
1/29/2024

1

Hydraulic Best Practices  for 2D HEC-RAS Sediment Models

Stanford Gibson, 
Alex Sánchez, Cameron Ackerman

• Sediment transport amplifies hydraulic modeling 
errors (in 1D and 2D)

• Calibrate and refine your hydraulic model before 
you add sediment.

Big Ideas
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If Possible:

Calibrate and refine your hydraulic model before you add sediment.

Big Ideas

Stages of Sediment Calibration
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Calibrate your Hydraulics
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How Do You Calibrate 2D Hydraulics?

One Option is a Qusi-1D Calibration

ADCP Line 3a
Feb 13, 2023

ID Date GMT CMT Flow (cfs)

P_2010 2\13\2023 18:12:53 13:12:53 115835

P_2011 2\13\2023 18:16:58 13:16:58 115237.2

But a Lateral Depth and Velocity Calibration 
Can Improve Your 2D Sediment Model 

Performance Substantially
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More on Calibration

If you don’t calibrate a sediment model, it isn’t one.

“Often the available field data are not 
sufficient to permit a formal calibration, 
but computational modeling is still 
the best method for analyzing the problem…

The resulting studies are called  
      computational analysis studies.”  
    -Tony Thomas – ASCE Manual of Practice 110

Hydraulic Model  Quality Trouble Shooting

Best Practices

Diagnostics

• Time Step
•Hydraulic Equation
• Turbulence Method
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A 2D model has:
 a regular cell size of 100m and
 an average velocity of 2 m/s.

𝐶 =
𝑉 ∆𝑡

∆𝑥

Hint:

What is a good 
starting time step?

100 m

2 m/s
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A 2D model has:
 a regular cell size of 100m and
 an average velocity of 2 m/s.

Hint:

100 m

2 m/s

∆𝑡 =
∆𝑥 𝐶

𝑉

∆𝑡 =
100𝑚 (1)

2 𝑚/𝑠
= 50𝑠

𝐶 =
𝑉 ∆𝑡

∆𝑥

Selecting an Appropriate Timestep

Or….
    …let RAS compute it
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Selecting an Appropriate Timestep…

…Let RAS Do It

1,2,4
Just < Max/2

2-8

• Based on the “critical cell” – smallest or fastest

• Works best if cell size is relatively regular

• Can reach time steps <0.1s

Adaptive Time Step Video Tutorial

https://youtu.be/kcBrOML3iS0
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Evaluating a 20 Second 
Time Step

For a 200 ft 
Cell Resolution

40,000 cfs70,000 cfs

Always Use the Full Momentum Equations

Diffusion wave interacts poorly with 
the sediment transport model.
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Diffusion Wave Result

Always Use the Full Momentum Equations
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Non-conservative

Conservative

Turbulence Equations

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑓𝑣 = −𝑔

𝜕𝐻

𝜕𝑥
+

1

ℎ

𝜕

𝜕𝑥
𝜈𝑡,𝑥𝑥ℎ

𝜕𝑢

𝜕𝑥
− 𝑐𝑓𝑢

Non-conservative

Conservative

Turbulence Equations

𝜕𝑢

𝜕𝑡
+ 𝑣

𝜕𝑢

𝜕𝑦
− 𝑓𝑣 = −𝑔

𝜕𝐻

𝜕𝑥
+ 𝜈𝑡

𝜕2𝑢

𝜕𝑦2 − 𝑐𝑓𝑢

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑓𝑣 = −𝑔

𝜕𝐻

𝜕𝑥
+

1

ℎ

𝜕

𝜕𝑥
𝜈𝑡,𝑥𝑥ℎ

𝜕𝑢

𝜕𝑥
− 𝑐𝑓𝑢

Non-Conservative
Assumes smoothly varying velocities (changes are gradual)
The eddy viscosity can come outside the derivative
But the spatial average drop – so this becomes a dissipation
  term not just a mixing term

Conservative
Transforms the mixing term into the diffusive flux by moving
      the coefficient inside the derivative and  multiplying by h/h
This is a finite volume approach and yields a conservative
     formulation

(Note: Equations one-dimensionalized for simplicity)

Turbulence and mixing are essentially diffusion terms.
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Example: Sudden Expansion Lab Experiment

▪ Inflow: 0.039 m3/s

▪Downstream depth: 11 cm

▪Slope: 0.0001

Velocity (m/s)

0.350.0

X=0 m X=1 m X=2 m X=3 m X=4 m X=5 m

▪Grid Resolution: 2.5 cm

▪Time step: 0.02 and 0.0333 s

▪Manning’s n: 0.015 s/m1/3

Results: Sudden Expansion Lab Experiment
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New Turbulence Approach in 6.0+

Old Method: Parabolic 𝜈𝑡 = 𝐷𝑢∗ℎ

Isotropic (DL=DT)
Sensitive to Roughness 
Not sensitive to cell size

New Method: Parabolic-Smagorisnky

𝜈𝑡𝑥𝑥 = 𝐷𝑥𝑥𝑢∗ℎ + 𝐶𝑠Δ 2 ሜ𝑆

𝜈𝑡𝑦𝑦 = 𝐷𝑦𝑦𝑢∗ℎ + 𝐶𝑠Δ 2 ሜ𝑆 2 22

2 2
u v u v

S
x y y x

       
= + + +    

        

Anisotropic (DL≠DT)
Sensitive to Roughness 
Sensitive to cell size (D)
     (As cell size decreases more of the sub-cell
       dispersion is accounted for explicitly, and 
       the Smagorisnky term drops out)

New Turbulence Approach in 6.0+

𝜈𝑡𝑥𝑥 = 𝐷𝑥𝑥𝑢∗ℎ + 𝐶𝑠Δ 2 ሜ𝑆

𝜈𝑡𝑦𝑦 = 𝐷𝑦𝑦𝑢∗ℎ + 𝐶𝑠Δ 2 ሜ𝑆

“Vertical Stuff”
Bottom Friction
Dispersion From the Vertical
    Velocity Distribution

“Horizontal Stuff”
Dispersion across 

gradients in the 
horizontal plane

HEC made these changes with 2D sediment in mind.
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Turbulence Coefficients

• DL ~ 2-4 DT

• If DL = DT (isotropic) the model will overpredict floodplain deposition

• Non-conservative formulation generally requires larger values (2x) compared to the conservative 
formulation

• Calibrating to WSE without turbulence can get stages right but be wrong about how the water moves.  
Sediment will reveal that error.  Calibrate hydraulics with reasonable turbulence and mixing.
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Mixing
Intensity

Geometry 
and Surface 

DL DT

Weak
Straight channel
Smooth Surface

0.1 to 0.3 0.04 to 0.1

Moderate
Gentle meanders
Moderately irregular

0.3 to 1 0.1 to 0.3

Strong
Strong meanders
Rough surface

1 to 3 0.3 to 1

Smagorinsky Coefficient: 0.05 to 0.2 

Turbulence Method

https://www.youtube.com/
watch?v=nEr87YpHnzA
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Best Practices

Diagnostics

Hydraulic Model  Quality Trouble Shooting

Volume Accounting Check

Runtime Messages

Computation Log File
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RAS Mapper Courant Number Map
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Cumulative Iterations
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Maximum Water Surface Error
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Cell Water Surface Error (For each time step)
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Write Intermediate Results Before a Crash

• Writes results throughout the simulation 
• Increases run time

Snapshots
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