SA/2D Connections

Steve Piper

USACE, Institute for Water Resources, Hydrologic Engineering Center

Internal SA/2D Area Conn

Discuss using SA/2D Area Conninside of 2D areas aka Hydraulic Structures (HS)

Hydraulic Structure Example

Hydraulic Structures (HS)

- User entered station/elevation data overrides terrain data
- Can add breaches
- Can add culverts and gates
 - Culvert/Gates can be georeferenced
- •Can model with weir equation or 2D equation
- •HS centerline is also a breakline

Levees With HS

• When:

- Bad Terrain data
- Structure too high for 2D equations (i.e. water fall), Weir equation is a better solution
- Need Culverts, Gates, or Breaching
- Create the HS and enter the Station/Elevation (SE) data
- The user entered SE data controls the flow over the structure

"Levees" Without HS

• Breaklines may be all that is needed!

• IF

- The terrain data is good enough
- The Faces line up accurately
- Normal 2D Equation is appropriate
- No culverts, gates, breaches, etc.

• THEN

- No HS required!

Overview Data Entry

- Create HS Centerline
 - Convert existing breakline (if breakline already exists)
 - Download centerline (if available)
 - Or draw by hand
- HS goes left to right looking downstream (for positive flow convention)
- Edit Centerline/Breakline and Cell Mesh, as needed (the centerline is also a breakline)
- Enter station/elevation of weir
- Enter culverts, gates, breach, etc.
- Select 2D Domain or Weir Eq.

Converting a Breakline

- If a Breakline has already been created, then it can be converted to a hydraulic structure.
- Left-click on the Breakline and select
 Convert...

awing HS Centerline

Ę

- Click SA/2D Conn and draw the location of the HS
- Double-click to finish drawing and name the HS
- Copy coordinates from Excel

HS Centerline Table

HS Centerline w/ Editing Tools

- CL can also be added from RASMapper
- Click **SA/2D Conn** and draw the location of the HS
- Double-click to finish drawing and name the HS
- Or CL can be imported as shapefile
- Weir SE data still on 2D Conn Editor/Geom Editor

HS Cell Spacing

Х

📰 2D Connection Breakline Editor

Ę

	<u>*</u> [ර්ති 🗆 Zoom To	Selected	100			
+		Connection Name	Near Spacing	Near Repeats	Far Spacing	Enforce 1 Cell Protection Radius	
	1	Dam		1			
	2	Lower Levee	100	1			
	3	Middle Levee	100	1			
	▶ 4	Upper Levee	100	1			
	Enfor	ce Selected As Breaklines			ОК	Cancel	

- HS/Breakline can be enforced while still in Edit mode
- Additional Cells can be added along the HS centerline
- Cell spacing should not be made too small!

Inspect Cells Around HS

Ę

- RAS will show the HS as a black line w/ red dots
- Inspect the line for problems
 - Start/End of HS!
 - Tight Curves

Terrain CL Profile Missing Levee

✓ Geometric Data - With Upper Levee

Tonnection Data Editor - With Upper Levee

_ O X

Station (ft)

Check Weir/GIS Length

K Edit and/or create lateral structure	ure	struct	ateral	create	/or	and/	Edit	\mathbf{X}
--	-----	--------	--------	--------	-----	------	------	--------------

File Edit Options View Tables Tools GIS Tools Help									
Tools	River Storag	2DFlow SA/2DArea SA/2DArea 2DArea 2DArea Pump RS	Description :	Plot WS extents for Profile:					
Editors] 🕰 🔅	(none) 🔻					
lunct	1000	THE CONTRACT OF MELANDER							
	6 8 2 3	And ASTAN LEADING							
Section	- Connectio	i Data Editor - With Upper Levee	and the second second						
	File View	Help							
Brdg/Culv	Connection:	Upper Levee 💽 🖡 🕇 Apply Data		No Stor					
	Description		Breach (plan data)						
Structure	Connections								
T	From:	2D flow area: BaldEagleCr Set SA/2D	ir Length: 8700.76	The second					
Lateral Structure	To:	2D flow area: BaldEagleCr Set SA/2D	aterline Length: 8700.76	Lower					
	10. 0		iterine cengui.	tinddi Levee					
Storage	Overflow Co Normal 2D	Equation Domain C Use Weir Equation	Centerline GIS Coords	angen					
2DFlow	Structure Type	Weir <u> </u>	Terrain Profile						
Hrea	Embankment	Upper Levee		- Received					
SA/2D Area									
	HTab	,	A	Salway					
Duran	Param. 💡 🛚			HW Call Wn Eav					
Station				Centerine Terrain					
<u> </u>									
HTab									
Fararri.		Station (%)							
View Picture	Select connect	on to Edit							
C									

HEC

Hydraulic Structures Options

Culverts & Gates inside a HS

🔨 Geometric Data - Single 2D Area - Dam as Internal Struct

- By default, culverts/gates are not georeferenced and transfer flow from immediately adjacent cells
- In this case, cells need to extend past toe and into channel

Gates/Culverts and Cell Edges

Georeferenced Culverts & Gates

- Georeferenced culverts & gates transfer flow from distant cells
- In this case, cells do not need to extend past toe and into channel
- Small cells can still cause problems for 1D weir flow!

Georeference Culverts & Gates

e type (or methodology): 15	luice	• •		· · · ·
ate Flow Sluice Cate Flow		Weir Flow Ov	er Gate Sill (gate out o	f water)
Sluice Discharge Coefficient (0.5-0.7): 0.65	Weir Shape:	Broad Crested	_
		Weir Coefficier	nt:	3
Submaraad Orifica Elaw				
Submerged Orifice Flow	0.	-		
	.8): 10.0			
	.8): 10.8			
iead Reference:	ill (Invert)	•		
lead Reference:	ill (Invert)			
eometric Properties	a): jo.o	590	⊂ Opening GIS Data:	Opening #1
lead Reference: S eometric Properties eight: 15 Width: Opening Centerline Stati	ill (Invert)	5 90	Opening GIS Data: Length: 509.5	: Opening #1
lead Reference: S eometric Properties eight: 15 Width: Opening Centerline Stati	a): julo ill (Invert) _ 7 Invert: ons # Opening: Station	590 5: 2 GIS Sta	Opening GIS Data: Length: 509.5	: Opening #1
lead Reference: S eometric Properties eight: 15 Width: Opening Centerline Stati Opening Name 1 Opening #1	a): p.o ill (Invert) _ 7 Invert: ons # Openings Station 5745	590 s: 2 GIS Sta 5746.035	Opening GIS Data: Length: 509.5	: Opening #1
lead Reference: S eometric Properties eight: 15 Width: Opening Centerline Stati Opening Name 1 Opening #1 2 Opening #2	.a): j0.8 ill (Invert) 7 Invert: ons # Openings Station 5745 5765	590 3: 2 GIS Sta 5746.035 5765.018	Opening GIS Data: Length: 509.5 2007174.93 2007546.11	Copening #1
lead Reference: S eometric Properties eight: 15 Width: Opening Centerline Stati Opening Name 1 Opening #1 2 Opening #2 3	ill (Invert) 7 Invert: ons # Openings Station 5745 5765	590 590 GIS Sta 5746.035 5765.018	Opening GIS Data: Length: 509.5 2007174.93 2007546.11	Opening #1
lead Reference: S eometric Properties eight: 15 Width: Opening Centerline Stati Opening Name 1 Opening #1 2 Opening #2 3 4	a): [0.8 ill (Invert) _ 7 Invert: ons # Openings Station 5745 5765	590 590 GIS Sta 5746.035 5765.018	Opening GIS Data: Length: 509.5 2007174.93 2007546.11	Copening #1
Head Reference: S eometric Properties eight: 15 Width: Opening Centerline Stati Opening Name 1 Opening #1 2 Opening #2 3 4 5	a): [0.8 ill (Invert) 7 Invert: ons # Openings Station 5745 5765	590 3: 2 GIS Sta 5746.035 5765.018	Opening GIS Data: Length: 509.5 X 2007174.93 2007546.11	Opening #1
lead Reference: S eometric Properties eight: 15 Width: Opening Centerline Stati Opening Name 1 Opening #1 2 Opening #2 3 4 5 6	a): [0.6 ill (Invert) 7 Invert: ons # Openings Station 5745 5765	590 590 590 590 590 590 590 590	Opening GIS Data: Length: 509.5 X 2007174.93 2007546.11 4 5 6	• Opening #1 ¥ 321353.6 321702.6

- Draw the centerline with the mouse pointer and then and paste GIS coordinates for the appropriate opening
- Clicking on Individual Gate Centerlines will bring up a table that shows all of the openings

Gate in channel above Cell Invert

F

 Non-georeferenced gate in channel above adjacent cell minimum

Georeferenced Gate below adjacent cell Invert

- Small HW/TW cells on abutment next to HS do not show channel location
- This plot does not show whether the georeferenced gate centerline has been properly entered or not

Breach for HS

HS Breach and Cell

HS Equation Choice

🐨 Connectio	on Data Editor - With Upp	er Levee				
File View	Help					
Connection: Description Connections	Upper Levee 2D flow area: BaldEagleCr	- L t	Apply Data	Breach (plan data) Weir Length: 8700.	.76	Normal 2D Equatior Domain
To:	2D flow area: BaldEagleCr		Set SA/2D	Centerline Length: 8700.	.76	
Overflow Cor Normal 2D	mputation Method Equation Domain O Us	e Weir Equation		Centerline GIS Coords		 flow across face
Structure Type	e: Weir 💌			Terrain Profile		computed with 2D
			Upper	Levee		flow equations
HTab Param.	580 575			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Use Weir Equation • Q = CLH^1.5
Elevation (ft)	565			1		
		2000	2500	3000		
			Station (ft)		

Normal 2D Equation Domain

- Face properties are adjusted for user entered SE Data, but 2D Area is solved in the normal manner
- Generally, faster, more accurate
- But not good for true weir type
- •HS with culverts/gates can still use 2D for overflow
 - culvert/gate flow is computed separately

Weir Equation

- Weir flow computed using [1D] weir equation and user SE Data
- Flow computed "just prior" to each iteration of 2D
- More appropriate for [nonsubmerged] weir flow

Weir Equation continued

- Less desirable for submerged conditions
 - Turn on Weir Submergence Decay Exponent!
- May require "trial and error" solution causing 2D to iterate
- Gate and culvert flow are always computed "just prior" to 2D

Weir OK 2D Unstable?

2D Solution is better

Use Restart/Prior to Switch

🐨 Connecti	on Data Editor - Upper Levee bck		🏂 Unsteady Flow Data - 500 Flood Event - Change	_		\times
ile View	Options Help		File Options Help			
onnection:	Upper Levee 🗾 🖡 🕇	Apply Data	Description:	÷	Apply	/ Data
escription		÷	Boundary Conditions Initial Conditions Meteorological Data Observed Data			
Connections						
rom:	2D Flow Area: BaldEagleCr	Set SA/2D	Initial Flow Distribution Method			
ю:	2D Flow Area: BaldEagleCr	Set SA/2D	Restart Filename: C:\Users\q0hecssp\Documents\1RAS Data\Develop\2D class\temp\BaldEagle.p0	2		
Overflow Co	mputation Method		C Prior WS Filename:	Z		
Normal 2D	Equation Domain C Use Weir Equation		Profile:	-		
tructure Type	: Weir, Gates, Culverts, Outlet RC and Outlet T	s 💌	C Enter Initial flow distribution (Optional - leave blank to use boundary conditions)			
ap Gates:	No Flap Gates		Add R5			

- Can switch methods while when using a restart/prior WS method
- Really only viable for a single location such as a levee breach

HS Tailwater Considerations

For 2D, Cell Edges on Embankment might (???) work

For Weir Equation, place Cell Edge far enough back to get correct tailwater

Questions?

