The following sample calculations were the basis for the algorithms used in the HEC-RAS sediment transport functions. They were computed for a single grain size, however they were adapted in the code to account for multiple grain sizes.

Ackers-White Sediment Transport Function
by Ackers-White (ASCE Jour. Of Hyd, Nov 1973)

Input Parameters

Temperature, FT = 55Average Velocity, ft/sV = 2
Kinetic viscosity, ft2/s

\nu = 00001315

Discharge, ft3/sQ = 5000
Depth, ftD = 10Unit Weight water, lb/ft3

\gamma _w =62.385

SlopeS = 0.001Overall d50, ftd50 = 0.00232
Median Particle Diamter, ftdsi = 0.00232

Specific Gravity of Sediment,s = 2.65

Constants

Acceleration of gravity, ft/s2g = 32.2

Solution

Note

Ackers-White required the use of d35 as the representative grain size for computations in their original paper. In the HEC-RAS approach, the median grain size will be used as per the 1993 update. The overall d50 is used for the hiding factor computations.

Hiding Factor from Profitt and Sutherland has been added for this procedure, but will be included as an option in HEC-RAS.

Computations are updated as per Acker's correction in Institution of Civil Engineers Water Maritime and Energy, Dec 1993.

Dimensionless grain diameter,

\displaystyle d_{gr} = d_{si} \left[ \frac{g \cdot (s-1)}{\nu ^2} \right] ^{\frac{1}{3}}
d_{gr} =15.655

Shear velocity u

\displaystyle u_{star} = \sqrt{g \cdot D \cdot S}
u_{star} =0.567

Sediment size-related transition exponent n,

\displaystyle n= \left| \begin{array} 1 1 & if \; d_{gr} \leq 1 \\ (1-0.056 \cdot log(d_{gr})) & if \; 1<d_{gr} \leq 60 \\ 0 & if \; d_{gr} > 60 \end{array}
n=0.331

Initial motion parameter A,

\displaystyle A= \left| \begin{array} 1 ( \frac{0.23}{\sqrt{d_{gr}}} +0.14) & d_{gr} \leq 60 \\ 0.17 & otherwise \end{array}
A = 0.198

Sediment mobility number Fgr

\alpha =10 (assumed value used in HEC6 and SAM)          \alpha =10

\displaystyle F_{gr} = \frac{u_{star}^n}{\sqrt{g \cdot d_{si} \cdot (s-1)}} \cdot \left( \frac{V}{\sqrt{32} \cdot log \left( \alpha \cdot \frac{D}{d_{si}} \right)} \right) ^{1-n}
F_{gr} = 0.422

Hiding Factor HF,

Shield's Mobility Parameter \theta,

\displaystyle \theta = \frac{u_{star}^2}{g \cdot (s-1) d_{50}}
\theta =2.612
\displaystyle dRatio = \left| \begin{array} 1 1.1 & if \; \theta \leq 0.04 \\ (2.3-30 \cdot \theta ) & if \; 0.04 < \theta \leq 0.045 \\ (1.4-10 \cdot \theta ) & if \; 0.045 < \theta \leq 0.095 \\ 0.45 & otherwise \end{array}
dAdjust=d_{50} \cdot dRatio
dAdjust=1.044 \times 10^{-3}
\displaystyle HFRatio = \frac{d_{si}}{dAdjust}
DFRatio=2.222
\displaystyle HF = \left| \begin{array} 1 1.30 & if \; HFRatio \geq 3.7 \\ (0.53 \cdot log(HFRatio)+1 & if \; 0.075 < HFRatio \leq 3.7 \\ 0.40 & otherwise \end{array}
HF=1.184

Adjust Sediment Mobility Number for Hiding Factor

F_{gr} =HF \cdot F_{gr}
F_{gr} =0.5

Check for too fine sediment based on Fgr and A,

\displaystyle Check= \frac{F_{gr}}{A}

Sediment transport function exponent m,

\displaystyle m= \left| \begin{array} 1 ( \frac{6.83}{d_{gr}}+1.67) & if \; d_{gr} \leq 60 \\ 1.78 & otherwise \end{array}
m = 2.106

Check for too fine sediment based on m,

\displaystyle Check= \left| \begin{array} 1 0 & if \; m>6 \\ Check & otherwise \end{array}
Check \;= 2.522

Sediment transport function coefficient C,

\displaystyle C= \left| \begin{array} 1 10^{2.79 \cdot log(d_{gr})-0.98(log(d_{gr}))^2 -3.46} & if \; d_{gr} \leq 60 \\ 0.025 & otherwise \end{array}
C \;=0.0298

Transport parameter Ggr,

\displaystyle G_{gr} =C \cdot \left( \frac{F_{gr}}{A}-1 \right) ^m
G_{gr} =0.072

Sediment flux X, in parts per million by fluid weight,

\displaystyle X= \frac{G_{gr} sd_{si}}{D \left( \frac{u_{star}}{V} \right)^n}
X=6.741 \times 10^{-5}

Sediment Discharge, lb/s

\displaystyle G= \gamma _w QX
G \;=21.027

Sediment Discharge, tons/day

\displaystyle G_s = \frac{86400}{2000} \cdot G

Check to make sure particle diameter and mobility functions are not too low,

\displaystyle G_s = \left| \begin{array} 1 G_s & if \; Check >1 \\ 0 & otherwise \end{array}
G_s \;=908

Engelund Hansen Sediment Transport Function

by Vanoni (1975), and Raudkivi (1976)

Input Parameters

Temperature, FT = 55Average Velocity, ft/sV = 5.46
Kinematic viscosity, ft2/s

\nu = 0.00001315



Depth, ftD = 22.9Unit Weight water, lb/ft3

\gamma _w = 62.385

SlopeS = 0.0001

Median Particle Diamter, ftdsi = 0.00232Channel Width, ftB = 40
Specific Gravity of Sediments = 2.65

Constants

Acceleration of gravity, ft/s2g=32.2

Solution

Bed level shear stress \tau _o,

\tau _o = \gamma _w \cdot D \cdot S
\tau _o = 0.143

Fall diameter df,

d_f = \left| \begin{array} 1 (-69.07 \cdot d_{si}^2 +1.0755 \cdot d_{si} +0.000007) & if \; d_{si} \leq 0.00591 \\ (0.1086 \cdot d_{si}^{06462} ) & otherwise \end{array}
d_f = 2.13 \times 10^{-3}

Sediment discharge lb/s, 

\displaystyle g_s =0.05 \cdot \gamma _w \cdot s \cdot V^2 \cdot \sqrt{\frac{d_f}{g \cdot (s-1)}} \cdot \left[ \frac{\tau _o}{(\gamma _w \cdot s - \gamma _w ) \cdot d_f} \right] ^{\frac{3}{2}}
g_s \;=32.82

Sediment discharge ton/day,

\displaystyle G_s = g_s \cdot \frac{86400}{2000}
G_s =1418

Laursen-Copeland Sediment Transport Function

by Copeland (from SAM code, 1996)

Input Parameters

Temperature, FT = 55Average Velocity, ft/sV = 5.46
Kinematic viscosity, ft2/s

\nu = 0.00001315

Discharge, ft3/sQ=5000
Depth, ftD = 22.90Unit Weight water, lb/ft3

\gamma _w = 62.385

SlopeS = 0.000184% Particle diameter, ftd84 = 0.00294
Median Particle Diamter, ftdsi = 0.00232

Specific Gravity of Sediments = 2.65

Constants

Acceleration of gravity, ft/s2g=32.2

Solution

Note

the difference between the final result presented here and the result in SAM is due to the method for determining fall velocity. Rubey is used here, whereas SAM computes a
value based on a drag coefficient determined from Reynolds number. Calculation routine taken from SAM. Because the grain distribution is reduced to standard grade sizes representing each present grade class, the d84 will equal the standard grade size, dsi, in this procedure.

d_{84} = d_{si}

Grain-related hydraulic radius R

\displaystyle R'= \frac{0.0472 \cdot V^{\frac{3}{2}} \cdot (3.5 \cdot d_{84} ) ^\frac{1}{4}}{(g \cdot S )^{\frac{3}{4}}}
R'=14.189

R' = 15.248

R' = 15.248

Grain-related bed shear stress \tau '_b,

\tau '_b = R' \cdot \gamma _w \cdot S
\tau '_b =0.095
\tau _b = D \cdot \gamma _w \cdot S
\tau '_b =0.143
\displaystyle \tau '_b = \left| \begin{array} 1 \tau '_b & if \; \tau '_b < \tau _b \\ \tau _b & otherwise \end{array}
\tau '_b =0.095
\displaystyle u'_* = \sqrt{\frac{\tau'_b \cdot g}{\gamma _w}}
u'_* =0.222
RRP = \left( \frac{d_{si}}{R} \right) ^{1.16667}
RRP=2.187 \times 10^{-5}

Dimensionless bed shear stress \tau ^*_b,

\displaystyle \tau ^*_b = \frac{\tau '_b}{\gamma _w \cdot (s-1) \cdot d_{si}}
\tau ^*_b = 0.398

Shield's parameter for course grains \theta ^*,

\theta ^* =0.647 \cdot \tau ^* _b + 0.0064
\displaystyle \theta ^* = \left| \begin{array} 1 0.02 & if \; \theta ^* < 0.02 \\ \theta ^* & otherwise \end{array}
\theta ^* =0.264

Critical shear stress, \tau _{cr}

\displaystyle \tau _{cr} = \left| \begin{array} 1 [\theta ^* \cdot \gamma _w \cdot (s-1) \cdot d_{si} ] & if \; \tau^*_b \leq 0.05 \\ [0.039 \cdot \gamma _w \cdot (s-1) \cdot d_{si} ] & otherwise \end{array}
\tau _{cr} = 9.315 \times 10^{-3}

Shear stress mobility parameter TFP,

\displaystyle TFP = \frac{\tau ' _b}{\tau _{cr}} -1
TFP=9.214

Fall velocity \omega,

Use Rubey's equation, Vanoni p. 169

\displaystyle F_1 = \sqrt{\frac{2}{3} + \frac{36 \cdot \nu ^2}{g \cdot d_{si}^3 \cdot (s-1)}} - \sqrt{\frac{36 \cdot \nu ^2}{g \cdot d_{si}^3 \cdot (s-1)}}}
F_1 = 0.725
\omega = F_1 \cdot \sqrt{(s-1) \cdot g \cdot d_{si}}
\omega =0.255

Particle velocity ratio SF,

\displaystyle SF= \frac{u_*}{\omega}
SF = 0.870

Particle velocity ratio parameter \Psi,

\displaystyle \Psi = \left| \begin{array} 1 [7.04 \cdot 10^{15} \cdot (SF)^{22.99} ] & if \; SF \leq 0.225 \\ (40.0 \cdot SF) & if \; 0.225 < SF \leq 1.0 \\ (40 \cdot SF ^{1.843} ) & if \; SF >1.0 \end{array}

Sediment transport Gs, tons/day

G_s =0.432 \cdot \gamma _w \cdot Q \cdot RRP \cdot TFP \cdot \Psi
G_s = 945

Meyer-Peter Muller Sediment Transport Function

by Vanoni (1975), and Schlichting's Boundary Layer Theory, 1968

Input Parameters

Temperature, FT = 55Average Velocity, ft/sV = 5.46
Kinematic viscosity, ft2/s

\nu = 0.00001315

Discharge, ft3/sQ=5000
Depth, ftD = 22.90Unit Weight water, lb/ft3

\gamma _w = 62.385

SlopeS = 0.000184% Particle diameter, ftd84 = 0.00294
Median Particle Diamter, ftdsi = 0.00232Channel Width, ftB = 40
Specific Gravity of Sediments = 2.65

Constants

Acceleration of gravity, ft/s2g=32.2

Solution

Shear velocity u,

u_* = \sqrt{g \cdot D \cdot S}
u_* = 0.272

Shear Reynold's number, R_s,

\displaystyle R_s = \frac{u_* \cdot d_{90}}{\nu}
R_s = 63.189

Schlichting's B coefficient, BCoeff

\displaystyle BCoeff = \left| \begin{array} 1 (5.5 + 2.5 \cdot ln(R_s)) & if \; R_s \leq 5 \\ \begin{bmatrix} 0.297918+24.8666 \cdot log(R_s) -22.9885 \cdot (log(R_s))^2 ... \\ +8.5199 \cdot (log(R_s))^3 -1.10752 \cdot (log(R_s))^4 \end{bmatrix} & if \; 5<R_s \leq 70 \\ 8.5 & otherwise \end{array}

Friction factor due to sand grains f',

\displaystyle f' = \left( \frac{2.82843}{BCoeff -3.75+2.5 \cdot ln \left( 2 \cdot \frac{D}{d_{90}} \right)} \right)^2
f'=9.565 \times 10^{-3}

Nikaradse roughness ratio RKR,

\displaystyle RKR = \sqrt{\frac{f'}{8}} \cdot \frac{V}{\sqrt{g \cdot D \cdot S}}
RKR = 0.695

Sediment discharge lb/s,

\displaystyle g_s = \left( \frac{(RKR)^{frac{3}{2}} \cdot \gamma _w \cdot D \cdot S -0.047 \cdot (\gamma _w \cdot s -\gamma _w ) \cdot d_{si}}{0.25 \cdot \left( \frac{\gamma _w}{g} \right) ^{\frac{1}{3}} \left( \frac{\gamma _w \cdot s- \gamma _w}{\gamma _w \cdot s} \right) ^{\frac{2}{3}}} \right)^{frac{3}{2}} \cdot B
g_s =7.073

Sediment discharge ton/day,

\displaystyle G_s = g_s \cdot \frac{86400}{2000}
G_s =306

Toffaleti Sediment Transport Function

by Vanoni, for single grain size

Input Parameters

Slope,S = 0.0001Temperature, FT = 55
Hydraulic Radius, ftR = 10.68viscosity, ft2/s

\nu = 0.00001315

Width, ftB = 40Median Particle Size, ftdsi = 0.00232
Velocity, ft/sV = 5.4665% finer Particle Size, ftd65 = 0.00257


Fraction of Total Sedimentpi = 1


Unit Weight of Water, lb/ft3

\gamma _w = 62.385

Constants

Acceleration of gravity, ft/s2g=32.2

Solution

Nikaradse Roughness Value, using d65, as per Einstein, 1950, p.

k_s = d_{65}
k_s = 2.57 \times 10 ^{-3}

Grain-related shear velocity as per Einstein, 1950, p. 10

\displaystyle u'_* = \frac{V}{\left( 5.75 \cdot log \left( 12.27 \cdot \frac{r'}{k_s} \right) \right)}

Check u'_* =0.169

Check for hydraulically rough or smooth grains…

Check u'_* =0.169

Check for Transitional regime



**Note**

Einstein's method for determining u' was compared with Toffaleti's graphical approach. Results showed that the two methods are in acceptable agreement, with differences on the order of less than 3%. Einstein's approach was selected for its established reputation and its relative simplicity.

Toffaleti coefficients, A and k4,

\displaystyle A_{factor} = \frac{\left( 10^5 \cdot \nu \right)^{\frac{1}{3}}}{10 \cdot u'_*}
A_{factor} =0.54
\displaystyle A= \left| \begin{array} 1 \left( 9.5987 \cdot A_{factor}^{-1.5445} \right) & if \; A_{factor} \leq 0.5 \\ \left( 39.079 \cdot A_{factor}^{0.481} \right) & if \; 0.5 < A_{factor} \leq 0.66 \\ \left( 221.85 \cdot A_{factor}^{4.660} \right) & if \; 0.66 < A_{factor} \leq 0.72 \\ 48 & f \; 0.72 < A_{factor} \leq 1.3 \\ \left( 22.594 \cdot A_{factor}^{2.872} \right) & if \; A_{factor} > 1.3 \end{array}
A =29.065
\displaystyle k_{4Factor} = \frac{\left( 10^5 \cdot \nu \right) ^{\frac{1}{3}}}{10 \cdot u'_*} \cdot 10^5 \cdot S \cdot d_{65}
k_{4Factor} = 0.014
\displaystyle k_4 = \left| \begin{array} 1 \left( 1.0 \right) & if \; k_{4Factor} \leq 0.25 \\ \left( 5.315 \cdot k_{4Factor}^{0.1.205} \right) & if \; 0.25 < k_{4Factor} \leq 0.35 \\ \left( 0.510 \cdot k_{4Factor}^{-1.028} \right) & if \; k_{4Factor} > 0.35 \end{array}
k_4 = 1
Ak_4 = A \cdot k_4

Check for too low values for the product Ak_4,

\displaystyle Ak_4 = \left| \begin{array} 1 16 & if \; Ak_4 < 16 \\ Ak_4 & if \; Ak_4 \geq 16 \end{array}
Ak_4 = 29.065

More Coefficients,

T_T = 1.10 \cdot (0.051+0.00009 \cdot T )
T_T = 0.062
n_V =-.1198+0.00048 \cdot T


n_V = 0.146
c_z =260.67-0.667 \cdot T
c_z = 223.985

Fall Velocity for Medium Sand from Toffaleti Tables at 55 degrees F,

w_i = 0.340
\displaystyle z_i = \frac{w_i \cdot V}{c_z \cdot R \cdot S}
z_i = 7.76
\displaystyle z_i = \left| \begin{array} 1 (1.5 \cdot n_v ) & if \; z_i < n_v \\ z_i & otherwise \end{array}
z_i = 7.76

Empirical Relationship for g_{ssLi},

\displaystyle g_{ssLi} = \frac{0.600 \cdot p_i}{\left( \frac{T_T \cdot Ak_4}{V^2} \right)^{\frac{5}{3}} \cdot \left( \frac{d_{si}}{0.00058} \right) ^{\frac{5}{3}}}
M_i = 2.948 \times 10^{-10}

Concentration,

\displaystyle C_{Li} = \frac{M_i}{43.2 \cdot p_i \cdot (1+n_{_V}) \cdot V \cdot R ^{0.756 \cdot z_i -n_{_V}}}
C_{Li} = 1.425 \times 10^{-18}

Check for unrealistically high concentration and adjust Mi if necessary,

\displaystyle C_{2d} = C_{Li} \cdot \left( \frac{2 \cdot d_{si}}{R} \right) ^{-0.756 \cdot z_i}
C_{2d} =75.536


\displaystyle C_{Li} = \left| \begin{array} 1 C_{Li} & if \; C_{2d} <100 \\ \frac{100}{\left( \frac{2 \cdot d_{si}}{R} \right) ^{-0.756 \cdot z_i}} & if \; C_{2d} \geq 100 \end{array}
C_{Li} = 1.425 \times 10^{-18}


\displaystyle M_i = C_{Li} \cdot \left[ 43.2 \cdot p_i \cdot (1+ n_{_V} ) \cdot V \cdot R^{0.756 \cdot z_i - n_{_V}} \right]
M_i = 2.948 \times 10^{-10}

Bed Load Transport,

\displaystyle g_{sbi} = M_i \cdot (2 \cdot d_{si} ) ^{(1+ n_{_V} -0.756z_i )}
g_{sbi} =30.555

Lower Layer Transport,

\displaystyle g_{ssLi} = M_i \cdot \left[ \frac{ \left( \frac{R}{11.24} \right) ^{(1+ n_{_V} -0.756 \cdot z_i)} - (2 \cdot d_{si} ) ^{(1+ n_{_V} -0.756 \cdot z_i)}}{1+ n_{_V} -0.756 \cdot z_i} \right]
g_{ssLi} = 6.473

Middle Layer Transport,

\displaystyle g_{ssMi} = M_i \cdot \frac{\left( \frac{R}{11.24} \right)^{0.244 \cdot z_i} \cdot \left[ \left( \frac{R}{2.5} \right) ^{1+ n_{_V} -z_i} - \left( \frac{R}{11.24} \right)^{1+ n_{_V} -z_i} \right]}{1+ n_{_V} -z_i}
g_{ssMi} = 5.674 \times 10^{-1}

Upper Layer Transport,

\displaystyle g_{ssUi} = M_i \cdot \frac{\left( \frac{R}{11.24} \right)^{0.244 \cdot z_i} \cdot \left( \frac{R}{2.5} \right) ^{0.5 \cdot z_i} \cdot \left[ R^{(1+ n_{_V} -1.5z_i)} - \left( \frac{R}{2.5} \right)^{1+ n_{_V} -1.5z_i} \right]}{1+ n_{_V} -1.5z_i}
g_{ssUi} = 1.72 \times 10^{-15}

Total Transport per Unit Width,

g_{si} = g_{sbi} + g_{ssLi} + g_{ssMi} + g_{ssUi}
g_{si} 37.027

Total Transport,

G= g_{si} \cdot B
G = 1481 tons/day

Yang Sediment Transport Function

by Yang, from ASCE Journal of Hydraulics, Oct 1973, Dec 1984

Input Parameters

Temperature, FT = 55Average Velocity, ft/sV = 5.46
Kinematic viscosity, ft2/s

\nu = 0.00001315

Discharge, ft3/sQ=5000
Hydraulic Radius, ftR = 10.68Unit Weight water, lb/ft3

\gamma _w = 62.385

SlopeS = 0.0001

Median Particle Diamter, ftdsi = 0.00232

Specific Gravity of Sediments = 2.65

Constants

Acceleration of gravity, ft/s2g=32.2

Solution

Shear Velocity, ft/s,

\displaystyle u_* = \sqrt{g \cdot R \cdot S}
u_* = 0.185

Particle Fall Velocity, ft/s,

Use Rubey's equation, Vanoni p. 169

\displaystyle F_1 = \sqrt{\frac{2}{3} + \frac{36 \cdot \nu ^2}{g \cdot d_{si}^3 \cdot (s-1)}} - \sqrt{\frac{36 \cdot \nu ^2}{g \cdot d_{si}^3 \cdot (s-1)}}
F_1 = 0.725
\displaystyle \omega F_1 \cdot \sqrt{(s-1) \cdot g \cdot d_{si}}
\omega =0.255

Shear Reynold's Number,

\displaystyle R_s = \frac{u_* \cdot d_{si}}{\nu}
R_s = 32.717

Critical Velocity, ft/s,

\displaystyle V_{cr} = \left| \begin{array} 1 \omega \cdot \Bigg( \frac{2.5}{log(\frac{u_* \cdot d_{si}}{\nu}) -0.66} +0.66 \Big) & if \; 0<R_s <70 \\ (\omega \cdot 2.05) & if \; R_s \geq 70 \end{array}

Log of Concentration,

\displaystyle log \cdot C_t = \left| \begin{array}1 \begin{bmatrix} 5.435-0.286 \cdot log (\frac{\omega \cdot d_{si}}{\nu}) -0.457 \cdot log (\frac{u_*}{\omega}) ... \\ + (1.799-0.409 \cdot log( \frac{\omega \cdot d_{si}}{\nu})-0.314 \cdot log(\frac{u_*}{\omega})) \cdot log (\frac{V \cdot S}{\omega} -\frac{V_{cr} \cdot S}{\omega}) \end{bmatrix} & if \; d_{si} <0.00656 & Sand \\ \begin{bmatrix} (6.681-0.633 \cdot log (\frac{\omega \cdot d_{si}}{\nu}) -4.816 \cdot log (\frac{u_*}{\omega}) ) ... \\ + (2.784-0.305 \cdot log( \frac{\omega \cdot d_{si}}{\nu})-0.282 \cdot log(\frac{u_*}{\omega})) \cdot log (\frac{V \cdot S}{\omega} -\frac{V_{cr} \cdot S}{\omega}) \end{bmatrix} & if \; d_{si} \geq 0.00656 & Gravel \end{array}
logC_t =1.853

Concentration, ppm

C_t =10^{logC_t}
C_t =71.284

Sediment Discharge, lb/s

\displaystyle G= \frac{\gamma _q \cdot Q \cdot C_t}{1000000}
G = 22.235

Sediment Discharge, tons/day

\displaystyle G_s = \frac{86400}{2000} \cdot G
G_s = 961