Computational Parameters

Eric Tichansky, P.E., CFM

USACE, Institute for Water Resources, Hydrologic Engineering Center

Overview

- Performing Computations
- Computation Options
 - 2D and 1D/2D
- 2D Cell Size Considerations
- Time Step Selection and Options

Performing Computations

- Plan Data
- Programs to Run
- Simulation Window
- Computational Settings
 - Computation Timestep
 - Output Intervals
- Computation Options and Tolerances

上 U	nstea	dy Flo	ow Analysis		×
File	Opti	ons	Help		
Plan:	6	Flov	je and Flow Output Locations v Roughness Factors sonal Roughness Factors	oft	• •
Pro			omated Roughness Calibration omated Flow Optimization	F	
•			teady Encroachments aged Lateral Inflows		~
-Sim		Leve	n (Inline Structure) Breach ee (Lateral Structure) Breach Connection Breach	e: :	2400
Cor		Con	nputation Options and Tolerances	erval:	30 Minute 🔻
Mar Pro		Frict Frict	put Options tion Slope Method for Cross Sections tion Slope Method for Bridges al Backwater Flow Optimizations	al:	1 Hour
			ment Computation Options and Tolerances ment Output Options		

Order of Operations

- 1. Writing 1D Geometry
 - Bank Lines, Edge Lines (1D)
 - Interpolation Surface (1D)
- 2. 2D Geometry Preprocessor
 - Process 2D Cells and Faces
- 3. 1D Geometry Preprocessor
 - Hydraulic Tables for Cross Sections
- 4. Unsteady Flow Simulation
- 5. Post Processor (1D only)

HEC-RAS Finished Computations	
Write Geometry Information	
Layer: Complete	
Geometry Processor	
River: MissRiver RS: 29569.19	
Reach: Below_Grey_Cloud Node Type: Cross Section IB Curve:	
Unsteady Flow Simulation	
Simulation:	
Time: 384.0000 18FEB2099 00:00:00 Iteration (1D): 0 Iteration (2D):	0
Writing Profiles 500	
Post Process River: MissRiver RS: 151400	
Reach: thru_St_Paul Node Type:	
Profile: 17FEB2099 2400	
Simulation: 66/66	
Computation Messages	
Plan: 'Fail Middle - 2D Run Modified' (StPaulIES.p03)	A
Simulation started at: 16Jul2014 01:10:38 PM Using 64 Bit Computation Engines	
Writing Geometry Computing Bank Lines	
Bank lines generated in 303 ms	
Computing River Edge Lines River Edge Lines generated in 302 ms	
There are no stored interpolation surfaces	
Interpolation Surfaces will be recomputed Computing XS Interpolation Surfaces	
XS Interpolation Surfaces generated in 374 ms	
Geometry 'GeomWriter' association was set to the terrain layer (Terrain) Computing 2D Flow Area '2DArea' tables	
2D Flow Area '2DArea' tables complete 12.76 sec	
Completed writing geometry	
Geometric Preprocessor HEC-RAS 5.0.0 Beta June 2014 10 Internal Boundary curve(s) have been read in	
Finished Processing Geometry	
Writing event conditions Event conditions complete	-
Performing Unsteady Flow Simulation HEC-RAS 5.0.0 Beta June 2014	E
Finished Unsteady Flow Simulation	
Writing Results to DSS Finished Writing Results to DSS	
Reading Data for Post Process	
Running Post Processor HEC-RAS 5.0.0 Beta June 2014	
Finished Post Processing	
Computations Summary	
Computation Task Time(hh:mm:ss)	
Completing Geometry 15 Preprocessing Geometry(64) 1	
Unsteady Flow Computations(64) 1:11	
Writing to DSS(64) 7 Post-Processing(64) 30	
Complete Process 2:06	-
Pause Take Snapshot of Results	Close

2D Computation Options Tab

- Defaults
- Column Per 2D Flow
 Area

eneral 2D Flow Options 1D/2D Options Advance	ed Time Step C ntrol 1D Mixed Flow Options	
Use Coriolis Effects (not used with Diffusion Wave	equation)	
	•	
Parameter	(Default)	BaldEagleCr
1 Theta (0.6-1.0)	1	1
2 Theta Warmup (0.6-1.0)	1	1
3 Water Surface Tolerance [max=0.2](ft)	0.01	0.01
4 Volume Tolerance (ft)	0.01	0.01
Maximum Iterations	20	20
Equation Set	Diffusion Wave	Diffusion Wave
7 Initial Conditions Time (hrs)		4
3 Initial Conditions Ramp Up Fraction (0-1)	0.5	0.5
Number of Time Slices (Integer Value)	1	1
) Turbulence Model	Non-Conservative (original)	Non-Conservative (original
Longitudinal Mixing Coefficient		
P Transverse Mixing Coefficient		
3 Smagorinsky Coefficient	0	
Boundary Condition Volume Check		
Latitude for Coriolis (-90 to 90)		
5 Solver Cores	6 Cores	6 Cores
7 Matrix Solver	PARDISO (Direct)	PARDISO (Direct
Convergence Tolerance		
9 Minimum Iterations		
Maximum Iterations		
1 Restart Iteration	10	1
2 Relaxation Factor	1.3	1
3 SOR Preconditioner Iterations	10	11

General 2D Computation Options

- Theta
- Theta Warmup
- Water Surface Tol
- Volume Tolerance
- Max Iterations

HEC-RAS Unsteady Computation Options and Tolerances							
General 2D Flow Options 1D/2D Options Advanced Time Step Control 1D Mixed Flow Options							
Use Coriolis Effects (not used with Diffusion Wave equation)							
	(==-=)	BullEuglet:					
1 Theta (0.6-1.0)	1	1					
2 Theta Warmup (0.6-1.0)	1	1					
3 Water Surface Tolerance [max=0.2](ft)	0.01	0.01					
4 Volume Tolerance (ft)	0.01	0.01					
5 Maximum Iterations	20	20					
6 Equation Set	Diffusion Wave	Diffusion Wave					
7 Initial Conditions Time (hrs)		4					
8 Initial Conditions Ramp Up Fraction (0-1)	0.5	0.5					
9 Number of Time Slices (Integer Value)	1	1					
10 Turbulence Model	Non-Conservative (original)	Non-Conservative (original)					
11 Longitudinal Mixing Coefficient							
12 Transverse Mixing Coefficient							
13 Smagorinsky Coefficient	Ø	0					
14 Boundary Condition Volume Check							
15 Latitude for Coriolis (-90 to 90)							
16 Solver Cores	6 Cores	6 Cores					
17 Matrix Solver	PARDISO (Direct)	PARDISO (Direct)					
18 Convergence Tolerance							
19 Minimum Iterations							
20 Maximum Iterations							
21 Restart Iteration	10	10					
22 Relaxation Factor	1.5	1.3					
23 SOR Preconditioner Iterations	10	10					
		OK Cancel Defaults .					

2D Equation Set

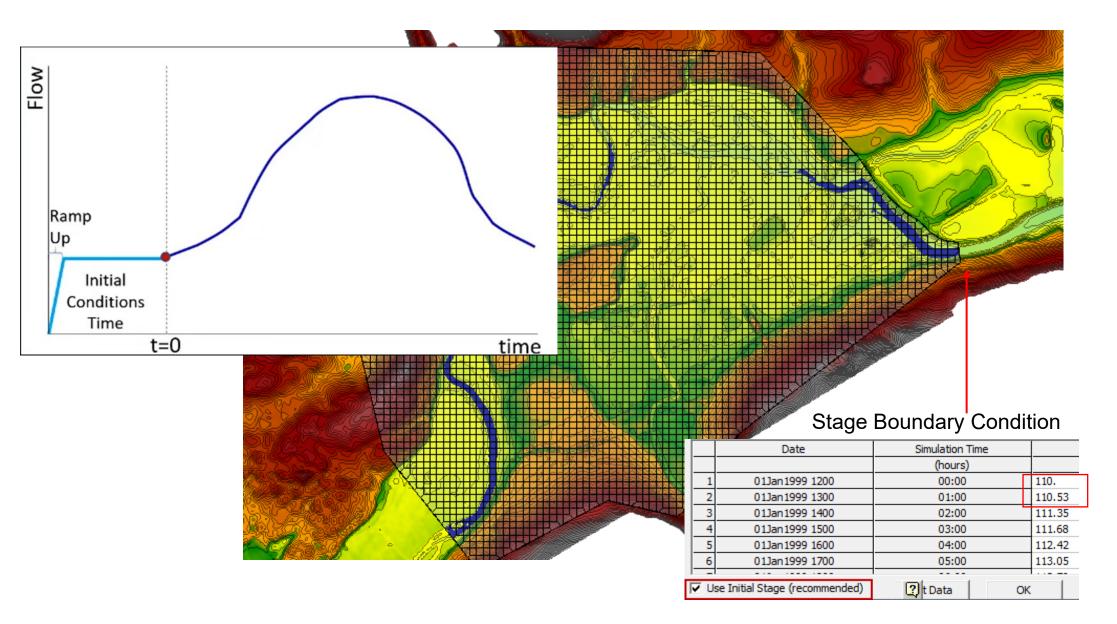
- Diffusion Wave
- Shallow Water Eqn (faster)
- Shallow Water Eqn (conservative)
- Local Inertial Approx (LIA)

HE	HEC-RAS Unsteady Computation Options and Tolerances								
General 2D Flow Options 1D/2D Options Advanced Time Step Control 1D Mixed Flow Options									
Г	Use Coriolis Effects (not used with Diffusion Wave equation)								
	Parameter	(Default)	BaldEagleCr						
1	Theta (0.6-1.0)	1	1						
2	Theta Warmup (0.6-1.0)	1	1						
3	Water Surface Tolerance [max=0.2](ft)	0.01	0.01						
4	Volume Tolerance (ft)	0.01	0.01						
	r la Almani Tecra dona	20							
6	Equation Set	Diffusion Wave	Diffusion Wave						
	Indu conditions Time (ms)		Diffusion Wave						
8	Initial Conditions Ramp Up Fraction (0-1)	0.5	SWE-ELM (original/faster)						
9	Number of Time Slices (Integer Value)	1	SWE-EM (stricter momentum)						
10	Turbulence Model	Non-Conservative (original)	Non-Conservative (original)						
11	Longitudinal Mixing Coefficient								
12	Transverse Mixing Coefficient								
13	Smagorinsky Coefficient	0	0						
14	Boundary Condition Volume Check								
15	Latitude for Coriolis (-90 to 90)								
16	Solver Cores	6 Cores	6 Cores						
17	Matrix Solver	PARDISO (Direct)	PARDISO (Direct)						
18	Convergence Tolerance								
19	Minimum Iterations								
20	Maximum Iterations								
21	Restart Iteration	10	10						
	Relaxation Factor	1.3	1.3						
23	SOR Preconditioner Iterations	10	10						
_			OK Cancel (Defaults						

2D Initial Conditions

- Time allowed for each 2D area to compute an initial water surface
- Initial flows and stages can be ramped up during initial conditions

HEC-RAS Unsteady Computation Options and Tolerances


General 2D Flow Options Pipe Systems 1D/2D Options Advanced Time Step Control 1D Mixed Flow Options

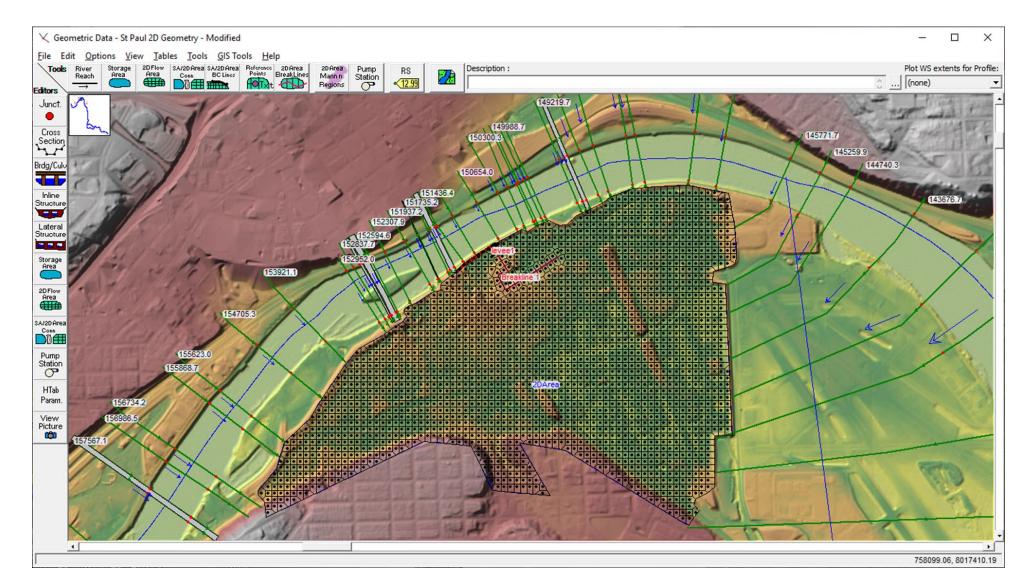
 $\ensuremath{\,\square}$ Use Coriolis Effects (not used with Diffusion Wave equation)

Parameter	(Default)	OkaToEnterprise
1 Theta (0.5-1.0)	1	1
2 Theta Warmup (0.5-1.0)	1	1
3 Water Surface Tolerance [max=0.2](ft)	0.01	0.01
4 Volume Tolerance (ft)	0.01	0.01
5 Maximum Iterations	20	20
6 Equation Set	Diffusion Wave	Diffusion Wave
7 Initial Conditions Time (hrs)	0	0
8 Initial Conditions Ramp Up Fraction (0-1)	0.1	0.1
9 Number of Time Slices (Integer Value)	1	1
10 Turbulence Model	None	None
11 Longitudinal Mixing Coefficient	0.3	0.3
12 Transverse Mixing Coefficient	0.1	0.1
13 Smagorinsky Coefficient	0.05	0.05
14 Boundary Condition Volume Check		
15 Latitude for Coriolis (-90 to 90)		
16 Solver Cores	All Available	All Available
17 Matrix Solver	PARDISO (Direct)	PARDISO (Direct)
18 Convergence Tolerance	0.00001	0.00001
19 Minimum Iterations	3	ى
20 Maximum Iterations	30	30
21 Restart Iteration	10	10
22 Relaxation Factor	1.3	1.3
23 SOR Preconditioner Iterations	10	10
24 ILUT Maximum Fill	8	8
25 ILUT Fill Tolerance	1E-08	1E-08

2D Initial Conditions Warm Up in Progress

1D/2D Warm Up Period

- Hold all the BC's constant, allow the model to stabilize
- Runs after 2D Initial Conditions Period
- Duration specified as number of time steps
- Time step is optional


HEC-RAS Unsteady Computation Options and Tolerances	
General 2D Flow Options 1D/2D Options Advanced Time Step Control	
1D Unsteady Flow Options	ID/2D Unsteady Flow Options
Theta [implicit weighting factor] (0.6-1.0): 1.	Number of warm up time steps (0 - 100,000): 20
Theta for warm up [implicit weighting factor] (0.6-1.0): 1.	Time step during warm up period (hrs):
Water surface calculation tolerance [max=0.2](ft): 0.02	Minimum time step for time slicing (hrs):
Storage Area elevation tolerance [max=0.2](ft): 0.02	Maximum number of time slices: 20
Flow calculation tolerance [optional] (cfs):	Lateral Structure flow stability factor (1.0-3.0): 2.
Max error in water surface solution (Abort Tolerance)(ft): 100.	Inline Structure flow stability factor (1.0-3.0):
Maximum number of iterations (0-40): 20	Weir flow submergence decay exponent (1.0-3.0): 1.
Maximum iterations without improvement (0-40):	Gate flow submergence decay exponent (1.0-3.0): 1.
	Gravity (ft/s^2): 32.174
Wind Forces	1D Numerical Solution
Reference Frame: Eulerian 💌	Finite Difference (classic HEC-RAS methodology)
Drag Formulation: Hsu (1988)	Finite Difference Matrix Solver
	 Skyline/Gaussian (Default: faster for dendritic systems)
	 Pardiso (Optional: may be faster for large interconnected systems)
Geometry Preprocessor Options	
Family of Rating Curves for Internal Boundaries	O Finite Volume (new approach)
 Use existing internal boundary tables when possible. 	
O Recompute at all internal boundaries	Number of cores to use with Pardiso solver: All Available
	OK Cancel Defaults

HE(

1D/2D Modeling Computational Time Step

13

2D Time Slicing

• Use fraction of computation interval

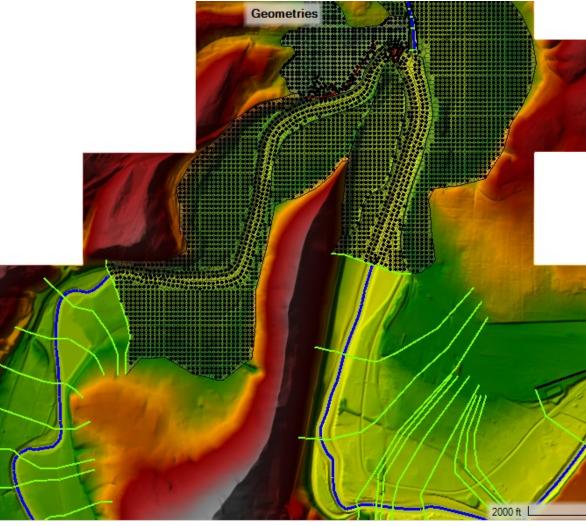
HEC-RAS Unsteady Computation Options and Tolerances

General 2D Flow Options | 1D/2D Options | Advanced Time Step Control | 1D Mixed Flow Options |

☐ Use Coriolis Effects (not used with Diffusion Wave equation)

itian intarval			
ition interval	Parameter	(Default)	BaldEagleCr
	1 Theta (0.6-1.0)	1	1
	2 Theta Warmup (0.6-1.0)	1	1
	3 Water Surface Tolerance [max=0.2](ft)	0.01	0.01
	4 Volume Tolerance (ft)	0.01	0.01
	5 Maximum Iterations	20	20
	6 Equation Set	Diffusion Wave	Diffusion Wave
	7 Initial Conditions Time (hrs)		4
	O Telfel Conditions David Up Frantice (0, 1)	2.5	0.5
	9 Number of Time Slices (Integer Value)	1	1
	10 Turbulence Model	Non-Conservative (original)	Non-Conservative (original)
	11 Longitudinal Mixing Coefficient		
	12 Transverse Mixing Coefficient		
	13 Smagorinsky Coefficient	0	0
Computation Settings			
Computation Interval: 30 Second 💌 .	Hydrograph Output Interval: 30 Minute	▼	
Mapping Output Interval: 30 Minute 🔻	Detailed Output Interval: 1 Hour	▼ 6 Cores	6 Cores
		PARDISO (Direct)	PARDISO (Direct)
Project DSS Filename: 💌 C:\Computational	Investigations\Testing\Upper Chickasawha 📴	<u> </u>	
	19 Minimum Iterations		
	20 Maximum Iterations		
	21 Restart Iteration	10	10
	22 Relaxation Factor	1.3	1.3
	23 SOR Preconditioner Iterations	10	10
	·		
			OK Cancel [Defaults]

14



1D/2D Iterations Option

- Monitors WSEL and Flow Tolerance at boundaries
- Iterates the 1D and 2D domain until tolerances are met
- Off by default (0 iterations)

HEC-RAS Unsteady Computation Options and Tolerance	25
General 2D Flow Options 1D/2D Options Advanced Tin	ne Step Control 1D Mixed Flow Options
Maximum iterations between 1D and 2D (0=off, 1 to 20): Water surface tolerance (ft): Flow Tolerance (%) Minimum flow tolerance (cfs):	0 0.01 0.1 1.

2D Boundary Condition Volume Check

- Boundary Condition Volume Check
- Checks if enough volume is available to satisfy flow rate leaving

HEC-RAS Unsteady Computation Options and Tolerances

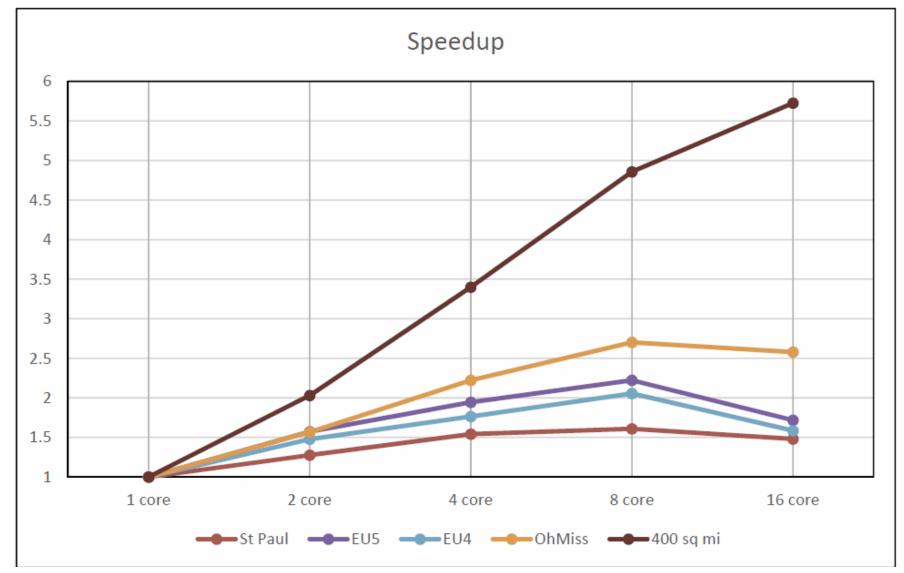
General 2D Flow Options | 1D/2D Options | Advanced Time Step Control | 1D Mixed Flow Options |

Use Coriolis Effects (not used with Diffusion Wave equation)

Parameter	(Default)	BaldEagleCr
1 Theta (0.6-1.0)	1	1
2 Theta Warmup (0.6-1.0)	1	1
3 Water Surface Tolerance [max=0.2](ft)	0.01	0.01
4 Volume Tolerance (ft)	0.01	0.01
5 Maximum Iterations	20	20
6 Equation Set	Diffusion Wave	Diffusion Wave
7 Initial Conditions Time (hrs)		4
8 Initial Conditions Ramp Up Fraction (0-1)	0.5	0.5
9 Number of Time Slices (Integer Value)	1	1
10 Turbulence Model	Non-Conservative (original)	Non-Conservative (original)
11 Longitudinal Mixing Coefficient		
12 Transverse Mixing Coefficient		
12 Creageringly, Coefficient		2
14 Boundary Condition Volume Check		
14 Boundary Condition Volume Check 15 Latitude for Coriolis (-90 to 90)		
15 Latitude for Coriolis (-90 to 90) 16 Solver Cores	6 Cores	6 Cores
15 Latitude for Coriolis (-90 to 90) 16 Solver Cores 17 Matrix Solver	6 Cores PARDISO (Direct)	
15 Latitude for Coriolis (-90 to 90) 16 Solver Cores 17 Matrix Solver 18 Convergence Tolerance		6 Cores
15 Latitude for Coriolis (-90 to 90) 16 Solver Cores 17 Matrix Solver		6 Cores
15 Latitude for Coriolis (-90 to 90) 16 Solver Cores 17 Matrix Solver 18 Convergence Tolerance		6 Cores
15 Latitude for Coriolis (-90 to 90) 16 Solver Cores 17 Matrix Solver 18 Convergence Tolerance 19 Minimum Iterations 20 Maximum Iterations 21 Restart Iteration		6 Cores
15 Latitude for Coriolis (-90 to 90) 16 Solver Cores 17 Matrix Solver 18 Convergence Tolerance 19 Minimum Iterations 20 Maximum Iterations 21 Restart Iteration 22 Relaxation Factor	PARDISO (Direct)	6 Cores PARDISO (Direct)
15 Latitude for Coriolis (-90 to 90) 16 Solver Cores 17 Matrix Solver 18 Convergence Tolerance 19 Minimum Iterations 20 Maximum Iterations 21 Restart Iteration	PARDISO (Direct)	6 Cores PARDISO (Direct) 10
15 Latitude for Coriolis (-90 to 90) 16 Solver Cores 17 Matrix Solver 18 Convergence Tolerance 19 Minimum Iterations 20 Maximum Iterations 21 Restart Iteration 22 Relaxation Factor	PARDISO (Direct)	6 Cores PARDISO (Direct) 10

16

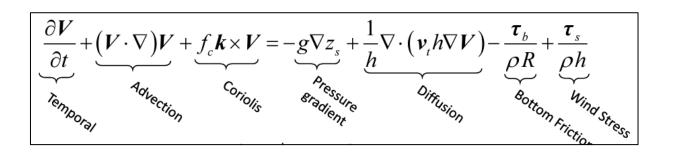
2D Solver Cores

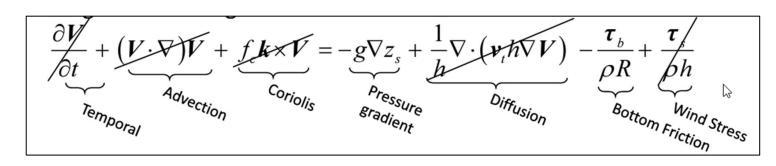

• Number of Cores

HEC-	HEC-RAS Unsteady Computation Options and Tolerances							
Gene	General 2D Flow Options 1D/2D Options Advanced Time Step Control 1D Mixed Flow Options							
	Use Coriolis Effects (not used with Diffusion Wave equation)							
	Parameter	(Default)	BaldEagleCr					
11	Theta (0.6-1.0)	1	1					
21	Theta Warmup (0.6-1.0)	1	1					
3 \	Water Surface Tolerance [max=0.2](ft)	0.01	0.01					
4 \	Volume Tolerance (ft)	0.01	0.01					
5 N	Maximum Iterations	20	20					
<u>6</u> E	Equation Set	Diffusion Wave	Diffusion Wave					
7 1	Initial Conditions Time (hrs)		4					
	Initial Conditions Ramp Up Fraction (0-1)	0.5	0.5					
	Number of Time Slices (Integer Value)	1	1					
	Turbulence Model	Non-Conservative (original)	Non-Conservative (original)					
	ongitudinal Mixing Coefficient							
12 1	Transverse Mixing Coefficient							
	Smagorinsky Coefficient	0	0					
	Boundary Condition Volume Check							
	atituda far Carialia (00 to 00)							
16 5	Solver Cores	6 Cores	6 Cores					
	natrix Solver	PARDISO (Direct)	PARDISO (Direct)					
	Convergence Tolerance							
	Minimum Iterations							
	Maximum Iterations							
	Restart Iteration	10	10					
	Relaxation Factor	1.3	1.5					
23 5	SOR Preconditioner Iterations	10	10					
			OK Cancel Defaults					
			17					

Processing Time vs Number of Cores

Mesh Cell Size


- Mesh Cell size determination is based on
 - Land surface features of the Terrain
 - Faces control water movement
 - Water Surface Slope
 - Capturing localized effects in model requires smaller cell sizes (analogous to cross section spacing for rapidly varied flow).
 - Velocity
- Start with a "large" cell size and refine the model through iteration
- Always test different cell sizes to see what affect they have on water surfaces and velocities



Time Step Selection

- Time Step selection will be based on the size of the grid cells and velocity of water in the cells.
- Dependent on Equation Set selected
 - Diffusion Wave approximation
 - Full Shallow Water Equations

Courant Number and Timestep

- Full Shallow Water Equations
 - Experience shows, max C = 3.0
- Diffusion Wave Approximation
 - Experience shows, max C = 5.0

- V = Velocity of the Flood Wave (ft/s)
- ΔT = Computational Time Step (seconds)
- $\Delta X = The average Cell size (ft)$

$$C = \frac{V * \Delta T}{\Delta X} \le 1.0$$

$$C = \frac{V * \Delta T}{\Delta X} \le 2.0$$

Variable Time Step

- Reduce time step to improve accuracy
- Increase time step to reduce computation times

🚼 HEC-RAS Finished	Computation	s			
-Write Geometry Informa	tion				
Layer: COMPLETE					
Geometry Processor —					
River:		R	S:		
Reach:		No	ode Type:	Storage Ar	rea
IB Curve:					
-Unsteady Flow Simulation	n	_			
Simulation:					
Time: 0.5000	01OCT2013	00:30:00	Iteratio	n (1D):	
Unsteady Flow Computa	ations				
-Computation Messages -					
Performing Unstead	y Flow Simul	ation HEC-	RAS 5.0.4.	.1 May 201	8
2D_X_WSEL					
Maximum adaptive times Initial adaptive timestep		Minimum adap	otive timest	ep = 00.5	
010CT2013 00:00:05	timestep =	2	(sec)	- 1	
010CT2013 00:00:15	timestep =	1	(sec)		
010CT2013 00:00:16	timestep =	0.5	(sec)	- 1	
010CT2013 00:01:08 010CT2013 00:01:57	timestep = timestep =	1 2	(sec) (sec)	- 1	
010CT2013 00:01:37	timestep =	4	(sec)	- 1	
	ancoup		(000)		
Writing Results to D	55				

Variable Time Step Options

- Fixed Time Step (default)
- Adjust Time Step Based on
 - Courant Number (adaptive)
 - Date/Time and a Time step divisor

HEC-RAS Unsteady Computation Options and To	lerances							
General 2D Flow Options 1D/2D Options Advanced Time Step Control								
C Fixed Time Step (Basic method)	20 Second 👻							
Adjust Time Step Based on Courant	_							
Maximum Courant:	4							
Minimum Courant:	1.95							
Number of steps below Minimum before doubling	1: 5							
Maximum number of doubling base time step:	2 80.00 sec							
Maximum number of halving base time step:	1 10.00 sec							
C Adjust Time Step Based on Time Series of Diviso	Verify Dates							
Time Step Date(ddMMMyyyy hhmm)	Divisor							
1								
2								
4								
5								
6								
7								
8								
9								
11								
,								

Adaptive Time Step

- Maximum Courant before halving time step
- Minimum Courant before doubling time step
 - Min < ½ Max !
- Number of steps before doubling
- Maximum number of doubling
- Maximum number of halving
- Courant (default) or Residence Time

C Fixed Time Step (Basic method)	1 Second 💌		
 Adjust Time Step Based on Courant 			
Maximum Courant: Minimum Courant: Number of steps below Minimum before doubling: Maximum number of doubling base time step: Maximum number of halving base time step:	4. 1.95 5 2 4.00 sec 1 0.50 sec		
Courant Methodology © Courant (Velocity * dt / Length) © Residence Time (flow out * dt / Volume)			

More Resources

• https://www.youtube.com/watch?v=kcBrOML3iS0

-				6.1	In a look and	0		Concluit Deserve	Caraly and t	= hs
HE	C-R	AS	Unsteady C	omputation Options	and Tolerances					
Ge	ener	al	2D Flow Opt	ions 1D/2D Options	Advanced Time	e Step Control	1D Mixed Flow C	Options		
	F	ixed	Time Step (Basic method)	6 Mir	nute	v			
(• A	djus	st Time Step	Based on Courant		_				
	N	laxi	mum Couran	t:	2					
	<u> </u>		num Courant		0.95					
				below Minimum before o		6.00 min	_			
				of doubling base time s		6.00 min				
Maximum number of halving base time step: Courant Methodology						10.00 1111				
				gth (face velocity * dt)	/ cell to cell dista	ance)				_
C Residence Time (cell outflow * dt / cell volume)									1000	
0	С A	djus	st Time Step	Based on Time Series of	fDivisors	Verify Dates .				
	[Time Step	Date(ddMMMyyyy h	hmm) [Divisor	•	1 200		
		1				0		2		
		3				0				
1		4				0				
		-5) 6:49 / 12:24	• Variable Time Step >		0			●○ ‡ 🖬	

Mapping Output Interval

• Adaptive time step is always integer interval of Mapping Output Interval, so Unsteady may need to adjust base Computation Interval

Simulation Time Window Starting Date: 010CT2013	Maximum adaptive timestep = 10.0 Minimum adaptive timestep = 00.625 Initial adaptive timestep = 01.25			
Ending Date: 01OCT2013	010CT2013 00:00:06 timestep = 2.5 (sec) 010CT2013 00:00:16 timestep = 1.25 (sec) 010CT2013 00:00:17 timestep = 0.625 (sec) 010CT2013 00:01:22 timestep = 1.25 (sec) 010CT2013 00:03:25 timestep = 2.5 (sec) 010CT2013 00:11:20 timestep = 5 (sec) Writing Results to DSS Finished Unsteady Flow Simulation			
Comp	Pause Take Snapshot of Results			

Time Series of Divisors

- Control time step length by date
- Enter integer halving divisor to reduce time step

-Simulation Time Window — Starting Date: Ending Date:	01JAN1999				g Time: Time:	1200 1300		
Computation Settings Computation Interval:	2 Min	ute	Ŧ] 🛄 Hydrog	graph Output Interval:	1 Hour 🔻		
Mapping Output Interval:	1 Ho	⊙ A	\dju:	st Time Step	Based on Time Se	eries of Divisors	Verify Date	es
				Time Step	Date(ddMMM	yyyy hhmm)	Divisor	
			1	60.00 sec	01JAN19991200			2
			2	120.00 sec	02JAN 1999 1200			1
			3	60.00 sec	02JAN 1999 1530			2
			4	20.00 sec	03JAN 19990200		(6
			5	40.00 sec	03JAN 19990730			3

Questions?

US Army Corps of Engineers •

