Advanced Parameters in HEC-RAS

Alex Sánchez, PhD

Senior Hydraulic Engineer

USACE, Institute for Water Resources, Hydrologic Engineering Center

Overview

- Turbulence
 - Overview of Theory
 - Numerical Implementation
 - Example
 - Guidance and Best Practices
- Coriolis
 - Overview of Theory
 - Numerical Implementation
 - Guidance and Best Practices

- Matrix Solvers
 - Direct vs. Iterative Solvers
 - Iterative Solver Input Parameters
 - Example
 - Guidance and Best Practices

HEC-RAS Turbulence Modeling

• Turbulence is a type of fluid flow which is unsteady, irregular in space and time, dissipative, and diffusive.

HE

- Most natural flows are turbulent
- Dispersion is due to the non-uniform velocity distribution
- Turbulence and dispersion are represented with a diffusion term in the momentum equations
- Two aspects (both changed for Version 6.0)
 - 1. Formulation in momentum equations
 - 2. Eddy viscosity formulation (aka "turbulence model")

- Non-conservative Formulation
 - Only option in Versions 5.0.7 and earlier
 - Still in option in Version 6.0 $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} - fv = -g \frac{\partial H}{\partial x} + v_t \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) - c_f u$ $\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + fu = -g \frac{\partial H}{\partial y} + v_t \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} \right) - c_f v$
- Conservative Formulation

• New for Version 6.0

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} - fv = -g \frac{\partial H}{\partial x} + \frac{1}{h} \frac{\partial}{\partial x} \left(v_{t,xx} h \frac{\partial u}{\partial x} \right) + \frac{1}{h} \frac{\partial}{\partial y} \left(v_{t,yy} h \frac{\partial u}{\partial y} \right) - c_{f} u$$

$$\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + fu = -g \frac{\partial H}{\partial y} + \frac{1}{h} \frac{\partial}{\partial x} \left(v_{t,xx} h \frac{\partial v}{\partial x} \right) + \frac{1}{h} \frac{\partial}{\partial y} \left(v_{t,yy} h \frac{\partial v}{\partial y} \right) - c_{f} v$$

Mixing Term Formulation Comparison

- Old: Parabolic $v_t = Du_*h$
 - Versions 5.0.7 and earlier
 - Isotropic (same in all directions)
 - 1 parameter: mixing coefficient D
- New: Parabolic-Smagorisnky

$$\boldsymbol{v}_{t} = \boldsymbol{D}\boldsymbol{u}_{*}\boldsymbol{h} + \left(\boldsymbol{C}_{s}\boldsymbol{\Delta}\right)^{2} \left|\boldsymbol{\overline{S}}\right|$$

- *u*_{*} : Shear velocity
- *h* : Water depth
- D: Mixing coefficient
- D_L : Longitudinal mixing coefficient

- D_T : Transverse mixing coefficient
- C_s : Smagorinsky coefficient

$$\left|\overline{S}\right| = \sqrt{2\left(\frac{\partial u}{\partial x}\right)^2 + 2\left(\frac{\partial v}{\partial y}\right)^2 + \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}\right)^2} \quad \boldsymbol{D} = \begin{bmatrix} D_{xx} & 0\\ 0 & D_{yy} \end{bmatrix} \quad \begin{array}{l} D_{xx} = D_L \cos^2 \theta + D_T \sin^2 \theta \\ D_{yy} = D_L \sin^2 \theta + D_T \cos^2 \theta \end{bmatrix}$$

- Default method in Version 6.0
- Non-Isotropic (not the same in all directions)
- 3 parameters: D_L , D_T , and C_s

Turbulence Numerical Implementations

- Non-conservative mixing
 - Eulerian-Lagrangian Solver

- Conservative mixing
 - Eulerian-Lagrangian Solver

Lagrangian

Eulerian

$$\frac{u_N^{n+1} - u_N^*}{\Delta t} = -g \frac{\partial H^{n+\theta}}{\partial N} + \left[\frac{1}{h^n} \nabla \cdot \left(\boldsymbol{v}_t^n h^n \nabla u_N^n\right)\right]_X - c_f u_N^{n+1}$$

• Eulerian Solver

- All mixing terms explicit
- Approximate Stability Criteria for Eulerian Solver

Example: Sudden Expansion Lab Experiment

- Inflow: 0.039 m³/s
- Downstream depth: 11 cm
- Slope: 0.0001

- Grid Resolution: 2.5 cm
- Time step: 0.02 and 0.0333 s
- Manning's n: 0.015 s/m^{1/3}

Velocity (m/s) 0.0 0.35

ELM SolverNon-conservative MixingD = 1.4dt = 0.0333 sec
Run Time: 3:06 $D_L = 0.6$ $D_T = 0.3$ $D_T = 0.3$ Conservative Mixingdt = 0.0333 sec
Run Time: 2:53

EM Solver Conservative Mixing

	dt = 0.02 sec
	Run Time: 6:22

Results: Sudden Expansion Lab Experiment

Turbulence Coefficients

- Best to calibrate coefficients with velocity measurements
- Non-conservative formulation generally requires larger values (2x) compared to the conservative formulation
- If coefficients are too large, the non-conservative formulation can produce excess dissipation and increase water levels
- When calibrating, start on the low end of the range

Mixing Intensity	Geometry and Surface	D_L	D_T
Weak	Straight channel Smooth Surface	0.1 to 0.3	0.04 to 0.1
Moderate	Gentle meanders Moderately irregular	0.3 to 1	0.1 to 0.3
Strong	Strong meanders Rough surface	1 to 3	0.3 to 1

Smagorinsky Coefficient: 0.05 to 0.2

Discussion and Conclusions

- Non-conservative formulation
 - Does not conservative momentum
 - Will generally lead to a net dissipation of momentum
 - Still an option in Version 6.0 for backwards compatibility
- Conservative formulation
 - Conserves momentum
 - Recommended approach for both EM and ELM solvers
 - Generally requires smaller mixing coefficients than the non-conservative formulation
 - EM Solver has a time step restriction
 - ELM solver does not have a time step restriction
 - EM and ELM solvers should produce similar results for most cases

Coriolis Acceleration

- Effect of rotating frame of reference (earth's rotation)
- Constant for the each 2D domain (f-plane approx.) $f = 2 \omega \sin \varphi$
 - $\boldsymbol{\omega}:$ sidereal angular velocity of the Earth
 - φ : latitude. Positive for northern hemisphere. Negative for southern hemisphere
- Coriolis acceleration disabled by default to save computational time
- Negligible for most river and flood simulations
- When to enable Coriolis term?
 - Large domains
 - Higher latitudes

- Eulerian-Lagrangian Solver
 - Fractional Step Method (Semi-implicit)

$$\frac{u_N^{n+1} - u_N^*}{\Delta t} = -g \frac{\partial H^{n+\theta}}{\partial N} - c_f u_N^{n+1} \qquad u_N^* = \boldsymbol{n}_f \cdot \boldsymbol{V}$$

- f : Coriolis Parameter
- θ : Implicit weighting factor

- Δt : Time step interval
- u_X^n : Backtracking velocity

- Eulerian Solver
 - Explicit

$$\frac{u_N^{n+1} - u_N^n}{\Delta t} + (V \cdot \nabla) u_N^n - f u_T^n = -g \frac{\partial H^{n+\theta}}{\partial N} - c_f u_N^{n+1}$$

Coriolis Discussion and Conclusions

- Only for Shallow Water Equations (Not Diffusion-Wave Equation)
- Relatively inexpensive
- Does not impact stability or introduce time step limitations
- When in doubt, turn it on
- Requires one input parameter: average latitude for each 2D area
- Also requires checking a box

HEC-RAS Unsteady Computation Options and Tolerances		
General	2D Flow Options	1D/2D Options Advanced Time Step Control
✓ Use Coriolis Effects (not used with Diffusion Wave equation)		

Matrix Solvers: Introduction

• Linear System of Equations

$$Ax = b$$

• Direct Solvers

- Examples: Gaussian elimination, LU, Cholesky, and QR decompositions
- Can be "black boxes"
- Usually have few input parameters
- High-accuracy
- Can fail or be very slow for large matrices
- Can be slow for unsteady or non-linear systems
- Iterative Solvers
 - Examples: GS, SOR, CG, GMRES
 - Require more options and input parameters
 - Usually require preconditioners, matrix balancing, ordering, etc.
 - Less accurate
 - Good for large problems
 - Good for unsteady or non-linear systems
 - Improper use can lead to instability problems or solution divergence

HEC-RAS Direct Solver

• PARDISO

High-performance, robust, memory efficient and easy-to-use solver for symmetric and non-symmetric linear systems.

- Version in Intel Math Kernel Library
- Parallel on PC's
- Can be used as a "black box".
 - Very little parameters
 - No need matrix balancing, ordering, etc.

HEC-RAS Iterative Solvers

- SOR: Successive Over-Relaxation
 - Relaxation factor (0 < ω < 2)
 - Asynchronous (ASOR) parallel implementation
 - Extremely simple
 - May take many iterations to converge but each iteration is very inexpensive
- FGMRES-SOR: Flexible Generalized Minimal RESidual
 - "Flexible" variant of GMRES which allows preconditioner to vary from iteration to iteration
 - SOR as preconditioner

Iterative Solver Input Parameters

- Convergence Tolerance
 - Determines the overall accuracy
- Minimum Iterations
 - Increases accuracy, avoids solution drift, and allows the solver to stabilize
- Maximum Iterations
 - Avoids stalling and too many iterations caused by a small convergence tolerance
- Restart Iteration (Only FGMRES-SOR)
 - Reduces run time and memory requirements
- Relaxation Factor
 - Used for both SOR solver and preconditioner
- SOR Preconditioner Iterations (Only FGMRES-SOR)
 - In-lieu of checking convergence which would be slower

Parameter	Range
Convergence Tolerance	0.001 - 0.000001
Minimum Iterations	3 – 6
Maximum Iterations	5 – 30
Restart Iteration (FGMRES Only)	8-12
Relaxation Factor	1.1 - 1.5
SOR Preconditioner Iterations (FGMRES Only)	5 – 20

Iterative Solvers: Stopping Criteria

	Iterative Solver Status	Criteria	Description
• Error Estimate $E^{m} = \frac{\left\ \boldsymbol{D}^{-1} \left(\boldsymbol{A} \boldsymbol{x}^{m} - \boldsymbol{b} \right) \right\ _{2}}{\sqrt{N}}$ $\boldsymbol{D}: \text{ Diagonal of } \boldsymbol{A}$ $\boldsymbol{A}: \text{ Coefficient matrix}$	Iterating	$\begin{split} N_{\min} &< m < N_{\max} \\ & \text{and} \\ E^m > T_C \\ & \text{and} \\ \frac{E^{m-1} - E^m}{E^1 - E^m} > T_S \\ & \text{and} \\ E^m < E^1 \end{split}$	Iterative solver is converging and will continue to iterate. N_{min} : Minimum number of iterations N_{max} : Maximum number of iterations T_C : Convergence tolerance $T_S = 0.1T_C$: Stalling tolerance
x : Solution	Converged	$E^m \leq T_C$	Convergence criteria met. Solution accepted.
\boldsymbol{b} : Right-hand-size N: Number of rows	Stalled	$\frac{E^{m-1}-E^m}{E^1-E^m} \le T_S$	Convergence rate has decreased to an insignificant level without satisfying the converged criteria. The current solution is accepted and the iteration loop is exited.
	Max Iterations	$m = N_{\rm max}$	Maximum number of iterations reached without reaching the converged criteria. The current solution is accepted and the iteration loop is exited.
	Divergent	$E^m > E^1$	Iterative solution is divergent. Either the normalized residuals are getting larger, or a Not a Number (NaN) has been detected.

Example: EA Test 5 (Dam Failure)

Setting	FGMRES-SOR	SOR
Convergence Tolerance	0.0001	0.0001
Minimum Iterations	3	5
Maximum Iterations	20	30
Restart Iteration	10	
Relaxation Factor	1.3	1.3
SOR Preconditioner Iterations	10	

Matrix Solver Best Practices

- Start with PARDISO
- Ensure model is stable and not going to max iterations every time step or reporting large water surface or volume errors
- Try FGMRES and SOR solvers
- Start with conservative parameters
- Compare with PARDISO
- Adjust parameters to optimize run time
- Iteration parameters left empty or set to zero are assigned a default value based on mesh size

Thank You!

HEC-RAS Website: <u>https://www.hec.usace.army.mil/software/hec-ras/</u>

Online Documentation: https://www.hec.usace.army.mil/confluence/rasdocs

