Verification and Validation of HEC-RAS

Alex Sánchez, PhD

Senior Hydraulic Engineer

USACE, Institute for Water Resources, Hydrologic Engineering Center

Definitions

- Independent Procedures or Processes:
- 1. Verification:
 - Are the equations being solved correctly?
 - Does the software do what it was designed to do?
- 2. Validation:
 - Do the equations represent the physical system?
 - Does the software meet the needs of the user?

HEC-RAS Verification & Validation

• Categories:

- 1D Steady Flow
- 1D/2D Unsteady Flow
- 1D/2D Non-Newtonian Flow
- 1D/2D Sediment Transport
- Test Case Types:
 - Analytical and Textbook data sets
 - Laboratory experiments
 - Field

Research Documents 51 and 52

US Army Corps of Engineers Hydrologic Engineering Center		
HEC-RAS Verification	and Validation Tests	
	US Army Corps	
April 2018	of Engineers Hydrologic Engineering Center	
Approved for Public Release. Distrit	Benchmarking of the F Two-Dimensional Hyd Modeling Capabilities	HEC-RAS raulic
	April 2018	
	Approved for Public Release. Distribution Unlimited.	RD-5 ⁷

• RD-51

- 2D Benchmark tests developed by UK's Joint DEFRA (Department of Environmental Flood and Rural Affairs) Environment Agency
- No analytical solutions or observed data!

• RD-52

- 1D and 2D Verification and Validation tests
- Available from
 - <u>https://www.hec.usace.army.mil/software/</u> <u>hec-ras/documentation.aspx</u>

Verification: 1D Backwater in Trapezoidal Channel

- Analytical Solution from Chow (19⁻
- Problem Description

Parameter	Value
Bottom width, b (ft)	20
Side slopes (H:V)	2:1
Bed slope	0.0016
Manning's n	0.025
Flow rate (cfs)	400
Downstream Stage (ft)	5.0

Results: 1D Backwater

Validation: Lower Columbia River

- Evaluation of flood risks in the Columbia River and tributaries by reservoir operations
- Purpose was to predict 0.2% annual exceedance (500-year) event

Model Setup and Calibration

- Tidal stage BC
- 208 lateral structures
- 106 storage areas

• Calibrated to 3 flood events

	Main Channel	Overbank
River Name	Manning's n	Manning's n
Columbia River	0.028 - 0.035	0.05 - 0.10
Willamette River	0.03 - 0.039	0.05 - 0.15
Cowlitz River	0.025 - 0.031	0.05 - 0.10
Lewis River	0.032	0.05 - 0.10
All Other Channels	0.03	0.05 - 0.15

Results: Lower Columbia River

Verification: Sloshing in a Rectangular Basin

- Purpose
 - Temporal schemes
 - Time step convergence

L = 10 km

- Numerical dissipation
- Setup
 - Resolution: 100 m
 - Flat bed
 - Depth: 10 m

Classical Wave Equation

 $\frac{\partial^2 \eta}{\partial t^2} = c^2 \frac{\partial^2 \eta}{\partial x^2}$

Sloshing in a Rectangular Basin

Ĭ

Governing Equations

$$\frac{\partial \eta}{\partial t} + \nabla \cdot (hV) = 0$$
$$\frac{\partial V}{\partial t} - f\mathbf{k} \times V = -g\nabla \eta - \gamma V + F$$

- Setup
 - Flat circular basin
 - Linear bottom friction
 - Wind in the x-direction only

$$\boldsymbol{F} = \left(\frac{Wy}{R}, 0\right)^T$$

• Solution

$$\eta = \frac{Wf}{RgH\gamma} \left[\frac{R^2}{8} + \frac{r^2}{4} \left(\frac{\gamma}{f} \sin(2\theta) - 1 \right) \right]$$

Verification: Wind

Verification: Flood Wave

- Problem Description
 - "Manufactured" solution valid for both DWE and SWE
- Model Setup
 - Grid Resolution: 2 cm
 - Manning's n: 0.009 s/m^{1/3}
 - Diffusion-Wave and Shallow Water Equations
 - Time Step: 0.025 s
 - Theta: 0.60
 - Mixing Coefficient: 0.2 (SWE only)

Classical Wave Equation

$$h = \left\{ \frac{7}{3} \left[C - n^2 U^3 \left(x - Ut \right) \right] \right\}^{3/7}$$

 $C = 1, U = 1 \text{ m/s}, n = 0.01 \text{ s/m}^{1/3}$

Diffusion Wave Equation

Diffusion Wave Equation

HEC

- Experimental Setup
 - Rainfall intensity: 328 mm/hr
 - 3 stainless steel planes with 5% slopes
 - 2 walls to block redirect flow
- Model Setup
 - 2 x 2 cm grid cells
 - Manning's n: 0.009 s/m^{1/3}
 - Diffusion-Wave and Shallow Water Equations
 - Time Step: 0.025 s
 - Theta: 0.60
 - Mixing Coefficient: 0.2 (SWE only)

Surface Runoff: Results

Validation: Green and Ampt with Redistribution

Comparison with Alapaha Sand Tests (Rawls et al. 1976)

Parameter	Value
Saturated hydraulic conductivity (cm/hr)	0.47
Suction at the wetting front (cm)	45
Saturated water content (-)	0.38
Residual water content (-)	0.06
Initial water content (-)	0.19
Pore distribution index	0.45

Sudden Expansion Lab Experiment

- Inflow: 0.039 m³/s
- Downstream depth: 11 cm
- Slope: 0.0001

- Grid Resolution: 2.5 cm
- Time step: 0.0333 s
- Manning's n: 0.015 s/m^{1/3}

Results: Sudden Expansion

Flow Through a Bridge Opening

HEC

Weir

* From research work of Dr. David A. Parr, Professor; Evan Deal, Research Assistant; and Bryan C. Young, Associate Professor, all are in the Civil, Environmental and Architectural Engineering Department at the University of Kansas.

0.1-ft Cell Size for Land Raster 0.01-ft Cell Size for Pier Raster

23

Model Setup

- Flow BC upstream
- Stage BC downstream
- Mesh resolution: 1 to 2 ft
- Manning's n: 0.0141 s/m^{1/3}
- Time step: 0.5 s, C ≈ 1
- Shallow water equations

Results

New Madrid Floodway and Breaches

During the May 2011 flood in the Mississippi and Ohio rivers, the New Madrid floodway was activated by blowing up the levee in three locations, in order to reduce flooding along the Mississippi and Ohio rivers.

Before the levee was activated, the U.S. Geological Survey (USGS) went out and placed 38 pressure transducers within the floodway, in order to measure the water levels during the event.

The levee system was activated by the US Army Corps of Engineers on May 2, 2011.

Model Setup

Flood way is 40 miles long and 10 miles wide

Grid Resolution: 500 ft

Parameter	Value	
Time step	2 minutes	
Governing Equations	Shallow Water Equations	
Implicit Weighting Factor	1	
Manning's roughness 1D	0.021 – 0.033 main channel	
rivers	0.080 – 0.200 overbank	
	areas	
Upper Levee Breach width	9400 ft	
Middle Levee Breach width	690 ft	
Lower Levee Breach width	4100 ft	

 Manning's n within floodway based on Land Cover

Land Cover to Manning's n (2D Flow Areas Only)						
	Set Manning's n to Override Default Land Cover Values					
Se	Selected Area Edit Options					
	Add Constant Multiply Factor	Replace				
Land Cover Layer		Geometry Overrides (Blank for Default Values)				
	Name	Default Mann n	Base Mann n (blank for default)			
1	barren land		0.03			
2	cultivated crops		0.038			
3	deciduous forest		0.1			
4	developed high intensity		0.03			
5	developed low intensity		0.032			
6	developed medium intensity		0.031			
7	developed open space		0.0315			
8	emergent herbaceous wetlands		0.05			
9	evergreen forest		0.08			
10	grassland		0.033			
11	mixed forest		0.1			
12	open water		0.04			
13	pasture		0.032			
14	shrub		0.06			
15	woody wetlands		0.17			
Associated Layer: d: \HEC Data \HEC-RAS \2D-Modeling \OhioMissFloodway \100ftbpnmLU_2.tif						
			OK Cancel			

Results for all 38 Locations

28

Computed vs Observed Water Levels

Brumadinho Mine Tailings Failure

Dr. Calvin Creech (SAM) Renato Amorim (Brazil-DNIT) Prof Leonardo Moura (University of Brasilia), Dr. Stanford Gibson (HEC)

Brumadinho Mine Tailings Failure

Dr. Calvin Creech (SAM) Renato Amorim (Brazil-DNIT) Prof Leonardo Moura (University of Brasilia), Dr. Stanford Gibson (HEC)

Questions?

