Combined 1D River and 2D Floodplain/Levee Areas

Mark Jensen

USACE, Institute for Water Resources, Hydrologic Engineering Center

US Army Corps of Engineers

Overview

- Using a 2D Flow Area to model inside of Levees
- Saint Paul Levee Breach Example
- Using 2D Flow Areas to model overbank areas
(i.e. 1D Channels and 2D Floodplains)
- Carson River Example

Using a 2D Flow Area to model inside of a Levee system

- Bring in terrain and background map layers into RAS Mapper
- Draw a Polygon for the 2D Flow Area Boundary Inside of the Levee
- Create the 2D Computational Mesh
- View the Mesh Boundary Cells to ensure there are no Mesh Problems
- Modify The Mesh if Needed (add break lines for roads, high ground, etc. Use mesh refinement regions to refine or coarsen areas of the mesh)
- Hook up the 2D Flow Area to a 1D River Reach with Lateral Structures
- Weir Coefficients for Lateral Structures
- Levee Breaching
- Weir and Levee Breach Submergence Issues

From HEC-RAS Mapper Create a Terrain Model and Map Layers

Draw a Polygon for the 2D Flow Area Boundary Inside of the Levee

Create the 2D Computational Mesh using the 2D Flow Area Editor

View the Mesh to ensure there are no Mesh Problems

Modify The Mesh as Needed

Hooking up a 2D Flow Area to a 1D River Reach with Lateral Structures

Lateral Structure editor

Using Geospatial Coordinates for Lateral Structures

Lateral Weir/Embankment Editor

Lateral Weir Embankment					
-Weir Data	-Embankment Station/Elevation Table				
Weir Width k5.	Insert Row		Delete Row	Filter...	
Weir Computations: Standard Weir Eqn $^{\text {a }}$		Station			-
-Standard Weir Equation Parameters	1	0		717.52	
	2	160.9		17.328	
Weir flow reference: Water Surface -	3	217.23		16.861	
Weir Coefficient (Cd) 2.	4	239.07		16.825	
	5	297.36		16.253	
	6	477.08		16.183	
	7	556.99		16.042	
Weir Crest Shape: Broad Crested $^{\text {a }}$	8	671.42		16.046	
	9				
	10				
	11				
	12				
	13				
	14				
	15				
-Weir Stationing Reference-	16				
HW - Distance to Upstream XS: 23.	17				
	18				
	19				
	20				
	21				
HW Connections ... TW Connections ...	22				-
			K	Canc	

Lateral Weir Headwater Connections
(HW)

HW Lateral Structure Connections				4			
- Computed Default Weir Stationing				\bigcirc User Defined Weir Stationing			
Default Computed Weir Stationing				User Defined Weir Stationing			
	XS RSs	Weir Station	-		XS RSs	Weir Station	-
1	151436.4	-22.92		1	151354.9	5692	
2	151354.9	156.84		2	151084.4	5909	
3	151084.4	373.92		3	150654.0	6435	
4	150654.0	803.62		4			
5				5			
6				6			
7				7	User Specifie	nnections	
8				8	Option will n	used	
9					because the	al structure	
10				10	has a geo-re	ced	
11				11	centerine.		
12				12			
13				13			
14				14			
15				15			
16				16			
17				17			
18				18			
19			\checkmark	19			\checkmark
						Cance	

Lateral Weir Tailwater Connections (TW)

TW Lateral Structure Connections							
- Computed Default Weir Stationing				\bigcirc User Defined Weir Stationing			
Default Computed Weir Stationing				User Defined Weir Stationing			
	2D Face Points	Weir Station	\wedge		2D Face Points	Weir Station	-
1	456	-34.3083		1	454	5470.98	
2	412	28.59606		2	411	5537.3	
3	368	174.9681		3	368	5703.08	
4	319	314.8326		4	319	5861.57	
5	322	479.7218		5	322	6048.15	
6	325	521.3957		6	325	6095.38	
7	2408	663.5559			User Specified Co	nections	
8	239	725.6677			Option will not be	used	
9				9	because the later	structure	
10				10	has a geo-referen		
11				11	centerline.		
12				12			
13				13			
14				14			
15				15			
16				16			
17				17			
18				18			
19			\checkmark	19			\checkmark
					OK	Cance	

Connected 1D River to 2D Flow Area with

Weir Coefficients for Lateral Structures

What is being modeled with the Lateral Structure	Description	Range of Weir Coefficients
Levee/Roadway - 3ft or higher above natural ground	Broad crested weir shape, flow over Levee/road acts like weir flow	$\mathbf{1 . 5}$ to $\mathbf{2 . 6}$ (2.0 default) SI Units: 0.83 to 1.43
Levee/Roadway - 1 to 3 ft elevated above ground	Broad Crested weir shape, flow over levee/road acts like weir flow, but becomes submerged easily.	$\mathbf{1 . 0}$ to $\mathbf{2 . 0}$ SI Units: 0.55 to 1.1
Natural high ground barrier - 1 to 3 ft high	Does not really act like a weir, but water must flow over high ground to get into 2D area.	$\mathbf{0 . 5}$ to $\mathbf{1 . 0}$ SI Units: 0.28 to 0.55
Non elevated overbank terrain. Lat Structure not elevated above ground	Overland flow escaping the main river.	$\mathbf{0 . 2}$ to 0.5 SI Units: 0.11 to 0.28

Levee Breaching

Simplified Physical Breaching

Velocity vs. Downcutting and Widening

Weir and Levee Breach Submergence Issues

- When a lateral structure gets highly submerged, HEC-RAS uses a weir submergence curve to compute the flow reduction over the weir. The curve is very steep (i.e. the flow reduction changes dramatically) between 95% and 100% submergence. This can cause oscillations and possible model stability issues. To reduce these oscillations, user can have HEC-RAS use a milder sloping submergence curve by going to the 1D "Computational Options and Tolerances" and setting the field labeled "Weir flow submergence decay exponent" to 3.0.

Weir Submergence Curves

Unsteady Flow Computational Options and Tolerances

Using RAS-Mapper
Associate the Terrain to the Geometry

RAS-Mapper
Running the 2D Pre-Processor

Run the Model and View the Results

Saint Paul Levee Breach Example

- x

Lateral Structure Time Series Output

Lateral Structure Detailed Output

Stage Hydrograph Plots from RASMapper

Velocity Hydrograph Plots from RASMapper

Using 2D Flow Areas to model Overbank Areas (floodplains)

- Draw a Polygon for the Overbank/Floodplain Area
- The 2D Flow Area boundary should be drawn at a High Ground Separation between the 1D Main Channel and 2D Floodplain
- Create the 2D Computational Mesh
- View the Mesh to ensure there are no Mesh Problems
- Modify The Mesh if Needed (add break lines, points, etc...)
- Hooking up a 2D Flow Area to a 1D River Reach with Lateral Structures
- Overflow Computation Method
- Weir Coefficients for Lateral Structures
- Weir Submergence Issues

1D Channel to 2D Interface Should be at High

Terrain Contours

Lateral Structure to connect 1D river to 2D overbank areas

Overflow Computation Method

Weir Coefficients for Lateral Structures

What is being modeled with the Lateral Structure	Description	Range of Weir Coefficients
Levee/Roadway - 3ft or higher above natural ground	Broad crested weir shape, flow over Levee/road acts like weir flow	$\mathbf{1 . 5}$ to $\mathbf{2 . 6}$ (2.0 default) SI Units: 0.83 to 1.43
Levee/Roadway -1 to 3 ft elevated above ground	Broad Crested weir shape, flow over levee/road acts like weir flow, but becomes submerged easily.	$\mathbf{1 . 0}$ to 2.0 SI Units: 0.55 to 1.1
Natural high ground barrier - 1 to 3 ft high	Does not really act like a weir, but water must flow over high ground to get into 2D area.	$\mathbf{0 . 5}$ to 1.0 SI Units: 0.28 to 0.55
Non elevated overbank terrain. Lat Structure not elevated above ground	Overland flow escaping the main river.	$\mathbf{0 . 2}$ to $\mathbf{0 . 5}$

Questions?

