HEC-RAS Subgrid Technology

Gary Brunner, P.E., D. WRE, M.ASCE

HEC

US Army Corps of Engineers

Objectives

Overview of the Subgrid Technology in HEC-RAS.

Cell and Face Pre-Processing

- The 2D Mesh pre-processor computes a detailed elevationvolume relationship for each cell.
- Each face of a computational cell is pre-processed into detailed hydraulic property tables (elevation versus, wetted perimeter, area, roughness, etc...).
- Computational cells can be partially wet.
- This allows the user to use larger computational cells, without losing too much of the details of the underlying terrain.
- The net effect is that larger cells means less computations, which means much faster run times.
- Additionally, HEC-RAS will produce more detailed results for a given cell size than other models that use a single elevation for each cell and face.

Computational Mesh with Detailed Sub-grid Terrain Data - Continued

Computational Cells are Pre-Processed Elevation vs. Volume

Computational Faces are Pre-Processed Elevation vs. Area, Wetted Perimeter, and n

Benefits of using the detailed sub-terrain for the cell and face hydraulic properties

Example Application – EU Test 5

- Extremely Rapidly rising hydrograph of a dry bed. From 0.0 to 3000 cms in 5 minutes.
- Compare results at multiple locations for three grid resolutions (25, 50, and 100m)
- Compare Computational times

BUILDING STRONG

EU Test 5 – Animation

EU Test 5 – Location 1

EU Test 5 – Location 3

EU Test 5 – Location 5

EU Test 5 – Computational Time

Test No	Grid Size	No. Cells	Time Step	RAS Full Saint Venant	
1	25m	30340	2 sec	7 min 34s	
2	50m	7460	5 sec	1 min 38s	
3	100m	1809	10 sec	13s	

Example Application - Muncie Indiana

Muncie Indiana – Grid Resolution Evaluation 200, 100, 50, and 25 ft Grids

Muncie Breach Flow Hydrographs

Muncie Indiana - Location 1

Muncie Indiana – Location 2

Break lines Added

Location 2 – With Break Lines

Muncie Indiana – Location 3

Muncie Lower Levee Overflow

Muncie – Computational Time 24 hr Simulation, 5 -15s Time Steps

Test No	Grid Size	No. Cells	Time Step	RAS Diff Wave	Time Step	RAS Full Eqns.
1	25ft	21719	10 sec	2 min 19s	4 sec	7 min 34s
2	50ft	5379	15 sec	33s	10 sec	1 min 16s
3	100ft	1323	15 sec	7s	15 sec	15s
4	200ft	321	20 sec	4s	15 sec	6s
	900					

