

- Sediment transport amplifies hydraulic modeling errors (in 1D and 2D)
- Calibrate and refine your hydraulic model <u>before</u> you add sediment.

Big Ideas

Calibrate and refine your hydraulic model *before* you add sediment.

Stages of Sediment Calibration

	Flow	Bed Elevation	
Stage 1: Hydraulic Calibration	Variable	Fixed	
Stage 2: Steady Flow Mobile Bed Analysis	Fixed	Variable	
Stage 3: Dynamic Calibration	Variable	Variable	
If Possible:			
Stage 4: "Validation" (Multiple Time Series Analysis)	Variable	Variable	

More on Calibration

"Often the available field data are not sufficient to permit a formal calibration, but computational modeling is still the best method for analyzing the problem...

The resulting studies are called *computational analysis studies.*" -Tony Thomas – ASCE Manual of Practice 110

If you don't calibrate a sediment model, it isn't one.

Selecting an Appropriate Timestep					
上 Unsteady Flow Analysis	×	Computation Settings			7
File Options Help		Computation Interval:	10 Second	.	
Plan: Equilibrium Transport (CS) (Nov20)	21) Short ID: Equilibrium Transport (CS) (Nov				
Geometry File: 2D (09Apr2020 💌	Mapping Output Interval:	0.1 Second	~	
Unsteady Flow File: Uns	steady 💌		0.2 Second		_
Sediment File: Equ	uilibrium Transport (CS)	Project DSS Filename: 💌	0.3 Second	a	g∖[
Programs to Run Pla	an Description		0.4 Second		
Geometry Preprocessor 31	1Dec 1978 ^ 🕴		0.5 Second		
Sediment			1 Second		
V Post Processor			2 Second		
Floodplain Mapping	× .		3 Second	\sim	
Simulation Time Window			5 Second		
Starting Date: 01Jul 19	975 Starting Time: 0000				
Ending Date: [01Jul19	975 Ending Time: 2400				
Computation Settings Computation Interval: 10 Seco	cond V Hydrograph Output Interval: 1 Hour V				
Mapping Output Interval: 10 Seco	ond A Detailed Output Interval: 1 Hour	Or			
Project DSS Filename: 12 Seco	ond ag\Desktop\Deliverable Papers\Writing Prio	Or			
20 Seco 30 Seco	ond				
1 Minut 2 Minut	te te	let RAS comp	ute It		
3 Minut	te Y				
	Compute				

Selecting an Appropriate Timestep... ...Let RAS Do It Adjust Time Step Based on Courant 1,2,4 2. Maximum Courant: Just < Max/20.9 Minimum Courant: 4 Number of steps below Minimum before doubling: 4 32.00 min Maximum number of doubling base time step: 2-8 4 7.50 sec Maximum number of halving base time step: Courant Methodology Velocity/Length (face velocity * dt / cell to cell distance) C Residence Time (cell outflow * dt / cell volume) • Based on the "critical cell" - smallest or fastest Works best if cell size is relatively regular • Can reach time steps < 0.1s

15

Always Use the Full Momentum Equations

Turbulence Equations

HEC-RAS Unsteady Computation Options and Tolerances

General 2D Flow Options | 1D/2D Options | Advanced Time Step Control | 1D Mixed Flow Options | Use Coriolis Effects (not used with Diffusion Wave equation)

_			
	Parameter	(Default)	2D Area
1	Theta (0.6-1.0)	1	1
2	Theta Warmup (0.6-1.0)	1	1
3	Water Surface Tolerance [max=0.06](m)	0.01	0.01
4	Volume Tolerance (m)	0.01	0.01
5	Maximum Iterations	20	20
6	Equation Set	SWE-EM (stricter momentum)	SWE-EM (stricter momentum)
7	Initial Conditions Time (hrs)	0.5	0.5
8	Initial Conditions Ramp Up Fraction (0-1)	0.1	0.1
9	Number of Time Slices (Integer Value)	1	1
10	Turbulence Model	None	None 👻
11	Longitudinal Mixing Coefficient		None
12	Transverse Mixing Coefficient		Conservative
13	Smagorinsky Coefficient	0	Non-Conservative (original)
14	Boundary Condition Volume Check		

19

Turbulence Equations

Turbulence and mixing are essentially diffusion terms.

Non-Conservative

Assumes smoothly varying velocities (changes are gradual) The eddy viscosity can come outside the derivative But the spatial average drop – so this becomes a dissipation term not just a mixing term

$$\frac{\partial u}{\partial t} + v \frac{\partial u}{\partial y} - fv = -g \frac{\partial H}{\partial x} + v_t \left(\frac{\partial^2 u}{\partial y^2} \right) - c_f u$$

Conservative

Transforms the mixing term into the diffusive flux by moving the coefficient inside the derivative and multiplying by h/h This is a finite volume approach and yields a conservative

formulation

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + fv = -g \frac{\partial H}{\partial x} + \left[\frac{1}{h} \frac{\partial}{\partial x} \left(v_{t,xx} h \frac{\partial u}{\partial x} \right) - c_f u \right]$$

Example: Sudden Expansion Lab Experiment

- Inflow: 0.039 m³/s
- Downstream depth: 11 cm
- Slope: 0.0001

- Grid Resolution: 2.5 cm
- Time step: 0.02 and 0.0333 s
- Manning's n: 0.015 s/m^{1/3}

New Turbulence Approach in 6.0+

 $v_t = Du_*h$

 $v_{txx} = D_{xx} u_* h + (C_s \Delta)^2 |\bar{S}|$

 $v_{tyy} = D_{yy}u_*h + (C_s\Delta)^2|\bar{S}|$

Old Method: Parabolic

Isotropic $(D_L=D_T)$ Sensitive to Roughness Not sensitive to cell size

New Method: Parabolic-Smagorisnky

Anisotropic $(D_L \neq D_T)$ Sensitive to Roughness Sensitive to cell size (Δ)

(As cell size decreases more of the sub-cell dispersion is accounted for explicitly, and the Smagorisnky term drops out)

- u_* : Shear velocity
- h: Water depth
- D : Mixing coefficient
- $D_{\! L}$: Longitudinal mixing coefficient
- D_T : Transverse mixing coefficient
- C_s: Smagorinsky coefficient

$$\left|\overline{S}\right| = \sqrt{2\left(\frac{\partial u}{\partial x}\right)^2 + 2\left(\frac{\partial v}{\partial y}\right)^2 + \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}\right)^2}$$

HEC	Turbulence Coefficients					
General 2D Flow Options 1D/2D Options Advanced Time Step Control 11		Mixing Intensity	Geometry and Surface	D_L	D_T	
1 2 3	Parameter Theta (0.6-1.0) Theta Warmup (0.6-1.0) Water Surface Tolerance [max=0.06](m)	2D Area 1 1	Weak	Straight channel Smooth Surface	0.1 to 0.3	0.04 to 0.1
4 5 6 7	Volume Tolerance (m) Maximum Iterations Equation Set Initial Conditions Time (hrs)	0.01 20 SWE-EM (stricter momentum) 0.5	Moderate	Gentle meanders Moderately irregular	0.3 to 1	0.1 to 0.3
8 9 10 11	Initial Conditions Ramp Up Fraction (0-1) Number of Time Slices (Integer Value) Turbulence Model Longitudinal Mixing Coefficient	0.1 1 Conservative 0.3	Strong	Strong meanders Rough surface	1 to 3	0.3 to 1
12 13	Transverse Mixing Coefficient Smagorinsky Coefficient	Smagorinsky Coefficient: 0.05 to 0.2				

- $D_L \simeq 2-4 D_T$
- If $D_L = D_T$ (isotropic) the model will overpredict floodplain deposition
- Non-conservative formulation generally requires larger values (2x) compared to the conservative formulation
- Calibrating to WSE without turbulence can get stages right but be wrong about how the water moves. Sediment will reveal that error. Calibrate hydraulics with reasonable turbulence and mixing.

<complex-block>

31

Cell Water Surface Error (For each time step)

Write Intermediate Results Before a Crash

Snapsł	nots
	🖀 RAS Mapper — 🗆 🗸
	File Project Tools Help
E HEC-RAS Computations	Selected Layer: Velocity ▷ ○ ♡ ♡ ♡ ○
Write Geometry Information	□ Varable Deph (080C12018 00:000) ⊖ □ RC No Sruc ⊕ □ Event Conditions ⊕ □ Geometry
Geometry Processor RS: River: RS: Reach: Node Type: Storage Area	
IB Curve:	E Cecentry B Cecentry Welectiv (190CT2013 Welectiv (190CT2013
Simulation:	Control (Control (Contro) (Control (Contro) (Control (Contro) (Control (Contro) (Contro
Time: 116.2833 12OCT2018 20:17:00 Iteration (1D): Iteration (2D): Unsteady Flow Computations	
Computation Messages	
Performing Unsteady Sediment Flow Simulation HEC-RAS 6.3.1 October 2022 Unsteady Input Summary: 2D Unsteady SWE-ELM Equation Set (faster)	× m
Sediment Input Summary:	15_ft/s)
Transport Function: Sorting Method: Active Layer Fall Velocity Method: Soulsby	
Deven	Plot Tick Marks - - 2-
Pause Make Snapshot of Results (0-12%)	Messages Views Profile Lines Active Features ()
	(1318308.42, 4056765.47 1 pixel = 4.93 ft)