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Model Calibration

• Defined as determining a unique set model 
parameters and formulations that provide a 
good description of a system behavior

• Goal and methods will depend on study 
requirements and data available

• In sediment transport modeling, calibration is 
generally limited by data and therefore model 
uncertainty is address with sensitivity analysis
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Sensitivity Analysis

• Defined as the analysis of how uncertainty in 
model input parameters and formulations 
produce uncertainty in model output

• Generally required to address parameter and 
structural/formulation uncertainty in sediment 
modeling Simulation
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Modeling Stages
• Modeling stages tend to overlap
• Iterative and incremental process
1. Exploratory: Determine reasonable initial model setup
2. Sensitivity: Determine what model parameters need to be 

calibrated or varied to estimate model uncertainty
3. Refinement: Improve the model setup in preparation for 

calibration runs
• Adjust mesh resolution, domain extent, number of grain classes, 

model parameters, etc.
• Larger emphasis on comparison with measurements

4. Calibration: Determine optimal model setup to 
match physical system

5. Validation: Confirm calibration setup works for other time 
periods

6. Alternatives Analysis: Study system responses to proposed 
changes
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Hydraulics Calibration
• Quality of hydraulics model much more important when 

simulating sediment transport
• Sediment models more sensitive to issues with

• Boundary conditions, initial conditions, terrain, roughness, mesh quality, 
etc.

• Water levels can be calibrated with very coarse meshes 
by adjusting the Manning’s n

• Be weary of models calibrated with water levels only
• Capacity Only sediment models can be run on relatively coarse 

meshes, 
• Mobile bed models require accurate velocity/shear stresses with 

higher resolution compared to models designed only for capturing 
water levels

• Spatially variable roughness very important
• If velocity data is not available, perform a grid convergence on 

concentration capacity profiles to determine an appropriate 
initial grid resolution for a mobile bed sediment model
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Data Collection
• Additional hydraulic data such as current velocities
• Repeat bathymetry

• Use reference lines and polygons 
• Careful comparing point data
• Use Bed Elev (no Grad) to “precondition” model

• Bed gradations
• Can be very noisy
• Careful interpolating raw data
• Often better to compute representative bed gradations

and then use the Gradation (no Elev) to “precondition” 
the bed gradations

• Concentrations and Transport Rates
• Careful comparing point concentrations to depth-

averaged concentrations
• Better to compare total-load transport rates

5
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Model Parameters and Settings
• For initial guess with common sense, experience, and recommended guidance 

based on hydraulic and sediment conditions
• Narrow down appropriate setup with Exploratory and Sensitivity Analysis
• Start simple and slowly add complexity
• Iterative process
• Stay Open Minded

• Don’t be afraid of trying things
• Unexpected results are common

• Develop hypothesis for model changes
• Investigate unexpected behavior or results

• Model accuracy determined by project decision thresholds
• No deposition allowed vs. max 10 ft of deposition
• Question if any improved accuracy will change the project outcome

• Keep it real (sediment modeling is very uncertain)
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Inspection/Review of Model Output and Logging
• Global Mapping Output

• Start heavy (lots of output at small intervals) 
• Decrease as mesh size and simulation window length 

increase
• Inspect/explore variables such as shear stress, capacities, 

concentrations, bed fractions, etc.

• Time series
• Inspect time series at boundary conditions, reference 

points, lines, and areas

• Computation Log File
• Verify model setup
• Check model convergence
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Calibration Parameters and Settings: Noncohesives
• Sediment transport function

• Transport scaling function
• Modifying transport function coefficients 

more difficult

• Incipient motion
• Hiding and exposure
• Mobility factor

• Bed gradation
• Only calibrate within bounds of 

measurements or reasonable limits

• Adaptation parameters
• Load Correction Factor 
• Diffusion Coefficient
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Calibration Parameters and Settings: Cohesives
• Cohesive Erosion rates
• Threshold shear stresses
• Deposition threshold
• Excess shear exponent n
• Bed gradation

• Only calibrate within bounds of 
measurements or reasonable limits

• Flocculation 
• Can vary by orders of magnitude
• Free settling velocity not sensitive

• Bed layering and
• Use 1 or 2 cohesive grain classes!
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• Near-bed Model

• Near-bed concentration and capacity difficult to estimate for 
depth-averaged models

• Values vary by several orders of magnitude
• Very few equations for near-bed concentration capacity
• Near-bed concentration capacity is very difficult to measure
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Noncohesive Erosion and Deposition 
of Suspended Load
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• Relating near-bed values to depth-averaged values 

• Inserting into deposition and erosion rates

• Depth-average concentrations can easily 
be computed and are readily available
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Noncohesive Erosion and Deposition 
of Suspended Load
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• In fact, under equilibrium conditions
defined as 

and the computed coefficients 

then

which is obviously incorrect
• This why forcing

is a good approximation
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Noncohesive Erosion and Deposition 
of Suspended Load
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Suspended-load Adaptation Coefficient

• Armanini and di Silvio (1986)
• Approximate analytical integration 

of the pure vertical 2D 
advection-diffusion equation with 
“gradient” near-bed BC

• Zhou and Lin (1998)
• Approximate analytical integration of 

the pure vertical 2D advection-diffusion 
equation with “concentration” BC for 
erosion and “gradient” BC for 
deposition

14
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Bed-load Adaptation
• Bed-load exchange models are typically 

formulated as 

• Adaptation length is a measure of the 
distance it takes for the load to reach 
equilibrium

• Methods
• Constant
• Depth-dependent

15

 *

1
b b b b

b

D E q q
L

  

*

:

:

:

b

b

b

L

q

q

Bed-load adaptation 

     length [L]

Actual bed-load 

     transport rate [M/L/T] 

Bed-load transport 

      capacity [M/L/T]

 
b bLL f h

bL
7.3bLf 

Total-load Adaptation Length

• Adaptation approach (Wu 2000)

• Total-load Adaptation Coefficient
• Constant Adaptation Length

• Weighted Bed- and Suspended-lengths
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Adaptation Parameters
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Transport equation

Total-load Adaptation Length

• Related to space time scales
• Small scale high-resolution models 

will have a smaller value
• Large scale coarse models will have a 

larger value

18

 Increasing
► Decreases bed change
► Smooths bathymetry
► Improves stability
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Bed-Load Adaptation Length

• Constant length
• Most robust
• Easiest to calibrate
• Less accurate 

• Depth-dependent
• Less robust
• Harder to calibrate
• More accurate
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Suspended-Load Adaptation Coefficient

• Calibration parameter
• Many processes are lumped 

into parameter
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• Total-load adaptation length
• Use for single mode transport (e.g. well sorted fine sand)
• At least 1-2x cell size

• Weighted bed and suspended load lengths
• Use for mixed mode transport (e.g. poorly sorted sediments)
• Try different formulations for suspended and bed-load adaptation parameters

Discussion

21

Concentration Definition
• Depth-averaged

• Coefficient for transport (advection term)
• Used in HEC-RAS 1D

• Velocity weighted (Einstein definition)

• Simpler formula for transport (advection term)
• Used in HEC-RAS 2D
• Coefficient in temporal term 22
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Total-load Transport Equation
• Unsteady Advection-Diffusion Coefficient

• Simulating total-load instead of separate bed- and 
suspended-loads reduces computational costs because 
it requires half as many transport equations
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Advection Diffusion

 Bed-load

Load-Correction Factors
• Total-load Correction Factor

• Suspended-load
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Total-Load Correction Factor
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Transport equation 1
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Advection Scheme

• Upwind
• Most stable (and diffusive)
• First order and Linear (no iterations)

• Exponential (Patankar 1980)
• Based on 1D steady solution of Advection-

Diffusion Equation
• First Order and linear (no iterations)

• Minmod (Roe 1985)
• TVD Flux Limiter
• Second Order
• Non-linear (requires iterations)

• Harmonic (van Leer 1977)
• TVD Flux Limiter
• Second Order
• Non-linear (requires iterations)
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Verification: Advection and Diffusion

• Analytical Problems
• Grid and time step 

convergence
• Analysis of relative 

performance of 
difference schemes
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Advection Scheme Recommendations 

• Default advection scheme is Exponential, which reduces to Upwind if 
no diffusion is included

• Never use Upwind scheme and diffusion at the same time as this will 
produce too much diffusion 

• If model convergence is good, switch to High-Resolution (i.e. 
Harmonic and Minmod) schemes or better accuracy and compare

• If High-Resolution scheme results not significantly different, switch 
back to Exponential scheme

• Use suspended diffusion coefficient based on turbulent eddy viscosity
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Diffusion Coefficient

• Accounts for:
• Turbulent mixing
• Dispersion

• Dynamic requires a coefficient
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Transport equation
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Notes on Diffusion Coefficients
• More important for fine sediments

• Coarse sediments interact more with the bed and net 
dispersion is dominated by bed storage effect

• More important for fine resolution models
• Coarse resolution models have more numerical diffusion

• Recommendations
• Total-load: Weighted approach
• Suspended load: Eddy viscosity approach
• Bed-load: Negligible 
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Thank You!
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HEC-RAS Website:
https://www.hec.usace.army.mil/software/hec-ras/

Online Documentation:
https://www.hec.usace.army.mil/confluence/rasdocs
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