

🖼 Sedin	nent Modeling Workflow	HEC
Start Sim	ple	
Smalles	st domain possible	
Coarses	st mesh	
Fewest	number of grain classes	
• Fewest	number of processes (e.g. Capacity Only)	
• Large t	ime steps	
Shortes	st simulation windows	
• "Easy"	boundary conditions	
 Slowly re 	fine and add complexity	
• Modeli	ing is an iterative process	
 Focus c 	calibration on important parameters	
• Always	conduct sensitivity analysis	
 Most diff 	icult part is	
• Knowir	ng how to get the "Best model for the least amount of effort"	
		3

HEC

5

Number of Cores

- Set for each 2D area
- Default is "All Available"
- Optimal value typically 4-8
- It is more efficient to run multiple plans at the same time

	s Advanced hine step control 10 Mixed how options		
Use Coriolis Effects (not used with Diff	usion wave equation)		
Parameter	(Default)	BaldEagleCr	
Theta (0.6-1.0)	1	1	
Theta Warmup (0.6-1.0)	1	1	
Water Surface Tolerance [max=0.2](ff	0.01	0.01	
Volume Tolerance (ft)	0.01	0.01	
Maximum Iterations	20	20	
Equation Set	Diffusion Wave	Diffusion Wave	
Initial Conditions Time (hrs)		4	
Initial Conditions Ramp Up Fraction (0-	1) 0.5	0.5	
Number of Time Slices (Integer Value)	1	1	
Turbulence Model	Non-Conservative (original)	Non-Conservative (original)	
Longitudinal Mixing Coefficient			
Transverse Mixing Coefficient			
Smagorinsky Coefficient	6	0	
Boundary Condition Volume Check			
Latituda fas Casialia (00 to 00)		, Read	
Solver Cores	6 Cores	6 Cores	
matrix solver	PARDISO (Direct)	PARDISU (URECT)	
Convergence Tolerance			
Minimum Iterations			
Maximum Iterations			
Restart Iteration	16	10	
Relaxation Factor	1.5		
SOR Preconditioner Iterations	16	10	
		OK Cancel Defaults .	

Iterative Solver Input Parame	HEC			
 Convergence Tolerance 	Parameter	Range		
 Determines the overall accuracy 	Convergence Tolerance	0.001-0.000001		
 Minimum Iterations 	Minimum Iterations	3 – 6		
 Increases accuracy, avoids solution drift, 	Maximum Iterations	5 – 30		
 and allows the solver to stabilize Maximum Iterations 	Restart Iteration (FGMRES Only)	8 - 12		
 Avoids stalling and too many iterations 	Relaxation Factor	1.1 – 1.5		
 caused by a small convergence tolerance Restart Iteration (Only FGMRES-SOR) 	SOR Preconditioner Iterations (FGMRES Only)	5 – 20		
• Reduces run time and memory requirements				
 Relaxation Factor Used for both SOR solver and preconditioner 				
 SOR Preconditioner Iterations (Only FGMRES-SOR) Indiau of checking convergence which would be clower 				
in hea of checking convergence which would	16			

Iterative Solvers: Stopping Criteria						
	Iterative Solver Status	Criteria	Description			
• Error Estimate	Iterating	$N_{\min} < m < N_{\max}$	Iterative solver is converging and will continue to iterate.			
$E^{m} = \frac{\left\ \boldsymbol{D}^{-1} \left(\boldsymbol{A} \boldsymbol{x}^{m} - \boldsymbol{b} \right) \right\ _{2}}{\sqrt{N}}$ $\boldsymbol{D}: \text{ Diagonal of } \boldsymbol{A}$ $\boldsymbol{A}: \text{ Coefficient matrix}$		and $E^m > T_C$ and $\frac{E^{m-1} - E^m}{E^1 - E^m} > T_S$ and $E^m < E^1$	N_{min} : Minimum number of iterations N_{max} : Maximum number of iterations T_C : Convergence tolerance $T_S = 0.1T_C$: Stalling tolerance			
x : Solution	Converged	$E^m \leq T_C$	Convergence criteria met. Solution accepted.			
<i>b</i> : Right-hand-sizeN : Number of rows	Stalled	$\frac{E^{m-1}-E^m}{E^1-E^m} \leq T_S$	Convergence rate has decreased to an insignificant level without satisfying the converged criteria. The current solution is accepted and the iteration loop is exited.			
	Max Iterations	$m = N_{\text{max}}$	Maximum number of iterations reached without reaching the converged criteria. The current solution is accepted and the iteration loop is exited.			
	Divergent	$E^m > E^1$	Iterative solution is divergent. Either the normalized residuals are getting larger, or a Not a Number (NaN) has been detected.			
			17			

ĬŦĬ Number of Grain Classes Plan Sediment Computational approximately proportional to 100 number of grain classes 90 80 However, grain classes are coupled 70 together and solved iteratively 60 % Finger 50 Number of grain classes can affect 40 30 convergence and number of 20 iterations 10 0 Reducing number of classes can have 0.1 a huge impact on computational time • Start with one grain class and slowly increase number of grain classes

21

LUnsteady Flow Analysis HEC Ĭ File Options Help Number of Grain Classes Stage and Flow Output Locations .. ent Computation Options and Tolerances ... Define Grain Classes and Sediment Properties X Default Grain Classes Class Min Max Mean SG n 0.82 UW Cohi De • Wentworth (1992) scale 0.002 0.004 0.008 0.016 0.032 0.004 2.65 0.61 0.61 0.61 0.006 0.011 • Logarithmic with base 2 0.016 0.023 2.65 65 0.0625 0.61 0.3 0.3 0.032 0.045 2.65 • More resolution in the finer particles 0.125 0.043 2.65 93 93 0.125 0.25 0.5 0.354 2.65 0.3 93 However, not based on actual particle 0.09 0.5 0.707 2.65 0.0 1.41 0.3 physics or site-specific bed gradations 10 0.0 11 VFG 2.65 0.3 93 0.09 12 FG 5.66 2.65 93 0.09 0.3 11.3 22.6 2.65 0.0 Modeling considerations 14 45.3 0.09 15 2.65 90.5 181 362 16 17 2.65 0.09 93 93 93 Cohesive particles erode and often 2.65 0.09 128 256 512 18 S 256 deposit at equal rates due to aggregates 19 ME 512 1024 724 2.65 0.09 and flocs so no need for 5 cohesive grain Currently Default classes Density Method Unit Weight (All Classes) -Defaults · Grain class limits can be better defined Cance Enforce Adjacent-Non-Overlapping Grain Cla es and G using actual bed gradation curves

Han	Matrix Solver Options	Unsteady Flow Analysis File Options Help Plan: Stage and Flow Output Locations Sediment Computation Options and Tolerances	HEC
	HEC-RAS Sediment Computation Options and Tolerances General 2D Computational Options Transport Advection Scheme: Exponential Sediment Matrix Solver: Exponential Implicit Sediment Weighting Fac PARES-SOR FCMRES-SOR FCMRE	PARDISO More Accurate and Stable PFGMRES-SOR Faster • PFGMRES - Preconditioned Elexible Generalized Minimal RESidual method • FMRES - Flexible Generalized Minimal RESidual	
	Grain Class % Max Abs Error: 0.001 Computational Sediment Layer Parameters Layer Thickness (Optional): Initial (m) 0.2 Min (m) 0.05 Max (m) 1. # of Computational Layers (Optional): Subgrid Subgrid Subcel Errosion Method: Constant Subcel Deposition Method: Veneer Max Subgrid Regions (Optional): Max Subgrid Length Scale (Optional):	 matrix solver SOR - <u>Success Over-Relaxation used as the</u> preconditioner (can also be a solver) ILU0 - Incomplete Lower Upper with Zero Fill-in Start with PARDISO and quickly switch to one 	
	Defaults Cancel OK Show XS Weights >>	of the other solvers for speed	25

