

Mesh Quality Trouble Shooting

Mesh Best Practices	Diagnostics	Common Mesh Fixes			

- 1. Align Cell Faces with High Ground/Structures
- 2. Align Cell Faces with Flow Direction
- Defining an Irregular
 2D Channel
- 4. Connectivity
 - Diagnostics
 - Best Practices

Mesh Best Practices for 2D Sediment Modeling

- 1. Align Cell Faces with High Ground/Structures
- 2. Align Cell Faces with Flow Direction
- Defining an Irregular
 2D Channel
- 4. Connectivity
 - Diagnostics
 - Best Practices

What is the biggest problem with this mesh?

Take Away: Take Control of the High Ground

- 1. Align Cell Faces with High Ground/Structures
- 2. Align Cell Faces with Flow Direction
- Defining an Irregular
 2D Channel
- 4. Connectivity
 - Diagnostics
 - Best Practices

Mesh Best Practices for 2D Sediment Modeling

- Align Cell Faces with High Ground/Structures
- 2. Align Cell Faces with Flow Direction
- Defining an Irregular
 2D Channel
- 4. Connectivity
 - Diagnostics
 - Best Practices

Centerline breakline Near Repeats with Near Spacing

8	Breakline Editor			S			×
	<u>n n n 1</u>	Zoom To Se	elected				хŷ
	Name	Near Spacing	Near Repeats	Far Spacing	Enforce 1 (Protection Ra	Cell adius	<u> </u>
+	1 Center Line	200	4				-
+	Enforce Selected Break	lines (When	2 overlap, last rov	v is considered	on top)	ОК	Cancel

Refinement Region

Only Meant to Snap the Outside Cell Faces to Banks Perimeter Spacing and Enforce Cell Protection Only

2	Refinement Region Editor				6		×
	1 🗈 🖄 🖆 🗆 Zoom	To Selected					ЪŶ
	Name	Cell Size X	Cell Size Y	Perimeter Spacing	Near Repeats	Far Spacing	Enforce 1 Cell Protection Radius
+	🥒 1 Channel			200	0		V
+							
	Enforce Selected Regions	(When 2 overlag	p, last row i	s considered on t	op)	ОК	Cancel

Best practices are still emerging, but at least <u>6-8 cells</u> across a channel is probably a practical minimum for a 2D sediment model

Developing a Quality, Aligned, Mesh Takes Time

- 1. Align Cell Faces with High Ground/Structures
- 2. Align Cell Faces with Flow Direction
- Defining an Irregular
 2D Channel
- 4. Connectivity
 - Diagnostics
 - Common Mesh Fixes

Mesh
Best PracticesDiagnosticsCommon
Mesh FixesImage: Image: Image:

Hydraulic Connectivity

Addtic Plo Plo Dra Dra	onal Options t 2D Hydraulic Connectivity t 2D Water Surface Gradient (Arrow: WSEL High- aw Map Values aw Perpendicular Face Velocities		
Blue	Normal flow. Upstream WSE > downstream WSE and flow is with the predominant velocity.		
Yellow	Shallow depth of flow. Water is moving from high ground to low ground. Flow is not of significant depth over the cell face; however, it is expected to be hydraulically connected.		
Green	Intermediate depth of flow. While not deep, flow is expected over the adjacent cell face.		
Gray	Backwater. Downstream WSE > upstream WSE. Cell with the higher water surface elevation usually has lower terrain elevation.		
Pink	Critical. Flow most likely passes through critical depth over a cell face.		

Mesh Quality Trouble Shooting

Mesh Best Practices	Diagnostics	Common Mesh Fixes

Weird Shaped Cells/Small Faces

- Cells size should transition slowly
 - No more than 50% change in size
- Small cells and short faces compared to other cells and cells
 - This may cause excessive model iterations.

Partial Cell Wetting Issue RAS Mapper _ D X File Tools Help Max Min Selected Layer: Velocity b ⊕ ⊕ x x ← → m Z S 4 • • * Features Geometries Results 02JAN2012 03:20:00 Selected: 'velocity' Cherry_2D Cherry_2D 2D Only 2D Only Brunner BrunAug1 Cherry Crk 100ft Brunner Full EQ Brunner FEQ+T BrunMod Brun-Full-Modified E Geometry Depth (02JAN2012 05 Velocit WSE (Max) Brunner Full EQ NC Geometry Depth (Max) 7.73 Model can iterate when a flow passes through a small corner of a cell and the velocity is high.

Watch for "Wheel Spokes" Which Indicate Regions Without Nodes

Internal Hydraulic Structures

- Small cell sizes at invert of culvert or gate.
 - Small cells have less volume
 - Flow/volume for the culvert is computed over the time step as V = Q x DT
- Highly submerged weirs with culverts and gates can have stability issues. "Weir and Gate Flow Submergence decay exponents"
- Flow over the embankment can be computed as weir flow or 2D Flow Equations
 - Use Weir options when the is a high embankment
 - Use 2D flow option for non-weir flow situations

Culverts Modeling Failure Mode

The cell that intersects with the upstream culvert location must be large enough that it will not empty during the time step.

 $Vol_{Cell} > Q_{culvert} * \Delta t$

Note: Source Cell does not need to be first cell upstream of culvert

- 1. Align Cell Faces with High Ground/Structures
- 2. Align Cell Faces with Flow Direction
- Defining an Irregular
 2D Channel
- 4. Connectivity
 - Diagnostics
 - Best Practices

