Basic Probability and Statistics: Exploring and Summarizing Data

Flood Frequency Analysis Greg Karlovits, PE, PH, CFM Hydrologic Engineering Center, May 2022

Data are the result of observing or measuring selected characteristics of the study units, called variables.

USGS Flow Measurements

Measuring Agency	$\left\{\begin{array}{l}\text { USGS } \\ \text { USACE } \\ \text { Other }\end{array}\right.$	Nominal
Measure Rating	$\left\{\begin{array}{l}\text { Excellent } \\ \text { Good } \\ \text { Fair } \\ \text { Poor } \\ \text { Unknown } \\ \text { Unspecified }\end{array}\right.$	Ordinal
Measure Duration	$[<$ blank>, 0.0, 0.1, 0.2, ...] hours	Discrete
Streamflow	in $\mathrm{ft}^{3} \mathrm{~s}^{-1}$	Continuous

Numerical Variables

Interval vs. Ratio

Comparable by
difference, but not
ratio

Example:
Temperature
$80^{\circ} \mathrm{F}$ is not 4 times
hotter than $20^{\circ} \mathrm{F}$.

Comparable by
both, has "natural
zero"

Example: Distance
50 km is 10 times farther than 5 km .

Categorical Data Summaries

Arithmetical operations are not meaningful for categorical data.

Summary statistic: Count

Rating	Frequency	Relative
Frequency (\%)		
Excellent	22	8.3
Good	115	43.6
Fair	84	31.8
Poor	26	9.8
Unknown	1	0.4
Unspecified	16	6.1
Total	$\mathbf{2 6 4}$	$\mathbf{1 0 0}$

Frequency Table

Measurement Rating

Pareto Chart

Numerical Data Summaries: Percentiles

The α-percentile of a dataset is the data value where $\alpha \%$ of the data are below it.

Values shown at right have been interpolated.

```
Excel:
=PERCENTILE.INC( \(\mathrm{x}, \mathrm{k}\) )
```

[R](hist(x)):
quantile(x, probs)

Numerical Data Summaries: Five-Number Summary

A quick, standard way to represent a dataset.
 Other measures can be derived from it.

- Minimum
- $25^{\text {th }}$ percentile (first quartile)
- $50^{\text {th }}$ percentile (median/second quartile)
- $75^{\text {th }}$ percentile (third quartile)
- Maximum

[R](hist(x)):

fivenum(x)

Numerical Data Summaries: Central Tendency

Mean

$$
\begin{gathered}
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \\
x_{\min }=x_{(1)} \leq x_{(2)} \leq \cdots \leq x_{(n)}=x_{\max }
\end{gathered}
$$

Median

$$
\tilde{x}=\left\{\begin{array}{cc}
x_{\left(\frac{n+1}{2}\right)} & \text { nodd } \\
x_{\left(\frac{n}{2}\right)}+x_{\left(\frac{n+1}{2}\right)}^{2} & \text { neven }
\end{array}\right.
$$

Mode
Most frequently-occurring value

Numerical Data Summaries: Central Tendency (Robust)

Weighted averaging schemes

Weighted average of many values
[R](hist(x)):
mean(x, trim = 0.25)

$$
T M=\frac{Q_{1}+2 Q_{2}+Q_{3}}{4}
$$

Tukey's
Trimean
Q_{1} - first quartile ($25^{\text {th }}$ percentile)
$\mathrm{Q}_{2}-$ median (50 ${ }^{\text {th }}$ percentile)
Q_{3} - third quartile ($75^{\text {th }}$ percentile)

Weighted average of 3 values

Numerical Data Summaries: Dispersion

Variance

$$
s_{x}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

Standard
Deviation

$$
s_{x}=\sqrt{s_{x}^{2}}
$$

Coefficient of Variation

$$
C V=\frac{s_{x}}{\bar{x}}
$$

Numerical Data Summaries: Dispersion (Robust)

Inter-
Quartile
Range

$$
I Q R=Q_{3}-Q_{1}
$$

Q1 - first quartile ($25^{\text {th }}$ percentile)
Q3 - third quartile ($75^{\text {th }}$ percentile)

Scale-invariant

Quartile
 Coeff. of

Dispersion
Median
Absolute
$M A D=\operatorname{median}\left(\left|x_{i}-\tilde{x}\right|\right)$
median distance between each data point and the sample median

Numerical Data Summaries: Asymmetry (Skew)

Coeff. of skewness

$$
g=\frac{n}{(n-1)(n-2)} \frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{3}}{s_{x}^{3}}
$$

Negative Skew

Positive Skew

Yule's
Coeff.

$$
\frac{Q_{3}+Q_{1}-2 Q_{2}}{Q_{3}-Q_{1}}=\frac{\frac{Q_{3}+Q_{1}}{2}-Q_{2}}{\frac{Q_{3}-Q_{1}}{2}}
$$

L-Moments

- A formulation of moment measure less susceptible to outliers
- Mainly used in precipitation-frequency analysis
- Central tendency - "L-Mean"
- Dispersion - "Coefficient of L-Variation"
- Asymmetry - "Coefficient of L-Skewness"

Why should you look at your data?

Property	Value
Mean of x	9
Sample variance of x	11
Mean of y	7.50
Sample variance of y	4.125
Correlation between x and y	0.816
Linear regression line	$\mathrm{y}=3.00+$ 0.500 x
Coefficient of determination of the linear regression	0.67

Histogram

Excel:
 =FREQUENCY(data, bins)

Histogram

https://statistics.laerd.com/statistical-guides/understanding-histograms.php

Histogram Diagnostics

Histogram of X

Histogram of X

Histogram of X

[R](hist(x)):

Kernel Density Estimation

density(x)

Kernel Density Estimation

[R](hist(x)):

Empirical CDF (eCDF)

Box Plots

Box Plots

Box Plots

Normal Q-Q Plot

Compute z-scores for data

$$
z_{i}=\frac{x_{i}-\bar{x}}{s_{x}}
$$

Plot against sorted data
Plot line through Q_{1} and Q_{3}
Used to test:

- Normality
[R](hist(x)):
qqnorm(x)
qq7ine(x)

Normal Q-Q Plot Diagnostics

Normal Q-Q Plot

Normal Q-Q Plot

Normal Q-Q Plot

Run Sequence/Time Series Plot

Run Sequence Plot of X

Plot the data in the order they were observed

Use the order (index) or time as the x-axis variable

Used to test:

- Randomness
- Fixed location
- Fixed variation

Run Sequence and Time Series Plot Diagnostics

Non-Stationarity

- Properties of the time series are changing with respect to time
- Can be attributed to physical causes
- Land use change/urbanization
- Climate change
- Manifests as changes in mean or variance
- Often can be identified visually

Detecting Non-Stationarity

- Run sequence/time series plot
- Check data flags
- Split sample testing
- Simple regression
- Nonstationarity Detection Tool

Call:						
Residuals: Min 10 Median 30						
$\begin{array}{llllll}-1977.98 & -727.14 & -25.01 & 469.32 & 2931.56\end{array}$						
$\begin{array}{llllll}\text { peak_dt } & 2.994 \mathrm{e}-02 & 1.313 \mathrm{e}-02 & 2.28 & 0.0252\end{array}$						
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1						
Residual standard error: 1032 on 80 degrees of freedom						
Multiple R-squared: 0.06103, Adjusted R-squared: 0.0493 F-statistic: 5.2 on 1 and 80 DF , p-value: 0.02525						

Basic Probability and Statistics: Events and Relationships Venn Diagrams

Flood Frequency Analysis Greg Karlovits, PE, PH, CFM Hydrologic Engineering Center, May 2022

Venn Diagrams

Union and Intersection

Union
A OR B
Intersection
A AND B

Venn Diagrams

Coin Flip

- Mutually exclusive and exhaustive

$$
p(A \text { or } B)=p(A)+p(B)=1
$$

Die Roll

Complements

- All the space in "not A"

When Events Collide - General Additivity

Two Coins

Two Coins

$p(H 1$ or $H 2)=p(H 1)+p(H 2)-p(H 1$ and $H 2)$

Two Coins

Only because H 1 and H 2 are independent!

Independence

Joint probability of
 iff $A \perp B$

Marginal probability of A

Marginal Probability

- What is the probability of A occurring irrespective of what happens with B ?

Joint Probability

-What is the probability of A and B occurring together?

$$
p(A \text { and } B)
$$

Conditional Probability

- Given that B has occurred, what is the probability that A occurs?
- Once we have observed that B has occurred, it becomes our "universe"

$$
p(A \mid B)
$$

Conditional and Joint Probability

$$
p(A \mid B)=\frac{p(A \text { and } B)}{p(B)}
$$

if $A \perp B$,
$p(A \mid B)=\frac{p(A) * p(B)}{p(B)}=p(A)$

