Finding and Fixing Model Stability Problems

Mark Jensen Hydrologic Engineering Center

Objectives

The Objectives of this lecture are to teach students how to detect, find, and fix model stability problems, using the available tools in HEC-RAS

Overview

- Detecting Stability Problems
- Utilizing the Profile Plot
- Computational Level Output for Debugging
- Utilizing the Cross Section Plot
- Profile Summary Tables
- Detailed Output Tables
- Turning on Detailed Log Output File for Debugging

Detecting Stability Problems

How do you know you have a model stability problem?

- Program completely blows up during run.
- Program says matrix solution went completely unstable during the calculations.
- Computed error in water surface calc is very large
- Program goes to maximum number of iterations for several time steps in a row, with large errors.
- Program has oscillations in the computed stage and flow hydrographs.

Detecting Stability Problems -Continued

What do you do when this happens?

- Note the simulation time and location from the computation window when the program either blew up or first started to go to the maximum number of iterations with large water surface errors.
- Use the HEC-RAS Profile and Cross Section Plots as well as the Tabular Output to find the problem location and issue.
- If you can not find the problem using the normal HEC-RAS output -Turn on the "Detailed Output for Debugging" option and re-run the program.
- View the text file that contains the detailed log output of the computations. Locate the simulation output at the simulation time when the solution first started to go bad.
- Find the river station locations that did not meet the solution tolerances. Then check the data in this general area.

Computation Window

- First place to look for problems
- When the maximum number of iterations is reach, and solution error is greater than the predefined tolerance, the time step, river, reach, river station, water surface elevation and the amount of error is reported.
 - When the error increases too much, the solution will stop and say "Matrix Solution Failed".
- Often the first RS to show up on the window can give clues to the source of instabilities

HEC-RAS Finished Computations				-		×
Write Geometry Information Layer: COMPLETE						
- Geometry Processor River: Bald Eagle Cr. Reach: Lock Haven IB Curve:	RS: -1867 Node Type: Cross Section					
Unsteady Flow Simulation Simulation:		Itemption (2D):				
Unsteady Flow Computations	U Iteration (ID): 20	Iteration (2D):				
Post Process River: Bald Eagle Cr. Reach: Lock Haven Profile: 02JAN1999 1800	RS: 137520 Node Type: Cross Section					
Simulation: 32/32						
Computation Messages						
Maximum iterations of 20	RS	WSEL	ERROR			^
01JAN1999 12:30:00 Bald Eagle Cr. Loc 01JAN1999 13:00:00 Bald Eagle Cr. Loc 02JAN1999 05:30:00 Bald Eagle Cr. Loc 02JAN1999 05:30:00 Bald Eagle Cr. Loc 02JAN1999 10:30:00 Bald Eagle Cr. Loc 02JAN1999 10:30:00 Bald Eagle Cr. Loc 02JAN1999 10:30:00 Bald Eagle Cr. Loc 02JAN1999 17:30:00 SA D2JAN1999 17:30:00 02JAN1999 18:00:00 SA D2JAN1999 D2JAN1999 SA	k Haven 23595 k Haven 72156 k Haven 36808 k Haven 72156 k Haven 60323 k Haven 62768 190 190 191	548.32 577.50 557.71 581.95 573.71 577.01 537.74 585.95 672.31	1.344 0.030 0.021 0.029 0.034 0.031 0.171 48.209 135.310			
**** ERROR: Solution Solver Failed *	***					
Minimum error exceeds allowable tolerance at 0	2JAN1999 18:00:00					
Bald Eagle Cr. Loc	k Haven 7741					
***** Warning! Extrapolated above Cross Sec (The extrapolation may have been caused	tion Table at: ***** by model instability)					~
Pause Take Snapshot of Results				ſ	Close	e

Computation Window

Small errors are generally not problematic

Focus on larger compounding errors.

Computation Messages

Maximum iterations of 20 at:

10SEP2004 03:28:45 Potomac River Kitz-Sava

10SEP2004 03:29:00 Potomac River Kitz-Sava

10SEP2004 03:29:15 Potomac River Kitz-Sava

10SEP2004 04:48:30 Potomac River Kitz-Sava

10SEP2004 04:48:45 Potomac River Kitz-Sava.

10SEP2004 04:49:00 Potomac River Kitz-Sava

10SEP2004 04:49:15 Potomac River Kitz-Sava

10SEP2004 05:10:30 Potomac River Kitz-Sava

□ Try to find time and location when errors first begin to occur.

RS

267788.9

267788.9

267788.9

259106.×

259106.*

259106.×

259106.×

242421.*

Close.

772.69

0.014

•

Utilizing the Profile Plot

- Great visual tool for finding problem areas.
- Use the "Animation" option to look for obvious instabilities. Zoom in to get a closer look.
- You will need to refine the Detailed Output Interval to see where and when the instability occurs.
- When the first hints of an instability is revealed, click on that "node" and investigate further.

Profile Plot Animation

Computation Level Output for Debugging

- Writes flow and stage at all locations to a separate file.
- Tools available from the View menu:
 - Spatial Plots
 - profile
 - schematic
 - Time Series plots
 - water surface, depth, flow
 - WS and flow errors
 - Warning: Can create large output files when used with large data sets for long times

C-RAS - Set Output Control Options			G₂.
Restart File Options Detailed Log Output	Computation Level Output Options HDF5 Wri	te Parameters	
☑ Write Computation Level Output File			
Optional specified time window (entire simu	lation is used unless specified)		
Starting Date: Startin	g Time:		
Ending Date: Ending) Time:		
Additional Variables			
VS Error	Velocity Total		
Flow Error	Courant in Channel		
Depth	Courant Total		
✓ Invert			
Velocity in Channel	Differential Equation Parts		
		ОК	Cancel

Computation Level Output Visualization Tools

Utilizing the Cross Section Plot

- Can help spot isolated problems such as:
 - Incorrect Bank Station locations
 - Bad Manning's n Values
 - Bad Station-elevation points
- Can help spot transition problems
 - Contraction/Expansion Areas
 - Ineffective Flow Areas

Cross Section Plot

Wide, Horizontal Beds Estimated XS? ■ LIDAR, no bathymetry? Prone to instabilities – High Area:Depth ratio High Ground Levee Option Ineffective Flows? Solutions?

Cross Section Plot

Transitions

- If sudden contraction or expansion occurs over a short distance, how can this be handled?
- Ineffective Flow Areas
- More Cross Sections
 Interpolation

Cross Section Plot

Ineffective Flow Areas

Hydrologic Engineering Center

Profile Summary Tables

 Sometimes visual clues are not available. Tabular output help.

- lateral inflow/outflow
 - Tributaries
 - Interaction with storage areas
- Lateral structure flow
- Inline structure flow
- Flow inconsistency
 - Main channel to overbanks
- Other internal boundaries
 - Groundwater

Profile Output Table - Standard Table 1 -							<	
<u>File</u> Options <u>Std.</u> Tables <u>L</u> ocations <u>H</u> elp								
HEC-RA	Cr.	Reload Da	ata					
Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.		
			(cfs)	(ft)	(ft)	(ft)		
Lock Haven	23595	03JAN1999 0300	239571.00	540.19	584.36			
Lock Haven	23191	03JAN1999 0300	239258.80	542.27	584.32			
Lock Haven	23100		Lat Struct					
Lock Haven	22438	03JAN1999 0300	222235.40	541.28	584.10			
Lock Haven	21398	03JAN1999 0300	199445.90	538.19	583.64	566.19)	
Lock Haven	21324		Bridge					
Lock Haven	21266	03JAN1999 0300	199445.90	537.51	583.61			
Lock Haven	21200		Lat Struct					
Lock Haven	20741	03JAN1999 0300	193066.80	538.52	582.32			
Lock Haven	20095	03JAN1999 0300	186219.50	540.37	578.88			
Lock Haven	19487	03JAN1999 0300	183837.20	541.07	575.51			
Lock Haven	18700	03JAN1999 0300	181599.10	540.17	576.90			
Lock Haven	17988	03JAN1999 0300	177019.20	537.81	577.52			
Lock Haven	17256	03JAN1999 0300	171642.60	536.91	576.79			
Lock Haven	16852	03JAN1999 0300	169344.60	537.25	576.04			
Lock Haven	16517	03JAN1999 0300	167809.50	537.53	575.71			
Lock Haven	15496	03JAN1999 0300	163777.30	532.71	576.09	554.14	ļ.	
Lock Haven	15127		Bridge					
Lock Haven	14914	03JAN1999 0300	163777.30	533.26	575.37			
Lock Haven	14800		Lat Struct				-	
•		I				Þ		

Total flow in cross section.

Detailed Output Tables

- Very good for looking at details of :
 - Inline Structures
 - Lateral Structures
 - Bridges/Culverts
 - Storage Areas
 - Pump Stations
 - Cross Sections

Eile Type	Structure Output								-	
River: Ba	ald Eagle Cr.	-	Profile:	Max WS		•		Lateral Str	ucture	-
Reach Lo	ock Haven	•	RS:	104700	•	1 t	Plan:	PMF+Floeli	chBrch	•
	Plan: PMF+FloelichBr	rch	Bald Eagle	e Cr. Lock Hav	en RS: 10470)0 Late	eral Str	ucture Pro	ofile: Max	WS
E.G. US. (ft)			677.05	Weir Sta US	(ft)				0.00
W.S. US.	(ft)			677.02	Weir Sta DS	(ft)				1432.44
E.G. DS (1	t)			677.05	Min El Weir F	low (ft))			666.30
W.S. DS	(ft)			676.99	Wr Top Wdt	th (ft)				1432.44
Q US (cfs)			191816.10	Weir Max De	epth (ft))			10.72
Q Leaving) Total (cfs)			19054.20	Weir Avg De	epth (ft)				10.71
Q DS (cfs)			173755.80	Weir Flow Ar	rea (sq f	ft)			15340.66
Perc Q Le	aving			9.93	Weir Coef (ft	t^1/2)				1.000
Q Weir (c	fs)			19054.20	Weir Subme	rg				0.99
Q Gates (cfs)				Q Gate Grou	ıp (cfs)				
Q Culv (d	fs)				Gate Open H	lt (ft)				
Q Lat RC	(cfs)				Gate #Open					
Q Outlet	rs (cfs)			0.00	Gate Area (se	q ft)				
Q Breach	(cfs)				Gate Subme	rg				
Breach Av	/g Velocity (ft/s)				Gate Invert ((ft)				
Breach Fk	ow Area (sq ft)				Gate Weir Co	oef				
Breach W	′D (ft)									
Breach To	op El (ft)									
Breach Bo	ottom El (ft)									
Breach SS	SL (ft)									
Breach SS	SR (ft)									
				Errors, Warni	ngs and Notes	5				
Warning:	Divided flow computed	d for	this cross-	section.						
Warning:	The velocity head has	chan	aed by m	ore than 0.5 ft (0.15 m). This	may in	dicate	the need fo	r addition	al cross
J	sections.		J /			1				

tream energy grade elevation at bridge or culvert (specific to that opening, not necessarily the weighted average).

Turning on Detailed Log Output for Debugging

<u></u> 」 Unste	ady Flow Analysis	×
File Op	tions Help	
Plan	Stage and Flow Output Locations Flow Distribution Locations Flow Roughness Factors Seasonal Roughness Factors Automated Roughness Calibration	HEC-RAS - Set Output Control Options
V	Unsteady Encroachments Ungaged Lateral Inflows	Restart File Options Detailed Log Output Computation Level Output Options HDF5 Write Parameters
	Dam (Inline Structure) Breach Levee (Lateral Structure) Breach SA Connection Breach	 Echo input hydrographs Write parameter options and initial conditions Write detailed log output for debuging:
Sin	Calculation Options and Tolerances	Optional specified time window (entire simulation is used unless specified) Starting Date: 16SEP2008 Starting Time: 0000
St Er Co Co	Output Options Friction Slope Method for Cross Section Friction Slope Method for Bridges Initial Backwater Flow Optimizations	Ending Date: 24SEP2008 Ending Time: 1200 Echo computed hydrographs
Ma DS 1 D	Sediment Computation Options and To Sediment Output Options Sediment Dredging Options	
Con	Check Data Before Execution View Computation Log File View Runtime Messages	OK Cancel

Viewing Detailed Log Output

<u></u> 上 U	L Unsteady Flow Analysis X								
File	Opt	tions Help							
Plan	~	Stage and Flow Output Locations Flow Distribution Locations Flow Roughness Factors Seasonal Roughness Factors Automated Roughness Calibration	PMF+FloelichBrch						
N		Unsteady Encroachments Ungaged Lateral Inflows							
	~	Dam (Inline Structure) Breach Levee (Lateral Structure) Breach SA Connection Breach							
Cin		Calculation Options and Tolerances							
St Er		Output Options Friction Slope Method for Cross Sections Friction Slope Method for Bridges	1200 0000						
Co		Initial Backwater Flow Optimizations	: Interval: 1 Minute 💌						
Ма		Sediment Computation Options and Tolerances	erval: 1 Hour 💌						
DS		Sediment Output Options	fety Class\Worksl 🖻 🗙						
1 D	~	Sediment Dredging Options Check Data Before Execution View Computation Log File	debug parameters						
[View Runtime Messages							

What is found in the detailed Output

- DSS Data shows all the data that was read from DSS.
- Unsteady Flow Computations Output Detailed unsteady flow calculations:
 - Job control parameters
 - Initial conditions calculations
 - Detailed output for each time step
- TABLE Output final hydrographs that are written to DSS

Initial Conditions Output

Diamond.bco - N	Notepad							_ 🗆 2
<u>File E</u> dit F <u>o</u> rmat	Help							
Initial Cond	itions from	n Backwa	ter					
	Diamond		North					-
Riv. Sta. 6.0 5.8 5.6 5.4 5.2 5.0 4.6 4.6 4.4 4.2 4.0	Flow 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0	WSEL 11.21 11.20 11.20 11.20 11.20 11.20 11.20 11.20 11.19 11.19	Crit Depth	EG Slope 0.0000036 0.0000027 0.0000015 0.0000011 0.0000008 0.0000008 0.0000008 0.0000008 0.0000008 0.0000008	Area 320.88 355.63 391.05 443.55 553.25 720.29 720.08 719.88 719.68 719.47 719.27	Topwidth 43.21 44.00 44.80 100.40 174.29 230.22 230.22 230.22 230.22 230.21 230.21	Velocity 0.312 0.281 0.256 0.225 0.181 0.139 0.139 0.139 0.139 0.139 0.139	Error Converged 0.00000 T 0.00000 T
	Diamond		Northwest					
Riv. Sta. 4.0 3.8 3.6 3.4 2.205 culv	Flow 70.0 70.0 70.0 70.0	WSEL 11.19 11.19 11.19 11.19	Crit Depth -0.51	EG Slope 0.0000004 0.0000004 0.0000004 0.0000004	Area 719.32 719.24 719.16 498.62	Topwidth 230.21 230.21 230.21 45.00	Velocity 0.097 0.097 0.097 0.140	Error Converged 0.00000 T 0.00000 T 0.00000 T 0.00000 T
3.39 3.35	70.0 70.0	11.00 11.00	-0.51	0.0000005 0.0000005	489.99 489.99	45.00 45.00	0.143 0.143	0.00000 т
	Diamond		Northeast					
Riv. Sta. 3.9999 3.77768 3.55547 3.33326 3.11105 2.88884 2.66663 2.44442 2.22221	Flow 30.0 30.0 30.0 30.0 30.0 30.0 30.0 30.	WSEL 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00	Crit Depth	EG Slope 0.0000001 0.0000001 0.0000001 0.0000001 0.0000001 0.0000001 0.0000001 0.0000001 0.0000001	Area 675.21 675.19 675.17 675.14 675.12 675.10 675.08 675.06 675.03	Topwidth 230.00 230.00 230.00 230.00 230.00 230.00 230.00 230.00 230.00	Velocity 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044 0.044	Error Converged 0.00000 T 0.00000 T 0.00000 T 0.00000 T 0.00000 T 0.00000 T 0.00000 T 0.00000 T
•								Þ

21

Example Detailed Time Step Output for cross sections

Beaver_spec_store.bco	- Notepad							
<u>File E</u> dit F <u>o</u> rmat <u>H</u> elp								
	507	lving for T =	-3.250					
Iter River	Station	Elev	DZ Sto	rage Zsa	DZSa	River	Station	Q
0 Beaver Creek	5.0	210.53 0	.51156 Bay	วนี้ 206.	13 0.01598	; Beaver Creek	5.0	5358 📖
📔 1 Beaver Creek	5.0	210.22 -0	.43984 Bay	ou 206.	13 0.00000	/ Beaver Creek	5.0	5538
2 Beaver Creek	5.0	209.94 -0	.39653 Bay	ou 206.	13 0.00000	/ Beaver Creek	5.0	5700
3 Beaver Creek	5.0	209.68 -0	.37383 Bay	ou 206.	13 0.00000	/ Beaver Creek	5.0	5805
4 Beaver Creek	5.0	209.43 -0	.35521 Bay	ou 206.	13 0.00000	/ Beaver Creek	5.0	5883
5 Beaver Creek	5.0	209.22 -0	.30138 Bay	ou 206.	13 0.0000Z	Beaver Creek	5.0	6041
6 Beaver Creek	5.065×	211.02 0	.62017 Bay	ou 206.	13 0.00005	Beaver Creek	5.0	5909
7 Beaver Creek	5.065*	214.64 5	.17663 Bay	ou 206.	13 0.00076) Beaver Creek	5.0	2843
WARNING! EXTRAPOL	ATED ABOVE	THE TOP OF THE	HE PROPERTY	TABLE AT XSEC(S):				
Beaver Creek	_ <u>5.0</u> 65™	214.64	42090	200		· · · · · · · · · · · · · · · · · · ·	E AZEJ	2224
8 Beaver Creek	5.0	207.13 -1	.03604 Bay	ou 200.	13 -0.00055	Beaver Creek	5.065*	3234
9 Beaver Creek	5.0	206.04 -1	.55023 Bay	ou 200.	13 0.00057	Beaver Creek	5.0	2142
10 Beaver Creek	5.0	204.72 -1	.89683 Bay	ou 200.	13 0.00053	Beaver creek	5.0	930
11 Beaver Creek	5.0	203.50 -1	.73679 Bay	ou 200.	13 -0.00003	Beaver Creek	5.065*	1564
12 Beaver Creek	5.0	202.14 -1	.94503 Bay	ou 200.	13 0.00028	Beaver Creek	5.0	45/
13 Beaver Creek	5.0	200.64 -2	.13693 Bay	ou 200.	13 0.00038	Beaver Creek	5.0	-1/5
14 Beaver Creek	5.0	199.25 -1	.98779 Bay	ou 200.	13 -0.00013	Beaver Creek	5.065*	802
15 Beaver Creek	5.0	197.84 -2	.01339 Bay	ou 206.	13 0.00001	. Beaver Спеек	5.0	-1
16 Beaver Creek	5.0	196.46 -1	.9765/ Bay	ou 206.	13 -0.00006	Beaver Creek	5.0	88
17 Beaver Creek	5.0	195.08 -1	.97219 Bay	ou 206.	13 -0.00002	Beaver Creek	5.0	126
18 Beaver Creek	5.0	193.70 -1	.96514 Bay	ou 206.	13 -0.00002	Beaver Creek	5.0	155
19 Beaver Creek	5.0	192.33 -1	.95701 Bay	ou 206.	13 -0.00002	Beaver Creek	5.0	184
20 Beaver Creek	5.0	190.97 -1	.94689 Bay	ou 206.	13 -0.00002	Beaver Creek	5.0	218
L								
!WARNING, USED COM	PUTED CHANG	JES IN FLOW AP	ND STAGE AT	MINIMUM ERROR. MIN	JIMUM ERROR O	CCURED DURING I	TERATION 5.	
								<u> </u>
		(

Example Detailed Time Step Output for cross sections - Continued

🛃 beaver.bco - Note	pad									
<u>File E</u> dit F <u>o</u> rmat <u>H</u>	elp									
COMPUTED	STAGES AND I Beaver Creek	DISCHARGES AT	T = 1	0.1167 HOURS	- 2/1	0/1999 at	0007 HOURS			
Riv. Station 5.99 213 5.93 213 5.875 213 5.875 213 5.76 213 5.76 213 5.703 210 5.647 210 5.647 210 5.593 210 5.542 200 5.542 200 5.44 200 5.33 200 5.33 200 5.274 203 5.274 203	Z Q 3.03 599. 2.71 571. 2.19 552. 1.52 540. 1.17 528. 0.75 519. 0.37 515. 0.37 515. 0.37 512. 9.85 510. 9.67 510. 9.58 510. 9.54 509. 9.40 510. 8.95 510. 7.85 511. 6.71 514. 6.53 516. 6.31 518.	V 1.09 1.56 2.34 2.96 1.18 2.31 1.92 1.52 2.23 1.94 1.47 0.88 1.67 1.66 3.05 2.68 1.45 1.60 1.66 Solving for T	Riv. Sta 5.97 5.913 5.855 5.798 5.798 5.798 5.76 5.628 5.628 5.525 5.474 5.425 5.37 5.31 5.258 5.21 5.162 5.113 5.065 5.016	tion Z 212.94 212.56 211.98 211.36 211.07 210.61 210.27 210.03 209.78 209.64 209.58 209.52 209.28 209.52 209.28 208.68 207.46 206.83 206.65 206.46 206.23	Q 588. 564. 523. 517. 514. 511. 510. 510. 510. 510. 510. 510. 511. 515. 515	V 1.22 1.79 2.65 2.45 1.64 2.30 1.62 1.80 2.24 1.76 1.11 1.67 1.95 3.29 2.16 1.50 1.63 1.66	Riv. Stat 5.951 5.894 5.836 5.779 5.72 5.666 5.61 5.559 5.508 5.457 5.41 5.35 5.29 5.242 5.194 5.146 5.097 5.048 5.0	tion Z 212.83 212.38 211.74 211.24 210.91 210.48 210.21 209.93 209.72 209.61 209.57 209.48 209.15 208.29 207.15 206.75 206.59 206.39 206.13	Q 579. 558. 543. 521. 516. 513. 510. 510. 510. 510. 510. 510. 510. 511. 512. 514. 515. 519.	V 1.37 2.04 2.91 1.76 2.15 2.19 1.31 2.06 2.14 1.60 0.88 1.46 1.47 2.55 3.13 1.75 1.65 1.65 1.64
Iter River	Statio	on Elev	DZ	River Boxyon Check	Ş	tation	Q	DQ 14		
1 Beaver Cre	ek 5.0	206.13	-0.00050	Beaver Creek Beaver Creek	5	.93	584	1		•
•										•

