Combined 1D River and 2D Floodplain/Levee Areas

Mark Jensen

USACE, Institute for Water Resources, Hydrologic Engineering Center

Overview

- Using a 2D Flow Area to model inside of Levees
 - Saint Paul Levee Breach Example
- Using 2D Flow Areas to model overbank areas (i.e. 1D Channels and 2D Floodplains)
 - Carson River Example

Using a 2D Flow Area to model inside of a Levee system

- Bring in terrain and background map layers into RAS Mapper
- Draw a Polygon for the 2D Flow Area Boundary Inside of the Levee
- Create the 2D Computational Mesh
- View the Mesh Boundary Cells to ensure there are no Mesh Problems
- Modify The Mesh if Needed (add break lines for roads, high ground, etc. Use mesh refinement regions to refine or coarsen areas of the mesh)
- Hook up the 2D Flow Area to a 1D River Reach with Lateral Structures
- Weir Coefficients for Lateral Structures
- Levee Breaching
- Weir and Levee Breach Submergence Issues

From HEC-RAS Mapper Create a Terrain Model and Map Layers

Draw a Polygon for the 2D Flow Area Boundary Inside of the Levee

Create the 2D Computational Mesh using the 2D Flow Area Editor

🚟 2D Flow Area Editor	_		×
2D Flow Area: ZDArea	N		
Cell Properties	63		
Computation Points			
Points Spacing (ft) DX: 100 DY: 100 Mesh State =	Complete		^
Include Shift (ft) Number of Ce Average Fac Average Cell Maximum Ce Minimum Cel	ells = 2483 e Length = 101 Size = 10,282 Il Size = 17,860 Size = 5,982		
Generate Computation Points Mesh Status	= Success: Exis	ting mesh	~
Hydraulic Cell/Face Properties			
Default Manning's n Value: 0.06	Compute Prope	erty Tables	
Force Mesh Recomputation		Clo	se

View the Mesh to ensure there are no Mesh Problems

Modify The Mesh as Needed

Hooking up a 2D Flow Area to a 1D River Reach with Lateral Structures

Lateral Structure editor

HEC
HEG

Using Geospatial Coordinates for Lateral Structures

Lateral Weir/Embankment Editor

Lateral Weir Embankment				
Weir Data	Emba	nkment Station/	Elevation Table	_
Weir Width	Inser	t Row Dele	te Row Filter.	•
Weir Computations: Standard Weir Egn		Station	Elevation	
Ctandard Weir Equation Darameters	1	0	717.52	2
Mair flow reference:	2	160.9	717.328	3
Water Surface	3	217.23	716.86	
Weir Coefficient (Cd) 2.	4	239.07	716.825	5
	5	297.36	716.253	3
	6	477.08	716.183	3
	7	556.99	716.042	2
Weir Crest Shape: Broad Crested	8	671.42	716.046	5
,	9			
	10			
	11			
	12			
	13			
	14			
Weir Stationing Reference	15			
HW - Distance to Upstream VS: 23	16			-
HW - Distance to opsitean X3.	17			-
	18			-
	19			-
	20			-
HW Connections TW Connections	21			
	22			
			OK Car	icel

Lateral Weir Headwater Connections (HW)

HW Lateral Structure Connections								
Default Computed Weir Stationing User Defined Weir Stationing								
	XS RSs	Weir Station		Ī		XS RSs	Weir Station	
1 1	151436.4	-22.92		-	1	151354.9	5692	
2 1	151354.9	156.84			2	151084.4	5909	
3 1	151084.4	373.92			3	150654.0	6435	
4 1	150654.0	803.62			4			
5					5			
6					6			
7					7	User Specified C	Connections	
8					8	Option will not b	be used	
9					9	because the late	eral structure	
10					10	has a geo-refere	enced	
11					11	centerline.		
12					12			
13					13			
14					14			
15					15			
16					16			
17					17			
18			_		18			
19			•		19			•

Lateral Weir Tailwater Connections (TW)

W Lateral Structure Conne	ctions
---------------------------	--------

	2D Face Points	Weir Station
1	456	-34.3083
2	412	28.59606
3	368	174.9681
4	319	314.8326
5	322	479.7218
6	325	521.3957
7	2408	663.5559
8	239	725.6677
9		
0		
1		
2		
3		
4		
5		
.6		
.7		
8		
)		

O User Defined Weir Stationing									
	User Defined Weir Stationing								
1	454	5470.98	-						
2	411	5537.3							
3	368	5703.08							
4	319	5861.57							
5	322	6048.15							
6	325	6095.38							
7	User Specified Cor	nnections							
8	Option will not be	used							
9	because the latera	al structure							
_10	nas a geo-referen	ced .							
11	centenine.								
12									
13									
14									
15									
16									
17									
18			-						
19			_						

Connected 1D River to 2D Flow Area with Lateral Structure

Weir Coefficients for Lateral Structures

What is being modeled with the Lateral Structure	Description	Range of Weir Coefficients
Levee/Roadway – 3ft or higher above natural ground Levee/Roadway – 1 to 3 ft elevated above ground	Broad crested weir shape, flow over Levee/road acts like weir flow Broad Crested weir shape, flow over levee/road acts like weir flow,	1.5 to 2.6 (2.0 default) SI Units: 0.83 to 1.43 1.0 to 2.0
	but becomes submerged easily.	SI Units: 0.55 to 1.1
Natural high ground barrier – 1 to 3 ft high	Does not really act like a weir, but water must flow over high ground to get into 2D area.	0.5 to 1.0 SI Units: 0.28 to 0.55
Non elevated overbank terrain. Lat Structure not elevated above ground	Overland flow escaping the main river.	0.2 to 0.5 SI Units: 0.11 to 0.28

Levee Breaching

Simplified Physical Breaching

Velocity vs. Downcutting and Widening

Levee (Lateral Structure) B	reach Data								
Lateral Structure Beaver C	reek Kentwood	1 5.4		• ↓ 1	Delete this B	reach .	Delete all Brea	ches]
✓ Breach This Structure									
Breach Method: Simplified	Breach Method: Simplified Physical 🗸 Breach Plot Breach ProgressionSimplified Physical Breach Repair (optional) Parameter Calculator								
,		Overto	pping Downcu	itting			Widening Relatio	nship	
Center Station:	1800	V	elocity (ft/s)	Downcutting R	ate (ft/hr)		Velocity (ft/s)	Widening Rate	e (ft/hr)
Max Possible Bottom Width:	1400	1	0		0	1	. 0		0
Min Possible Bottom Elev:	210	2	2		0	2	2		0
		3	3		5	3	3		20
Left Side Slope:	1	5	5		20	4	4		50
Right Side Slope:	1	6	7		30	5	5		100
Breach Weir Coef:	2.6	7	10		40		10		200
		8	20		50	8	20		300
Breach Formation Time (hrs):	:]2	9				9			
Failure Mode: Ove	rtopping 💌	10				10			
Piping Coefficient:	0.5	11				11			
Initial Piping Elev:	214	13				13			
Starting Notch Width:	2	14				14	-		
Mass Wasting Feature:	,	16				15			
I v Mass Washing r Catare.		17				17	•		
Width:	20	18				18	}		
Duration (hrs):	0.16667	19				19	•		
Final Rottom Flav	212	20				20			
(Optional):	1-1-	21				21			
Trigger Failure at: WS F	lev 🔽	22				22			
Starting WS	219.5	24				23			
	1210.5	25				25			
								OK	Cancel

Weir and Levee Breach Submergence Issues

• When a lateral structure gets highly submerged, HEC-RAS uses a weir submergence curve to compute the flow reduction over the weir. The curve is very steep (i.e. the flow reduction changes dramatically) between 95% and 100% submergence. This can cause oscillations and possible model stability issues. To reduce these oscillations, user can have HEC-RAS use a milder sloping submergence curve by going to the 1D "Computational Options and Tolerances" and setting the field labeled "Weir flow submergence decay exponent" to 3.0.

Weir Submergence Curves

Unsteady Flow Computational Options and Tolerances

HEC-RAS Unsteady Computation Options and Tolerances		
General 2D Flow Options 1D/2D Options Advanced Tim	e Step Control	1D Mixed Flow Options
1D Unsteady Flow Options Theta [implicit weighting factor] (0.6-1.0): Theta for warm up [implicit weighting factor] (0.6-1.0): Water surface calculation tolerance [max=0.2](ft): Storage Area elevation tolerance [max=0.2](ft): Flow calculation tolerance [optional] (cfs): Max error in water surface solution (Abort Tolerance)(ft): Maximum number of iterations (0-40): Maximum iterations without improvement (0-40):	1. 1. 0.02 0.05 100. 20	1D/2D Unsteady Flow OptionsNumber of warm up time steps (0 - 100,000):0Time step during warm up period (hrs):0.05Minimum time step for time slicing (hrs):0Maximum number of time slices:20Lateral Structure flow stability factor (1.0-3.0):3.Inline Structure flow stability factor (1.0-3.0):1.Weir flow submergence decay exponent (1.0-3.0):3.Gate flow submergence decay exponent (1.0-3.0):1.DSS Messaging Level (1 to 10, Default = 4)4
Geometry Preprocessor Options Family of Rating Curves for Internal Boundaries © Use existing internal boundary tables when possible. © Recompute at all internal boundaries		1D Numerical Solution Finite Difference (classic HEC-RAS methodology) Finite Difference Matrix Solver Skyline/Gaussian (Default: faster for dendritic systems) Pardiso (Optional: may be faster for large interconnected systems) Finite Volume (new approach) Number of cores to use with Pardiso solver:
		OK Cancel Defaults

Using RAS-Mapper Associate the Terrain to the Geometry

23

RAS-Mapper Running the 2D Pre-Processor

Run the Model and View the Results

】 Unste File Op	ady Flow Analysis tions Help	S						×
Plan : Fa	il Middle - 2D Run	Modifie	d FEQ Jan17		Short ID:	2D Run Ff	EQ Jan17	Ľ
	Geometry File :		St Paul 2D Ge	ometry - Mo	dified			•
	Unsteady Flow	File :	TopOfLevee					•
Progra	ms to Run ometry Preprocesso steady Flow Simulat Sediment t Processor odplain Mapping	or tion	Plan Descript	ion ———				
-Simulat Startin	ion Time Window- Ig Date:	02feb	2099	Starting	g Time:		0000	
Ending) Date:	18feb	2099	Ending	Time:		0000	
Compu Compu Mappin DSS Ou	itation Settings itation Interval: g Output Interval: utput Filename:	30 Se 5 Min d:\HE	econd	Hydrog Detailed AS\2D-Mode	graph Outpu d Output Int ling\StPaul\S	t Interval: erval: tPaulIES.ds	5 Minute 6 Hour ss ਛਿੰ	• •
1 Levee	(Lateral Structure)) with t	preach data. 1 s	et to breach	ı.			
			Co	mpute				

Saint Paul Levee Breach Example

Lateral Structure Time Series Output

HEC

Lateral Structure Detailed Output

Lateral Structure Output		A DECKS	X
<u>File Type Options H</u> elp			
River: MissRiver 💌	Profile: 13FEB2099 060	0 💌 Lateral St	ructure 💌
Reach thru_St_Paul 💌	RS: 151400	▼ ↓ ↑ Plan: 2D Run Me	odified 💌
Plan: 2D Run Modified Mi	ssRiver thru_St_Paul RS	: 151400 Lateral Structure Profile: 13	FEB2099 0600
E.G. US. (ft)	716.10	Weir Sta US (ft)	5750.00
W.S. US. (ft)	715.28	Weir Sta DS (ft)	5850.00
E.G. DS (ft)	716.08	Min El Weir Flow (ft)	704.00
W.S. DS (ft)	714.80	Wr Top Wdth (ft)	100.00
Q US (cfs)	281458.70	Weir Max Depth (ft)	11.22
Q Leaving Total (cfs)	4332.12	Weir Avg Depth (ft)	11.14
Q DS (cfs)	277159.10	Weir Flow Area (sq ft)	1113.82
Perc Q Leaving	1.54	Weir Coef (ft^1/2)	2.600
Q Weir (cfs)	4332.12	Weir Submerg	0.95
Q Gates (cfs)		Q Gate Group (cfs)	
Q Culv (cfs)		Gate Open Ht (ft)	
Q Lat RC (cfs)		Gate #Open	
Q Outlet TS (cfs)	0.00	Gate Area (sq ft)	
Q Breach (cfs)	4332.12	Gate Submerg	
Breach Avg Velocity (ft/s)	3.89	Gate Invert (ft)	
Breach Flow Area (sq ft)	1113.82	Gate Weir Coef	
Breach WD (ft)	100.00		
Breach Top El (ft)			
Breach Bottom El (ft)	704.00		
Breach SSL (ft)	0.00		
Breach SSR (ft)	0.00		
	Errors, Warni	ngs and Notes	
Average flow velocity through a breach			

Stage Hydrograph Plots from RAS-Mapper

Velocity Hydrograph Plots from RAS-Mapper

Using 2D Flow Areas to model Overbank Areas (floodplains)

- Draw a Polygon for the Overbank/Floodplain Area
 - The 2D Flow Area boundary should be drawn at a High Ground Separation between the 1D Main Channel and 2D Floodplain
- Create the 2D Computational Mesh
- View the Mesh to ensure there are no Mesh Problems
- Modify The Mesh if Needed (add break lines, points, etc...)
- Hooking up a 2D Flow Area to a 1D River Reach with Lateral Structures
- Overflow Computation Method
- Weir Coefficients for Lateral Structures
- Weir Submergence Issues

1D Channel to 2D Interface Should be at High Ground Separating the **two**

Terrain Contours

Lateral Structure to connect 1D river to 2D overbank areas

Overflow Computation Method

·▼ Lateral Structure Editor - Detailed 1D-2D Stage to Stage								_		\times
File Vie	w Options	Help								
River:	BoiseRiver	•			Apply Data	+ 🖚				
Reach:	ower	•	HW RS:	3749	3749 LS	- + †	1 cr			
Description										
HW Position: Left overbank Plan Data Optimization Breach										
Tailwater Connection										
Type:	Type: Storage Area/2D Flow Area									
SA/2DFA	: 2D flow ar	ea: LeftOverba	ink		Set S	A/2DFA	Weir Length:	3388.	30	
							Centerline Length:	3388.	30	
Overflow Computation Method 2D Boundary Normal 2D Equation Domain Use Weir Equation Use Velocity 										
All Culvert	s: No Flap	Centerline GIS Coords								
Structure	Type Weir/Ga	Terrain Profile								
HW and TW Connections Determined Geo-Spatially										
Gate		3750	2861.84	4*	2072.37*	12	282.90* 296	.05*		
· · · ·	2690								Legend	
	2680	· · · · · · · · · · · · · · · · · · ·							Lat Struc	t
Diversion	2670								Ground Bank Sta	
RL S	2000	¶ ∼ ₽₽₫	<u>₽</u> ₩₽₽₽₽₽₽₽₽₽₽₽₽						TW Cell Min	Flev
Outlet	2000			╋╍┲╍┯╍	┍╍╉╍┿ <mark>╩┲_{╋╴╋╴┪}╴</mark>	ᡃᡗᢆ᠇ᢪ᠇ᢪ᠇ᢪ᠇	[┶] ╇╍╇╍╋╍╋╍╋ ╍╋		LS Terrai	n
<u> </u>	2650	┥┥	┧┥╽╽	╈╼╈╼╈╌┥	· ····		<u> </u>			
	2640							┢╌┷╌┧		
	2630			4000	4500	2000	2500 2000			
	-500	U	500	1000	1500 Station (ft)	2000	2500 3000	3500	1	.
										•

Weir Coefficients for Lateral Structures

What is being modeled with the Lateral Structure	Description	Range of Weir Coefficients
Levee/Roadway – 3ft or higher above natural ground	Broad crested weir shape, flow over Levee/road acts like weir flow	1.5 to 2.6 (2.0 default) SI Units: 0.83 to 1.43
Levee/Roadway – 1 to 3 ft elevated above ground	Broad Crested weir shape, flow over levee/road acts like weir flow, but becomes submerged easily.	1.0 to 2.0 SI Units: 0.55 to 1.1
Natural high ground barrier – 1 to 3 ft high	Does not really act like a weir, but water must flow over high ground to get into 2D area.	0.5 to 1.0 SI Units: 0.28 to 0.55
Non elevated overbank terrain. Lat Structure not elevated above ground	Overland flow escaping the main river.	0.2 to 0.5 SI Units: 0.11 to 0.28

Questions?

