.01)3°=0.26 because p=0.01and N =30 2.0%0

The risk of 1 or more “10-yr” floods in 30 years is 1 - (1-1/,,)3°=0.96 Q6%
The risk of 1 or more “100-yr” floods in 30 years is 1 - (1-1/,,,)3°=0.26  2.6°To
The risk of 1 or more “500-yr” floods in 30 years is 1-(1-1/.,,)?°=0.06 (°lo
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Goals addressed so far....

+ revisit probability concepts

+ estimating probability
e from understanding the system or from data

+ using probability distributions to describe what is
random, and what is unknown

+ reviewing common probability distributions
+ fitting probability distributions to data

+ computing subsequent probabilities
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More topics!
Greg Karlovits, HEC

+ Evaluating Data
e Types
e Numerical Summaries
e Diagnostics

+ Venn Diagrams
e Events / Axioms of Probability

D

[

]

!

i

Wind Direction, degrees

L
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Working with the Normal Distribution

+ Preparation for workshop 1.3
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Normal to Standard Normal and back

Standard
Normal
X=40+272*5

>

(X-u)=Z~N(0,1) Normal X~ N(u, o)

€ —

-10 4 0 4 10 20 30 40 50 60 70
(X -40)=2 N(40, 5)
5

This slides shows the transformation between Normal and Standard Normal
distributions. Since Standard Normal has mean of zero and standard
deviation of one, we produce a Standard Normal variate by subtracting the
mean and the dividing by the standard deviation. We transform back to the
Normal distribution by multiplying by the standard deviation and adding back
the mean.

NOTE, the area under a PDF is 1.0, and so the two PDF in this image
SHOULD have the same area. They do not, to make an easier image to
read, but note that the red PDF should be much lower.
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Standard Normal CDF, Z,

1% 1
10%0.9
0.8
25%
0.7 N
.| whyis 107 /
. voted at /
0.97 /

0.4 /
0.3

75% /

Cumulative probability (less than)

0.2 /
0.1

e

-4 -3 -2

.{0.67 , 0.67,1.28 ,2.32

Zvalue of Standard Normal Distribution

3

o =4
=3 o i o
5 - & ~

Probability per Unit Value

o

Probability Less Than

Value X

PDF

CDF

This is the CDF of the Standard Normal distribution, showing values that are

also tabulated in text books.

Cumulative probability (probability less than) is on the vertical and the Z

variate is on the horizontal. Note that most of the distribution is between -3

and 3, and nearly all is between -4 and 4.
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Using Standard Normal table

| negative Z: /’ positive Z:
Z=-1.6 s \ 2=2.0
| prob<zZ=55% I,' \ prob>7=2.3%

\
\
\

-4 -3 -2 -1 0 1 2 3 4

Z value of Standard Normal Distribution

Because the distribution is symmetrical, most Standard Normal tabulations
only show half, and leave it to the user to reverse to result for values on the
other half of the distribution.

In the table coming up in this lecture, the negative side of the distribution is
tabulated. So the pairing of Z = -1.6 having cumulative probability (P<Z) of
5.5% can be read directly. But to determine the cumulative probability (P<Z)
of Z = 2.0, we must transform a value assumed from the upper half of the
distribution. The table will tell us that Z = -2.0 has cumulative probability
(P<Z) of 2.3%, and we therefore know by symmetry that that Z = 2.0 has
exceedance probability (P>Z) of 2.3%.
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Using Standard Normal table

For Z> 0 from a table of lower half cumulative probability (Prob < Z)

| negative Z: *,/ positive Z:
Z=-1.6 4 Z2=2.0
1 prob<zZ=55% 7’ prob>7=2.3%
7 looked up as prob <-2.0
/,’ prob<Z=100-2.3%

4 =97.7%

{ I
4 3 2 1 0 1 2 3 4

Z value of Standard Normal Distribution

Because the distribution is symmetrical, most Standard Normal tabulations
only show half, and leave it to the user to reverse to result for values on the
other half of the distribution.

In the table coming up in this lecture, the negative side of the distribution is
tabulated. So the pairing of Z = -1.6 having cumulative probability (P<Z) of
5.5% can be read directly. But to determine the cumulative probability (P<Z)
of Z = 2.0, we must transform a value assumed from the upper half of the
distribution. The table will tell us that Z = -2.0 has cumulative probability
(P<Z) of 2.3%, and we therefore know by symmetry that that Z = 2.0 has
exceedance probability (P>Z) of 2.3%. We can then compute the probability
of Z<2.0as 100 — 2.3% = 97.7%.
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Computing a Normal Distribution CDF

First, estimate 1 and o by X and S, from the sample

1. Start from probability, compute X  saw this earlier v lecture
e Specify probabilities of interest, or across 0 — 1 range
e Look up Z, in table for each probability p (vote whether < or >)
o Compute X, =X +Z_S, foreachp

2. Start from X, compute probability  will do +his in the workshop
e Specify X’s of interest, or across possible range
o Compute Z; = (X - X)/SX for each X (ie, translate to standard normal)
o Look up p in table foreach Z, (note whether < or >)
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Standard Normal Probabilities

What is z, such that prob <z =0.01? S‘i‘m."i‘lVI@

Table entry (1) Find probability in the table WH—V‘]‘
(2)z=A+B=-2.3+0.03=-2.33 probability
Table entry for z is the area under the standard normal curve
to the left of z.

¢ B
z .00 .01 .02 | .03 | .04 .05 .06 .07 .08 .09

-3.4 .0003 .0003 .0003 0003 .0003 .0003 .0003 .0003 .0003 .0002

-3.3 .0005 .0005 .0005 0004, .0004 .0004 .0004 .0004 .0004 .0003

-3.2 .0007 .0007 .0006 .0006/ .0006 .0006 .0006 .0005  .0005 .0005

-3.1 .0010 .0009 .0009 .0009| .0008 .0008 .0008 .0008  .0007 .0007

-3.0 .0013 .0013 .0013 .0012| .0012 .0011 .0011 .0011  .0010 .0010

-2.9 .0019 .0018 .0018 .0017| .0016  .0016 .0015 .0015 .0014 .0014

-2.8 .0026  .0025 .0024 .0023| .0023  .0022 .0021 .0021  .0020 .0019

B 00B58 0031 0035 .0032| .0031 .0030 .0029 .0028 .0027 .0026

-2.6 .0047 .0045 .0044 .0043| .0041 .0040 .0039 .0038 .0037 .0036

-2.5 .0062 .0060 .0059 .0057| .0055 .0054 .0052 .0051 .0049 .0048

-2.4 .0082 .0080 .0078 .0073  .0071 .0069 .0068  .0066 .0064

A [=23] _oto7  .0104 .0102 @ .0096 .0094 .0091 .0089  .0087 .0084

-2.2 0139  .0136 .0132 .0129 .0125 .0122 .0119 .0i16 .0113 .0110

-2.1 .0179 .0174 .0170 0166  .0162 .0158 .0154 .0150 .0146 .0143

- nNn n 70 [alolele} n17 N1 non7 nonn n1a7 niQ” n1QgQ n1Q2

This is a tabulation of the lower half of the Standard Normal distribution,
providing cumulative probability P<Z. The value of Z is the headers of the
rows and columns, with Z to the first decimal as the row, and the second
decimal as the column, and the cumulative probability (P<Z) is the value in
the table.

To start with probability and look up Z, find the probability of interest in the
table, and read the row and column headers. For (P<Z) of 1% or 0.01, the
closest value is .0099, which has Z of -2.3 from the row and .03 from the
column for a total of -2.33.

Note symmetry of the distribution and we know Z = 2.33 has exceedance
probability (P>Z) of 1%.

L1.1 - Basic Probability and Statistics 101



L1.1 - Basic Probability and Statistics

Standard Normal Probabilities

starting
What is prob that z < -2.57 with X
. (1) break zinto A =-2.5, B=0.07
able entry
(2) probability is at the intersection = 0.0051
Table entry for z is the area under the standard normal curve
1 to the left of z.
< B
4 .00 .01 .02 .03 .04 .05 .06 | .07 .08 .09

-3.4 .0003 .0003  .0003 .0003  .0003 .0003 .0003 .0003| .0003 .0002
-3.3 .0005 .0005 .0005 .0004 .0004 .0004 .0004 .0004| .0004 .0003
-3.2  .0007 .0007  .0006 .0006  .0006 .0006 .0006 .0005| .0005 .0005
-3.1 .0010 .0009 .0009 .0009 .0008 .0008 .0008 .0008| .0007 .0007
-3.0 .0013 .0013  .0013 .0012  .0012 .0011 .0011 .0011} .0010 .0010
-2.9 .0019 .0018 .0018 .0017 .0016 .0016 .0015 .0015| .0014 .0014
-2.8 .0026 .0025 .0024 .0023  .0023 .0022 .0021 .0021| .0020 .0019
-2.7 .0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028| .0027 .0026
-2.6 .0047 .0045  .0044 .0043  .0041 .0040  .0039 0038Y .0037 .0036
A |—2.5| .0062 __.0060 _ .0059 .0057 _ .0055 _ .0054 .0052\#@’ .0049 .0048
-2.4 .0082 .0080  .0078 .0075  .0073 0071 .0069 .0068 .0066 .0064
-2.3 .0107 .0104 .0102 .0099 .0096 .0094 .0091 .0089  .0087 .0084
-2.2 .0139 .0136  .0132 .0129  .0125 .0122 .0119 .0116 .0113 .0110
=21 .0179 .0174 .0170 .0le6  .0162  .0158 .0154 .0150 .0146 .0143

- nNn n 70 [alolele} n17 N1 non7 nonn n1a7 niQ” n1QgQ n1Q2

This is a tabulation of the lower half of the Standard Normal distribution,
providing cumulative probability P<Z. The value of Z is the headers of the
rows and columns, with Z to the first decimal as the row, and the second
decimal as the column, and the cumulative probability (P<Z) is the value in
the table.

Thus, for Z = -2.57, we go to the row for -2.5, the column for .07 and read
the P<Z = 0.51%

If we actually have Z = 2.57, we look up the probability of Z = -2.57 and
assume symmetry. Thus cumulative probability P<Z of Z = 2.57 is 1 —
0.0051 = 0.9949 of 99.49%.
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