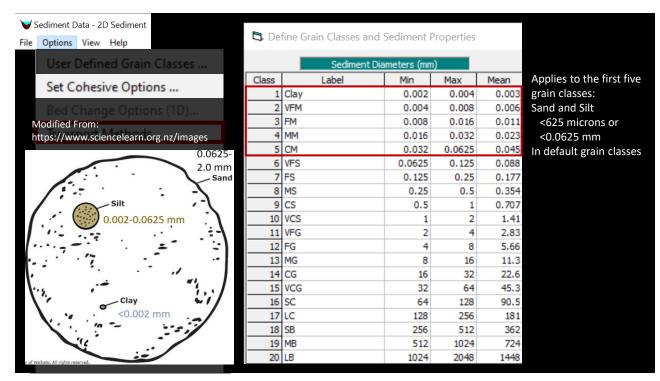

2D Sediment Options and Boundary Conditions

Stanford Gibson, PhD Alex Sánchez, PhD

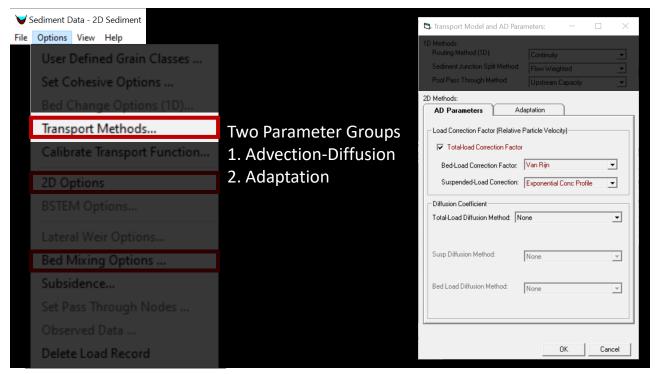
Sediment Options Menu	Sediment Data - File Options View Help User Defined Grain Classes Set Cohesive Options (1D) Transport Methods Calibrate Transport Function 2D Options BSTEM Options Lateral Weir Options Bed Mixing Options	Sect Location for Sediment Boundary Condition e Current Row Define Sediment Split at Junction Sediment Boundary Condition Types ries Equilibrium Load Capacity Ratio Clear Water (no Sed) Split GC Threshold Split eam Rating Curve
Boundary Condition Options	Rating Curve Sedment Load 1 Flow Wtd Sed Splt Potential Wtd Sed 20Area: BCLine Upp	



User Defined Grain Classes		Sediment	t Diameters (mm)						
User Defined Oralli Classes	Class	Label	Min	Max	Mean	SG	n	BD	Coh?	De
Set Cohesive Options		Clay VFM	0.002	0.004	0.003	2.65 2.65	0.82	480 1041		1
		FM	0.004	0.008	0.006	2.65	0.61	1041		
Bed Change Options (1D)		MM	0.016	0.032	0.023		Adva		1	1
-	5	СМ	0.032	0.0625	0.045	Specific			1	1
Transport Methods		VFS	0.0625	0.125	0.088	Cif 65	Bulk D	ensity/		
		FS	Max	and ^{0.25}	0.177		Unit V	Veight	0	
Calibrate Transport Function		MS CS	Min G	0.5	0.354	្នុះ		neters		
		VCS	Sizes	-	1.41	Gravity -	0.44		Not i	used
2D Options	11	VFG	Actu	4	2.83		Note	Often ⁴⁸⁹	in the	e 2D
	12				5.66				Mo	délos
BSTEM Options		MG	Used i		11.3	- Rarely		nged ₁₄₈₉		
	14		Moo	del 32	22.6 45.3	elv :		t some		
Lateral Weir Options	15		64	128	90.5	- G. 65	resei	rvoir		
Euteral Well Options	17		128	256	181	Used	moc	lels) 1489		
Bed Mixing Options		SB	256	512	362	2.65	0.44	1489		
ere maning options in		MB	512	1024	724	2.65	0.44			0.09
Subsidence	20	LB	1024	2048	1448	2.65	0.44	1489	0	0.09
	Currently	/ Default								
Set Pass Through Nodes		·								
Observed Date	Density	Method Bulk Densi	ty (All Classes)		•				Def	faults
Observed Data	Density		.,							Garco

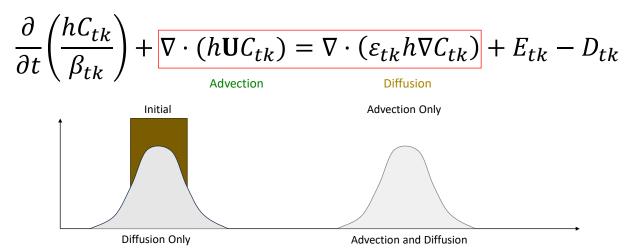
•	Gediment D			t			Ē	🕄 De	fine Gra	ain	Classes and	Sediment P	roperties		
File	Options User	ed Grai	n C	lasses			Sediment Diameters (mm)								
	Cat C				_		(Class		L	.abel	Min	Max	Mean	
	Set C		ve Opti	ion	S			1	Clay			0.002	0.004	0.003	We use the
							_	2	VFM			0.004	0.008	0.006	Geometric Mean
		_					_	3	FM			0.008	0.016		Of the Log ₂ Grain
	Trans	port l	Vethod				_	4	MM			0.016	0.032		
	Calib	rata T	ranspo	et E	unctiv				CM	-	-	0.032	0.0625		Classes
	Calib	ate i	anspo	IL F	uncui	211			VFS1	4	Expand	0.0625	.085	.073	
	20.0				_	_			VFS2	4		.085	.11	0.097	. /
	2D O	otion							VFS3		-	.11	.125	0.117	
							_		FS			.125	0.25	0.177	
							_		MS			0.25	0.5	0.354	
							_	11	CS			0.5	1	0.707	
							_		VCS			1	2	1.414	cultubic
	Bed N	/lixin	g Optio	ns			_		VFG			2	4	2.828	
						_	_		FG			4	8	5.657	
	Subsi	denc	ž				_		MG			8	16	11.31	
							_	16				16	32	22.63	
							_		VCG			32	64	45.25	
							_		SC			64	128	90.51	
							_		LC			128	256	181	
	Delet	e Loa	d Reco	rd				20	SB			256	512	362	

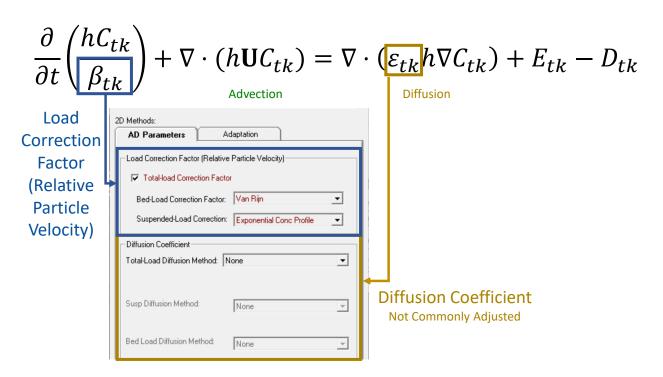
1/31/2024

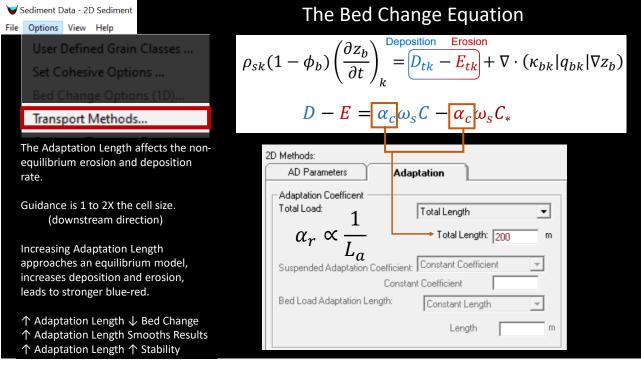


7

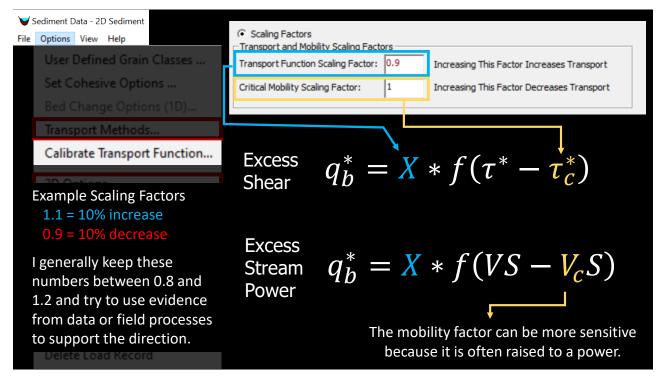
🤟 Sediment Data - 2D Sediment $\boldsymbol{E} = \boldsymbol{k}_d(\boldsymbol{\tau}_b - \boldsymbol{\tau}_c)$ 2D-Specific File Options View Help **Excess Shear Erodibility Model** Methods Set Cohesive Options ... Cohesive Options Use Selected Transport Functions for All Grain Size None • Use Krone/Partheniades for Clay and Silt Size Fractions Flocculatior Transport Methods. (2 Methods) Use Krone/Partheniades (HEC 6T Capacity Method) m ity Parameter Type: M 💌 Calibrate Transport Function.. Particle Ero Concentration Fall Velocity (Pa) (M) (N/m2 hr) Curve Approaches (2D Only Deposition Threshold (τ_d) (Opt) (b/ft2) Power (n) (Opt) 6789 Consolidation Erasion (N/m²/hr) Mmw Bulk Density ka/m3 Time 1 2 3 4 5 6 7 8 9 M Subsidence... Deposition (N/m²/hr) τ_{mw}/τ_c τ/τ 1 τ=τ.

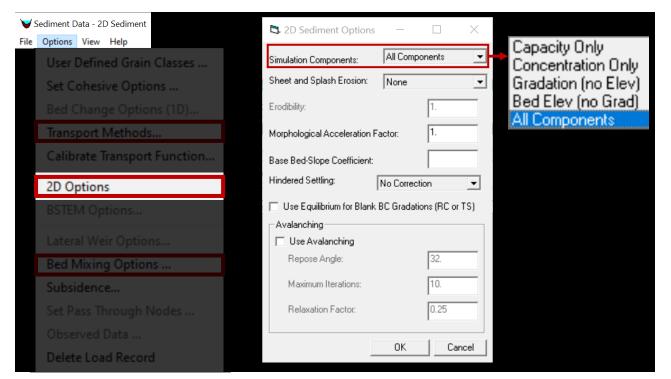

Use De for 1D Cohesive Setting

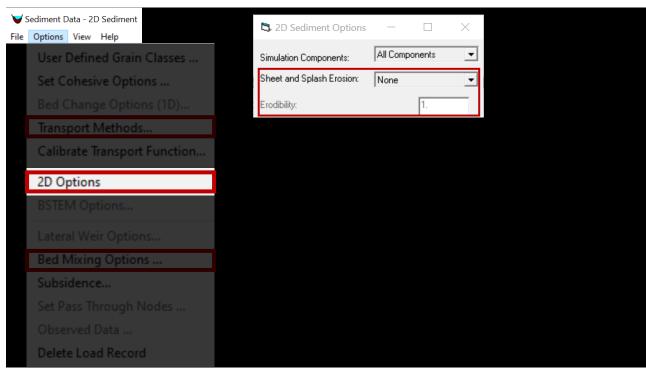

Flocculation and Consolidation (2D Only) <<



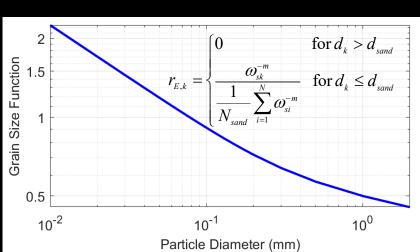
Governing Sediment Equations

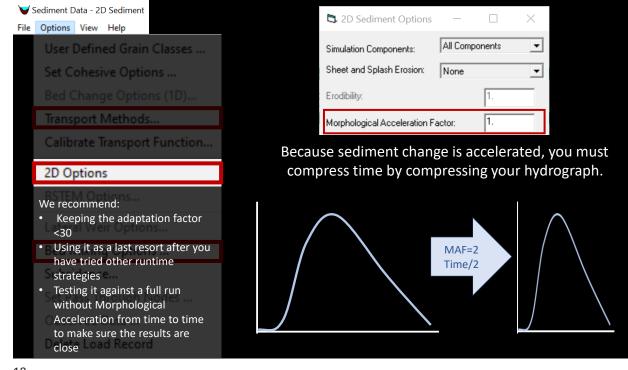

• Total-load Transport Equation



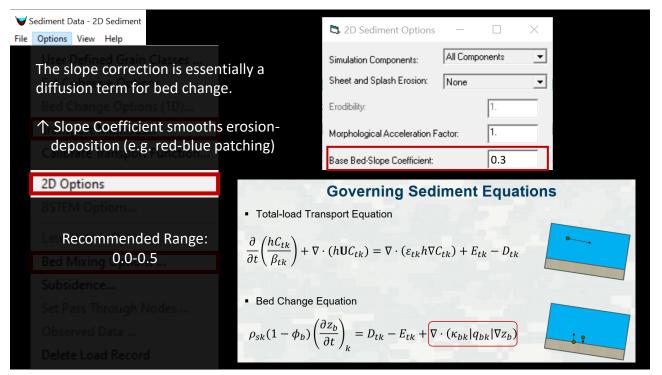


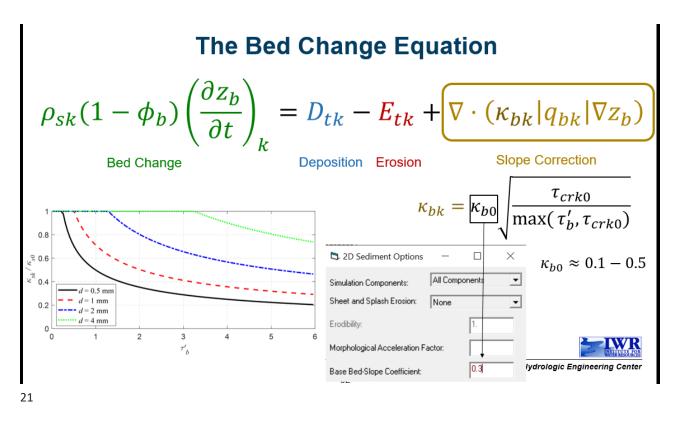
V :	Sediment Data - 2D Sediment	🕻 Transport Function Calibration and Modification $ \Box$ $ imes$	Re
File	Options View Help	Modify Transport Functions with Factors or Parameters Defined in This Editor	00 %
	User Defined Grain Classes	C Scaling Factors	mr
	Set Cohesive Options	Transport and Mobility Scaling Factors Transport Function Scaling Factor: 0.9 Increasing This Factor Increases Transport	nei
	Bed Change Options (1D)	Critical Mobility Scaling Factor: 1 Increasing This Factor Decreases Transport	Recommended
	Transport Methods	C Parameters and Coefficients	ä
	Calibrate Transport Function	-Hard Code Mobility Parameters and Transport Coefficents	
	2D Options	Ackers-White Ackers-White Ackers-White Ackers-White Ackers-White Ackers-White Ackers-White Ackers-White Ackers Ack	
	BSTEM Options	Laursen-Copeland Critical Sheild's # (tau*c) 0.039 Coefficient 0.01 Power 1	Not-Recommended
	Lateral Weir Options	Meyer-Peter Müller/Toffaleti/MPM	-Re
	Bed Mixing Options	Critical Shield's # (tau *c) 0.047 Coefficient 8 Power 1.5	сог
	Subsidence	Use Wong and Parker Correction to MPM Note: When the Wong and Parker (2006) coefficients are specified HEC-RAS excludes the form drag correction, which assumes plane bed conditions (i.e. no bed forms).	mm
	Set Pass Through Nodes	Wilcock and Crowe Minute State St	en
	Observed Data	Reference Shear 0.04 lb/ft2 (tau*rm)	dec
	Delete Load Record	Limit Toffaleti Suspended Transport when u*/Fall Vel<0.4.	

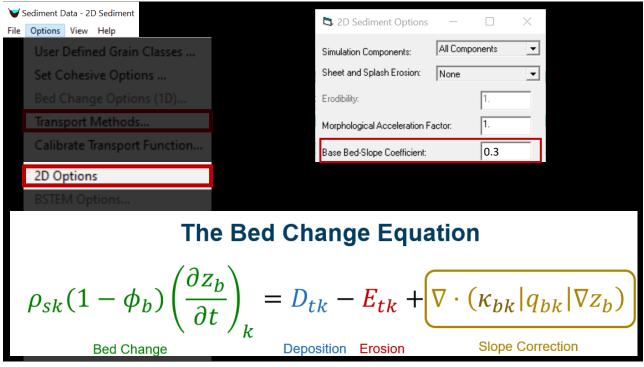




Sheet and Splash Erosion


- Based on Wei et al. (2009)
 - Extended to multiple grain sizes and limited for intense rain
 - Applied to hydraulically dry areas of cells
- No rill dynamics
 - Sediment instantly reaches wet portion of cell



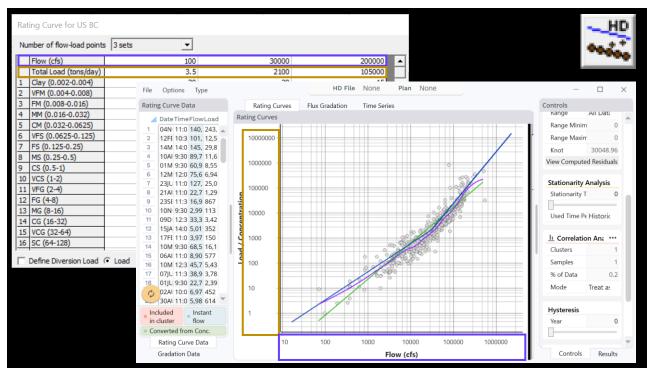

17

Fixed Start Time: Date: 0	1Jan2017 Time: 03:30 1jan2017 Time: 00:00	15 Minute 💌	Original Data Time Interval	
No. Ordinates Interpolate Missing Value Date	es Del Row Ins Row Hydrograph Data Simulation Time (hours) 0:00:00 0:15:00 1090.3	Flow •	rval Morphological Acceleration Factor	
		uce Flow Increment from 15		
Morphological Acceleration	Factor:	Data time interval: 1 Minute		
Accelerate bed ch	ange by 5X $ ightarrow$ Red	uce Flow Increment from 15		
Morphological Acceleration	Factor: 5	Data time interval: 3 Minu		
Assolution had also	, 		original data time interval.	
Accelerate bed ch	ange by 3X - Red	uce Flow Increment from 15	to 5 min	
Morphological Acceleration	Factor: 3	Data time interval: 5 Minu	ute 💌	

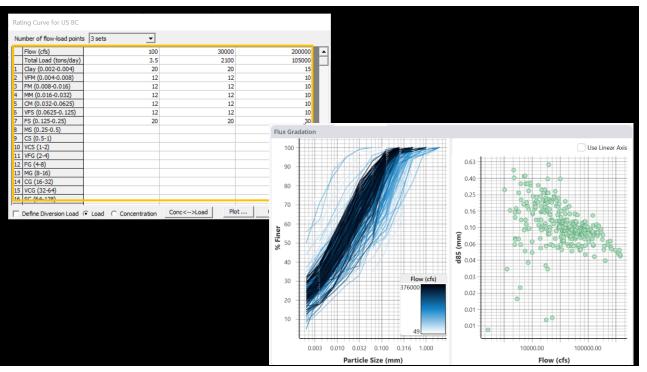
Sediment Data - 2D Sediment	😫 2D Sediment Options $ \Box$ $ imes$
Hindered Settling: At high concentrations the solids bang against each other and slow settling down, "hindering settling reducing the fall velocity.	Erodibility:
2D Options BSTEM Options Lateral Weir Options Bed Mixing Options	$\frac{Hindered Settling:}{No Correction} = \omega_{sd(cl)} (1 - C_{tV})^4$
 Only for noncohesives Cohesives treated separately 	deredClear WaterTotaltlingSettlingConcentrationocityVelocity
23 ✓ Sediment Data - 2D Sediment File Options View Help	🛱 2D Sediment Options $ \Box$ $ imes$

Options View Help				
User Defined Grain Classes	Simulation Components:	All Compo	nents	•
Set Cohesive Options	Sheet and Splash Erosion:	None		•
Bed Change Options (1D)	Erodibility:		1.	-
Transport Methods	Morphological Acceleration F	actor:	1.	
Calibrate Transport Function	Base Bed-Slope Coefficient: 0.3			
2D Options	Hindered Settling:	No Correctio	on 🗖	·
BSTEM Options	🔲 Use Equilibrium for Blank	BC Gradatio	ns (RC or TS)	
	Avalanching			
	🔲 Use Avalanching			
Bed Mixing Options	Repose Angle:		32.	
	Repose Angle: Maximum Iterations:		32. 10.	
Bed Mixing Options				
Bed Mixing Options Subsidence	Maximum Iterations:		10.	
Bed Mixing Options Subsidence Set Pass Through Nodes	Maximum Iterations:		10.	

V Sediment Data - 2D Sediment	
File Options View Help	
Flow	🛱 Bed Mixing Options – 🗆 X
(d_k)	Capacity Partitioning (1D Only) Capacity Partitioning Method: Bed Gradation Only % Inflow Gradation: 10
	Hiding and Exposure Functions Shape Factor: Hiding Function: Wu et al Hiding Exponent: 0.8
BSTEM Options	Active Layer Options Active Layer Thickness: X d90 V Multiplier: Multiplier: Min Thickness: 0.1 ft
Latas Wais Options	Exchange Increment (1D Only): % Bedload: 70. % Active Layer: 30.
Lateral Weir Options	Cover/Active Layer Gradations (1D Only)
Bed Mixing Options	Specify Seperate Cover/Active Layer Gradations
Subsidence	
Set Pass Through Nodes	Copeland Method Option (test) (1D Only) OK Cancel Defaults
Observed Data	
Delete Load Record	

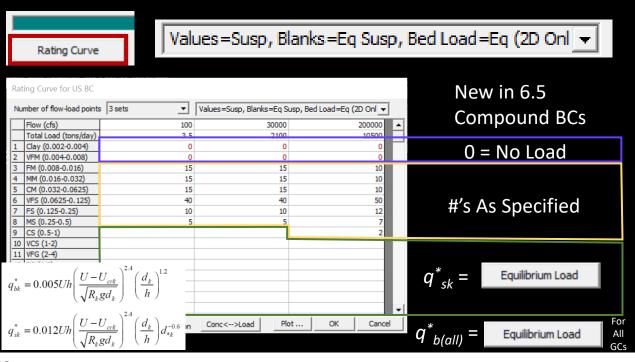

	Topics
Sediment Options Menu	Sediment Data - File Options User Defined Grain Classes Set Cohesive Options Bed Change Options (ID) Calibrate Transport Methods Calibrate Transport Function SetTex Options BSTEM Options BSTEM Options Bed Mixing Options Bed Mixing Options
Boundary Condition Options	Sediment Boundary Condition Types Rating Curve Sediment Load Series Equilibrium Load Capacity Ratio Clear Water (no Sed) Flow Wtd Sed Split Potential Wtd Sed Split GC Threshold Split Sed Split by GC Sed Split by GC 2DArea: BCLine Upstream Rating Curve Sed Split by GC Sed Split by GC

	Sediment Data -							
	le Options View							
E	Boundary Conditions	2D Bed Gradati			tu			
				cation for Sediment Bounda				
	Add Sediment Bou	undary Location(s)	Delete Currer	nt Row Define Sedimer	nt Split at Junction			
			Sec	diment Boundary Condition	Types			
	Rating Curve	Sediment	Load Series	Equilibrium Load	Capacity Ratio	Clear Water (no Sed)		
	Flow Wtd Sed Sp	alit Potential	Wtd Sed Split	GC Threshold Split	Sed Split by GC			
-	1.011 1100 300 30		Trea sea spire	Ge miconola opic]	 	_
ŀ	2DArea:	BCLine	Downstream	Equilibrium Load				
E	2DArea:	BCLine	Upstream	Equilibrium Load				
-	Mixing Methods Sele	ected				Description :		
	realities and a set							


Upstream Boundary Conditions													
	Sediment Boundary Condition Types												
Rating Curve	Sediment Load Series	Equilibrium Load	Capacity Ratio	Clear Water (no Sed)									

Upstream Boundary Conditions										
Sed	Types									
Rating Curve Sediment Load Series	Сара	city Ratio	Clear Water (no Sed)							
Computes sediment capacity acr condition and introduces the lo boundary cells equal to the cap		Brings in no sediment Can erode upstream cells if they are not coarse enough.								
 Should keep the cells at the bastable. Cannot compute wash load. Problematic at actively chang VERY sensitive to bed gradati which can be extremely unce 	ing transects. on at the cell ce			's start with e easiest two						

	Upstream B	oundary C	ondit	tions	
	Se	ediment Boundary Cor	ndition Typ	es	
Rating Curve	Sediment Load Series	Equilibrium Load		Capacity Ratio	Clear Water (no Sed)
Rating Curve for US BC Number of flow-load points 3 set	s √ ≤3			HEC-RAS 6.4.1 File Edit Run Vie	w Options GIS Tools Help
Flow (cfs) Total Load (tons/day) 1 Clay (0.002-0.004) 2 VFM (0.004-0.008) 3 FM (0.008-0.016) 4 MM (0.016-0.032) 5 CM (0.032-0.0625) 6 VFS (0.0625-0.125) 7 FS (0.125-0.25) 8 MS (0.25-0.5) 9 CS (0.5-1) 10 VCS (1-2) 11 VFG (2-4) 12 FG (4-8) 13 MG (8-16) 14 CG (16-32) 15 VCG (32-64) 16 SC (64-128)	100 3.5 20 12 12 12 12 12 12 20	30000 2100 20 12 12 12 12 12 20 20 Plot OK	200000 105000 15 10 10 10 10 10 10 10	Project: Qua Plan: Wat	dy Flow Analysis teady Flow Analysis si-Unsteady Analysis (Sediment) er Quality Analysis raulic Design Functions



	Upstream Boundary Conditions											
	Sediment Boundary Condition Types											
	Rating Curve	S	ediment Load Series	Equ	ilibrium Load	Capacity Ratio	Clear Water (no Sed)					
Rat	ting Curve for US BC											
Nu	mber of flow-load points	3 sets	•									
	Flow (cfs)		100	30000	200000							
	Total Load (tons/day)		3.5	2100	105000							
1	Clay (0.002-0.004)		20	20	15							
2	VFM (0.004-0.008)		12	12	10	Grain S	Sizo					
3	FM (0.008-0.016)		12	12	10	Urain .						
4	MM (0.016-0.032)		12	12	10		_					
5	CM (0.032-0.0625)		12	12	10	Distrib	nution					
5	VFS (0.0625-0.125)		12	12	10							
<mark>7</mark>	FS (0.125-0.25)		20	20	30							
8	MS (0.25-0.5)											
9	CS (0.5-1)											
10												
	VFG (2-4)											
	FG (4-8)											
	MG (8-16) CG (16-32)											
	VCG (32-64)											
	SC (64-128)											
ŀ	Define Diversion Load (•	Load C C	oncentration Conc<>Load	d Plot	. OK Cance	el						

			Upstream Bo	ound	lary Con	ditions	
			Sec	diment Bo	undary Condition	Types	
	F	Rating Curve	Sediment Load Series	Equi	librium Load	Capacity Ratio	Clear Water (no Sed)
	Ratii	ng Curve for eas	t-butte vent				
	Nur	mber of flow-load	points 2 sets	•	1	Load & Blanks=0)
		Flow (cfs) Total Load (tons/	(dav)		Values=Total L	.oad & Blanks=0 .oad & Blanks=Equilibrium Blanks=Eq Susp, Bed Loa	
-	1	Clav (0.002-0.00			values=susp, i	оюнка=су заяр, веа соа	

		v	aluae – Ta	talloa	d & Pla	anke -	=Equilibrium (2D Only)	
	Rating Curve	Ve	alues-ru			ii ins –	-Equilibrium (20 Only)	
	ing Curve for US BC mber of flow-load points	3 sets	▼ Values=To	tal Load & Blanks=E	quilibrium (2D C	nly) 🔻	New in 6.5	
	Flow (cfs) Total Load (tons/day)		100	30000		200000	Compound BCs	
1 2	Clay (0.002-0.004) VFM (0.004-0.008)		0	0		0	0 = No Load	
3 4	FM (0.008-0.016) MM (0.016-0.032)		15 15	15 15		10 10		
5 6	CM (0.032-0.0625) VFS (0.0625-0.125)		15 40	15 40		10 50	#'s As Specified	
7 8	FS (0.125-0.25) MS (0.25-0.5)		10 5	10 5		12 7	# 3 AS Specified	
9 10	CS (0.5-1) VCS (1-2)					2		
11 12 13	VFG (2-4) FG (4-8) MG (8-16)						Blanks = Equilibrium Loa	ad 1
13 14 15						-	DIdTIKS = Equilibrium Loa	Ju j
16	SC (64-128)				1			
	Define Diversion Load	Load C Concentration	ion Conc<>Loa	d Plot	OK	Cancel	2	

l	Jpstream Bo	und	ary Con	ditions	
	Sedi	ment Bou	Indary Condition	Types	
Rating Curve S	ediment Load Series	Equili	brium Load	Capacity Ratio	Clear Water (no Sed)
10% Overloade	ed		10% Ur	nderloaded	
Capacity Ratio			Capacity	Ratio	
Multiply Equilibrium Lo	ad by: 1.1		Multiply E	quilibrium Load by	: 0.9
ОК	Cancel			ОК	Cancel

• Ent	iment Load Serie ter Table ad Load From DSS	Selection Us	e Simulation		Date: 08	Dec2016 Time: 00000		—
		C Fb	ed Start Tir	ne:	Date:	Time:		
Manua	al Entry DSS							
Manua	arendy [DSS]							
		Se	diment Seri	es			Gradation Rating Curve	
No.	Ordinates	erpolate Val	ues Imp	ort Dur Del Row	Ins Row	Number of flow-load points	2 sets 💌	
	Simulation	Elapsed		Sediment	^	Total Load (tonnes/day)	240	1000
	Time	Time	Duration	Load		Clay (0.002-0.004)		
		(hours)	(hours)	(tonnes)		VFM (0.004-0.008)		
1	07Dec2016 2400	1	1	10		FM (0.008-0.016)		
2	08Dec2016 0100	2	1	10		MM (0.016-0.032)		
3	08Dec2016 0200	3	1	10.000		CM (0.032-0.0625)		
4	08Dec2016 0300	4	1	10.000		VFS (0.0625-0.125)		
5	08Dec2016 0400	5	1	10.000		FS (0.125-0.25)		
6	08Dec2016 0500	6	1	10.000		MS (0.25-0.5)		
7	08Dec2016 0600	7	1	10.000		CS (0.5-1)		
8	08Dec2016 0700	8	1	10.000		VCS (1-2)		
9	08Dec2016 0800	9	1	10.000		VFG (2-4)		
10	08Dec2016 0900	10	1	10		FG (4-8)		
11	08Dec2016 1000	11	1	40		MG (8-16)		
12	08Dec2016 1100	12	1	40.00		CG (16-32)		
13	08Dec2016 1200	13	1	40.00		VCG (32-64)	50	45
14	08Dec2016 1300	14	1	40.00		SC (64-128)	50	45
15	08Dec2016 1400	15	1	40.00		LC (128-256)		10
16	08Dec2016 1500	10	1	40.00		SB (256-512)		
17	U8Dec2016 1600	1/	1	40.00		MB (512-1024)		
18	08Dec2016 1700	10	1	40.00		LB (1024-2048)		
19 20	08Dec2016 1800	19	1	40 20				
20	08Dec2016 1900	20	1	20.00				
21	08Dec2016 2000	22	1	20.00				
22	08Dec2016 2100	22	1	20.00				
23	08Dec2016 2200	23	1	20.00				
144	0000002018 2300	27	1	20.00	-			