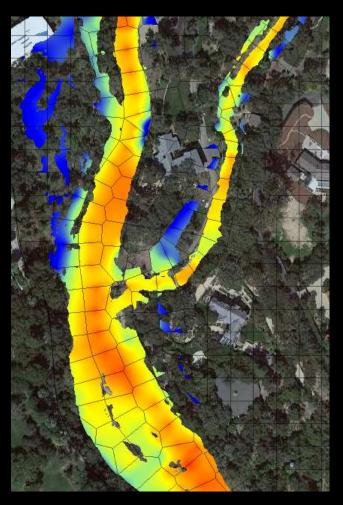

Mesh and Hydraulic Best Practices for HEC-RAS 2D Sediment Models

Big Ideas

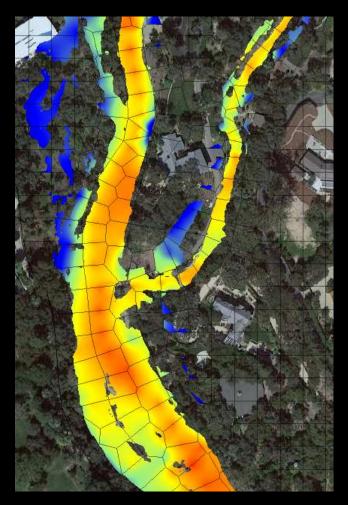
- Sediment transport amplifies hydraulic modeling errors (in 1D and 2D)
- Calibrate and refine your hydraulic model <u>before</u> you add sediment.

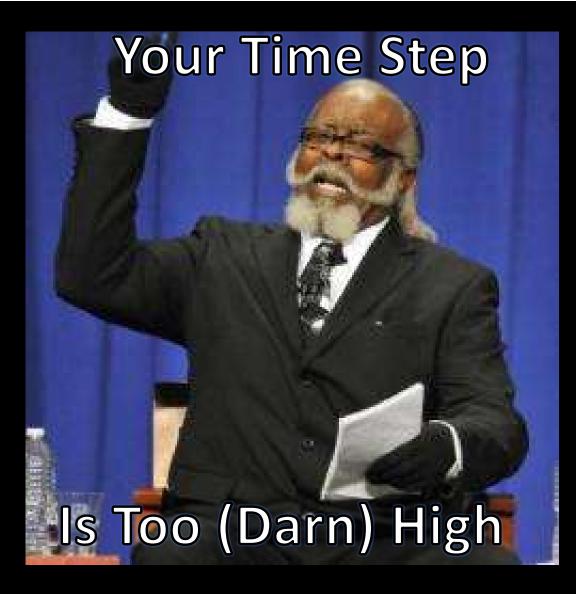
Big Ideas


 Calibrate and refine your hydraulic model <u>before</u> you add sediment.

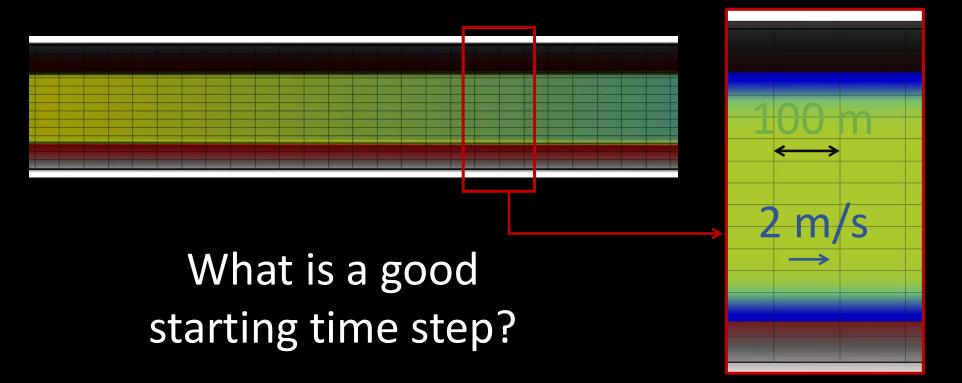
Stages of Sediment Calibration

	Flow	Bed Elevation
Stage 1: Hydraulic Calibration	Variable	Fixed
Stage 2: Steady Flow Mobile Bed Analysis	Fixed	Variable
Stage 3: Dynamic Calibration	Variable	Variable
If Possible:		
Stage 4: "Validation" (Multiple Time Series Analysis)	Variable	Variable

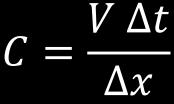

Hydraulic Best Practices for 2D Sediment Modeling

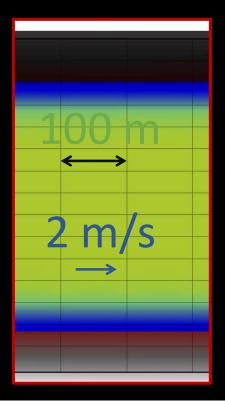

- 1. Top Two Issues
- 2. Mesh Best Practices
- 3. Computational Best Practices

Hydraulic Best Practices for 2D Sediment Modeling


- 1. Top Two Issues
 - Time Step
 - Cell Faces and High Ground
- 2. Mesh Best Practices
- 3. Computational Best Practices

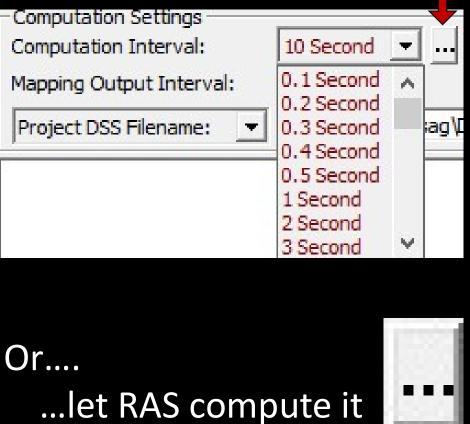
A 2D model has: a regular cell size of 100m and an average velocity of 2 m/s. $C = \frac{V \,\Delta t}{\Delta x}$

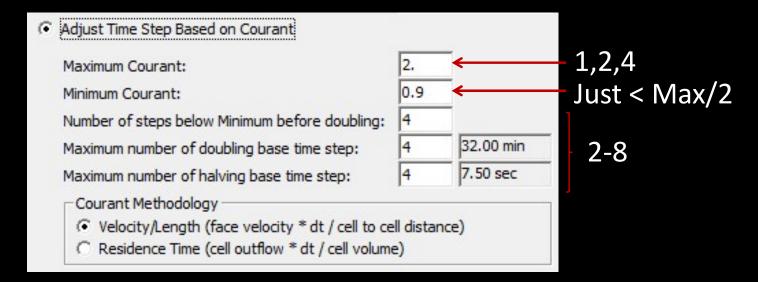

Hint:



A 2D model has: a regular cell size of 100m and an average velocity of 2 m/s.

$$\Delta t = \frac{\Delta x C}{V}$$
$$\Delta t = \frac{100m (1)}{2 m/s} = 50s$$


Hint:

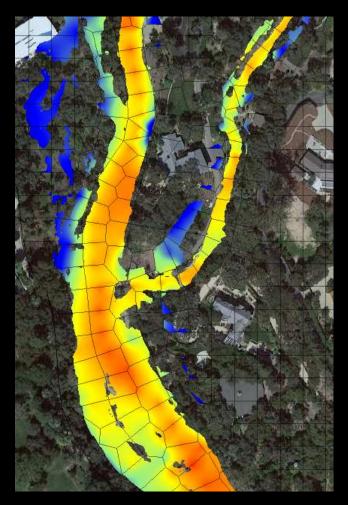

Selecting an Appropriate Timestep

」 Unsteady Flow Analysis File Options Help			×	- Computa Computa
Plan: Equilibrium Transport (CS) (N	lov2021)	Short ID: Equilibrium Tra	ansport (CS) (Nov	
Geometry File:	2D 09Apr2020		.	Mapping
Unsteady Flow File:	Unsteady		_	
Sediment File:	Equilibrium Transport	(CS)	×	Project
Programs to Run	Plan Description			1
 ✓ Geometry Preprocessor ✓ Unsteady Flow Simulation ✓ Sediment 	31Dec1978		^	
 Post Processor Floodplain Mapping 			~	
Simulation Time Window Starting Date: 0	1Jul 1975	Starting Time:	0000	
	1Jul 1975	Ending Time:	2400	
Computation Settings				1
		vdrograph Output Interval:	1 Hour 💌	
	0 Second A De	etailed Output Interval:	1 Hour 💌	Or
Project DSS Filename: 1 2 3 1	5 Second ag\Desk 0 Second 0 Second 0 Second 0 Minute	top\Deliverable Papers\Writi	ng Prio 🥻	
	Minute Minute			
	Compute			

Selecting an Appropriate Timestep...

...Let RAS Do It

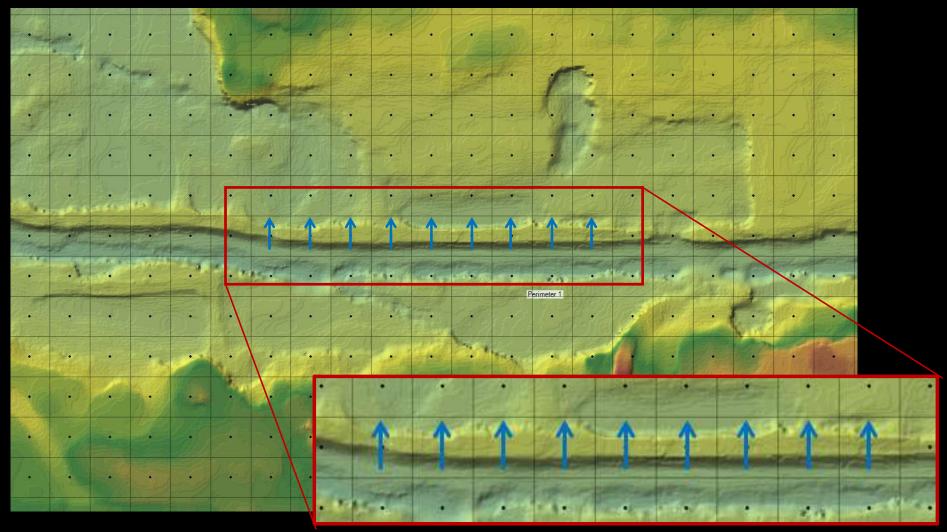
- Based on the "critical cell" smallest or fastest
- Works best if cell size is relatively regular
- Can reach time steps < 0.1s

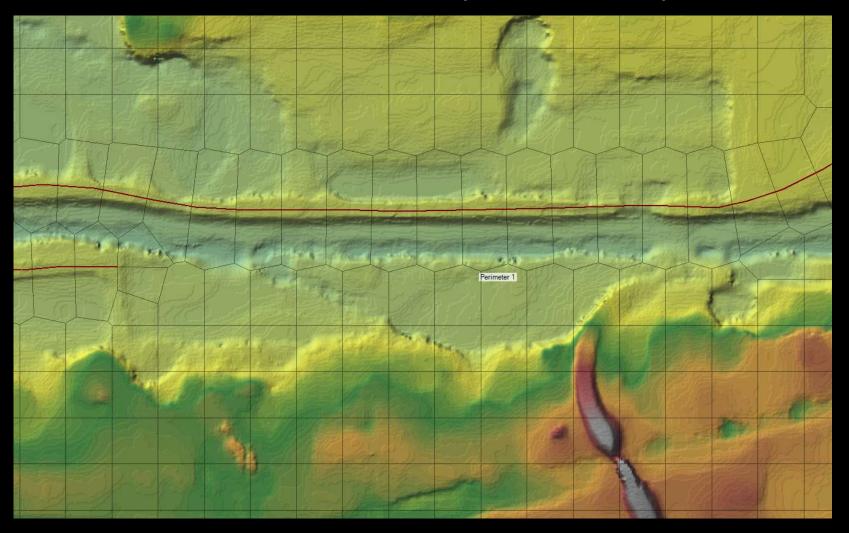

Adaptive Time Step Video Tutorial

Sibes	netry: i sty Plan:	Coarse 3D Reconstry Copy (Coarse Grd) Unsteady_for_y/7	Entowerstachecoup Destropt	Bugs and Support Ponce, Orest Ponce, Orest is Bugs and Support Ponce, Orest Ponce, Orest, i Bugs and Support Ponce, Orest Ponce, Orest i	101		Selected
	orginani				Customery Units		11215
File (Plan Fi 9 to 9 to 10 to 10 to 10 to 10 to	rams to Run leoned y Fright Instandy Hole Sediment Sectionent Sectionent Sectionent Friedung Data Ending Data	dip y File: Geometry Copy (Coarse y Fox File: Unstandy, for_v/7 Man Description Simulation Distance (Constant), for_v/7 Man Description Simulation Si	Starting Time: 0000 Ending Time: 0000 Ending Time: 0000 Sgraph Cutput Enternal: 6 Himute •				
Varia	able T	Time Steps a	ind Time Slicing	in HEC-RAS			
506 vi	ews •	Nov 5, 2021	凸 39	9 🖓 DISLIKE	A SHARE	Ξ+ SAVE	

https://youtu.be/kcBrOML3iS0

Hydraulic Best Practices for 2D Sediment Modeling


- 1. Top Two Issues
 - Time Step
 - Cell Faces and High Ground
- 2. Mesh Best Practices
- 3. Computational Best Practices

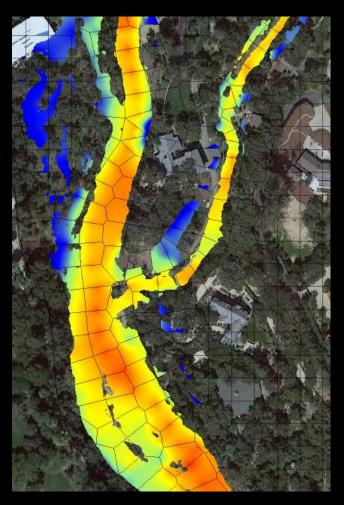

What is the biggest problem with this mesh?

		f_{j}				7.	ż			di la		il					The second			
	all a	1.7		•	Ŀ							Z.	1				k.	P	- M	
			1 miles	The second	1			1. 1.	15 m	ALC: NO	and the second s	T.	大师			-			[]	
	H.		1993 1993 1993	Ver						Sall Sall	P								16	
		-			Ser				i		The second						1.1	ŀ	-	<u></u>
in the				•			150	3.5-1			in the second			·	1. E		÷	-		-
	1	<u>s</u> e	2.3				-	1		-		•	erimeter 1	EDIS	the seal of	1				
		•	1.0			T.			1	14 14	1 Me		1.2		j	1		Ċ	g.z	
		N.F.		and a	4	11		1 inst	and i		100	· · · · · ·	1	-	1				1	3.
	S.P.	Ģ	3.	-				-		1.			1.1	id	K					
Y	12					-	-			the second	57.			1.0	U		1.1	10	w.	A.C.
1.		.6		.)		E A			15	The second		100		1		1		100	18i	Pl. a
	She -	1. Partie			K.ra			國	N-12	02100	3.00	- MAR	1 mil	1		131	RER L	2.00	Marine In	18-9

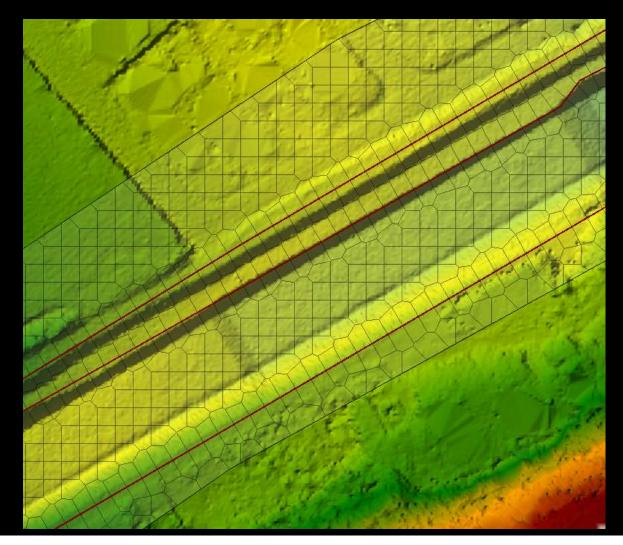
Cell Edges Do Not Follow High Ground

Add a Breakline (or a bunch)

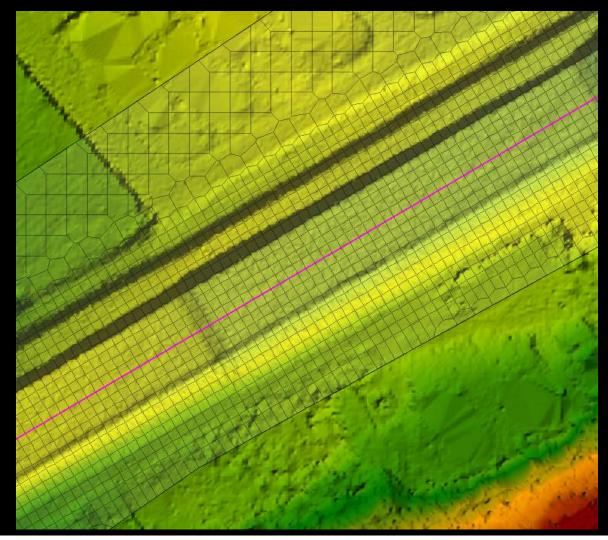
Take Away – Take Control of the High Ground

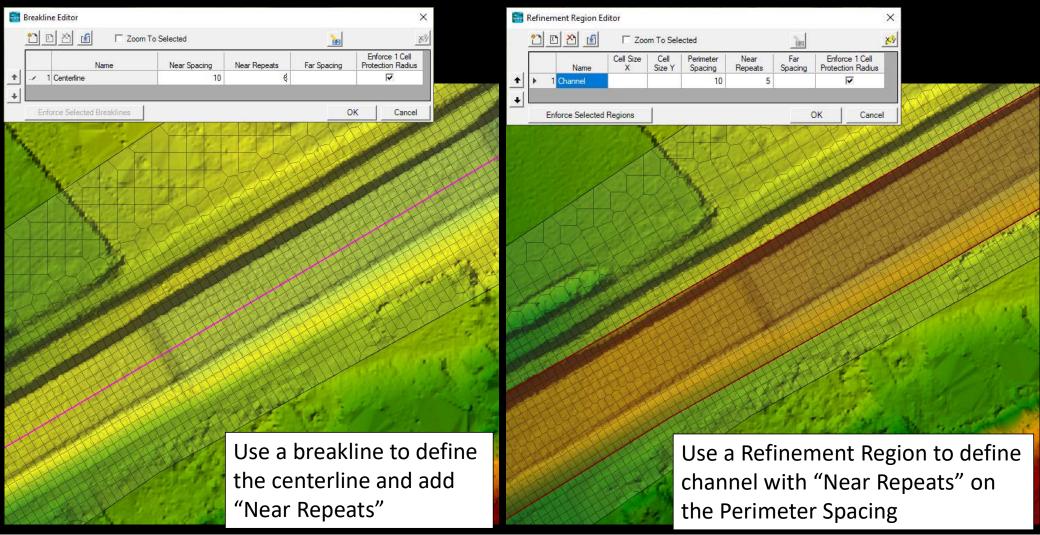


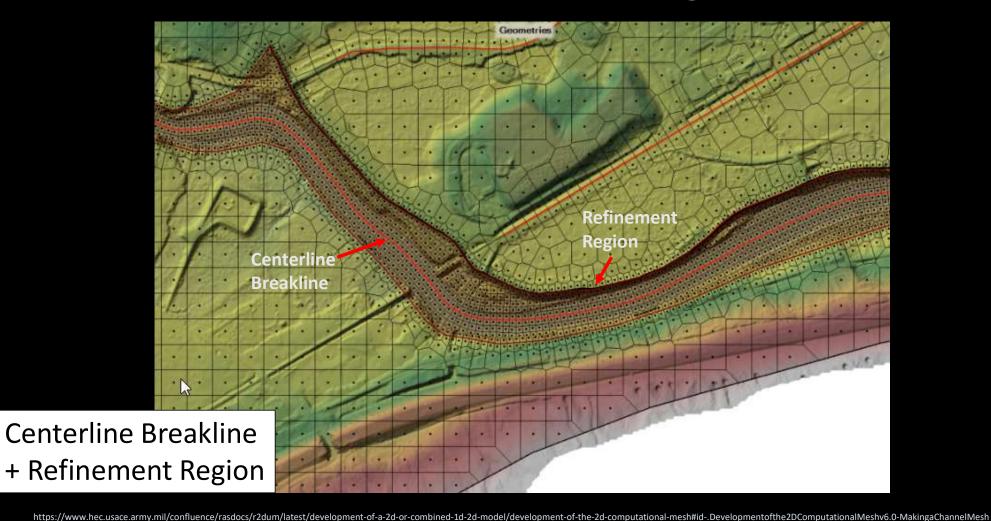
Hydraulic Best Practices for 2D Sediment Modeling

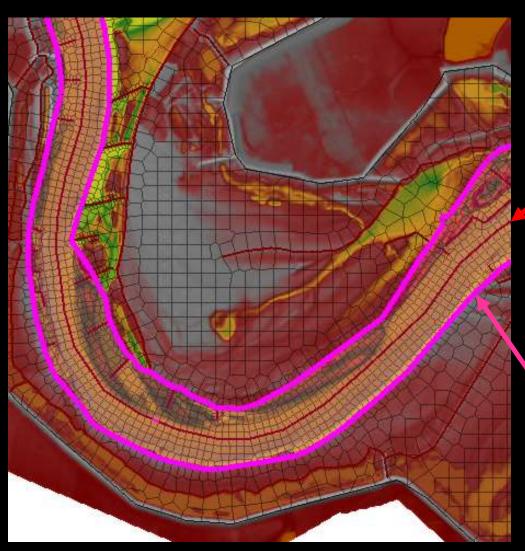

1. Top Two Issues

2. Mesh Best Practices


3. Computational Best Practices


How Could We Improve This Mesh?


Align the Mesh with the Flow

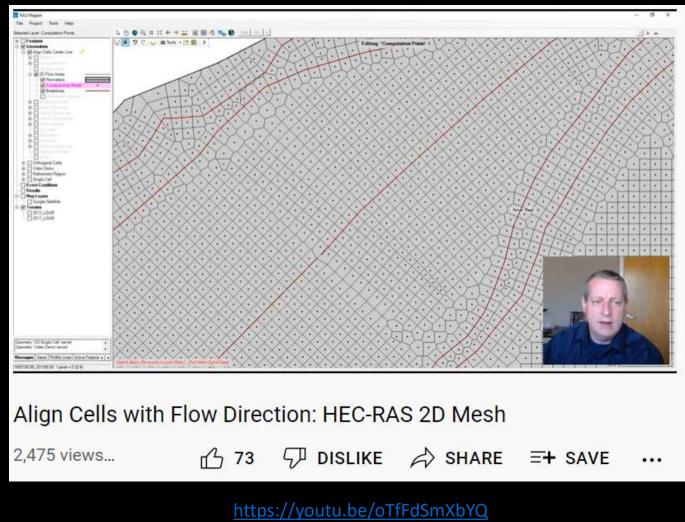


Two Methods to Align Cells with Flow

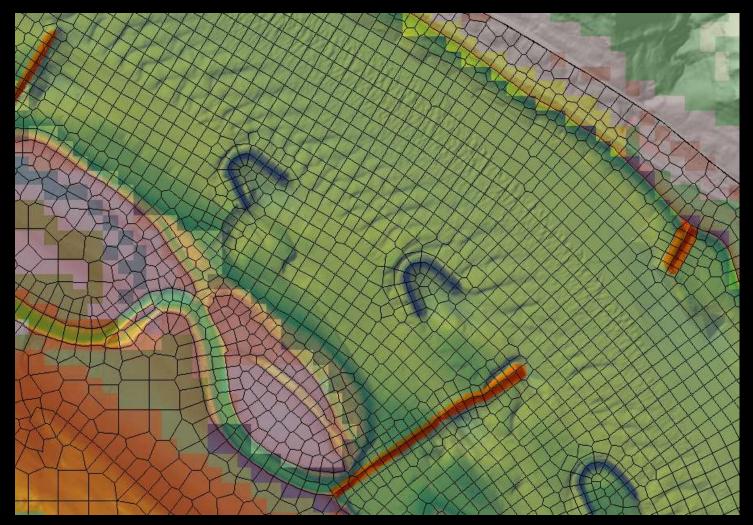
Best Practice – Use Them Together

Centerline breakline

Near Repeats with Near Spacing

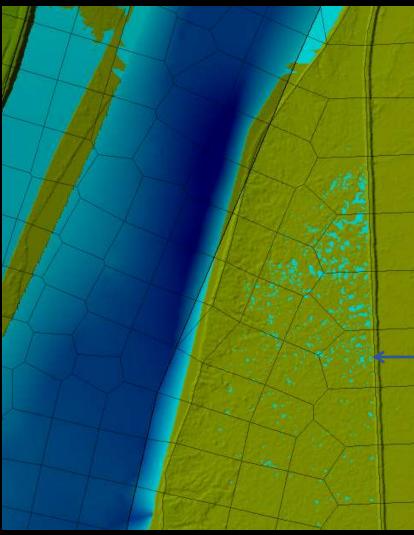

E	Breakli	ine Editor			2			×
	<u>*1</u>]		C Zoom To Sel	ected		1		89
		Name	Near Spacing	Near Repeats	Far Spacing	Enforce 1 Cell Protection Radius	t.	
+		1 Center Line	200	4		V		-
+	En	force Selected Brea	klines (When	2 overlap, last row	r is considered	on top)	ок	Cancel

Refinement Region

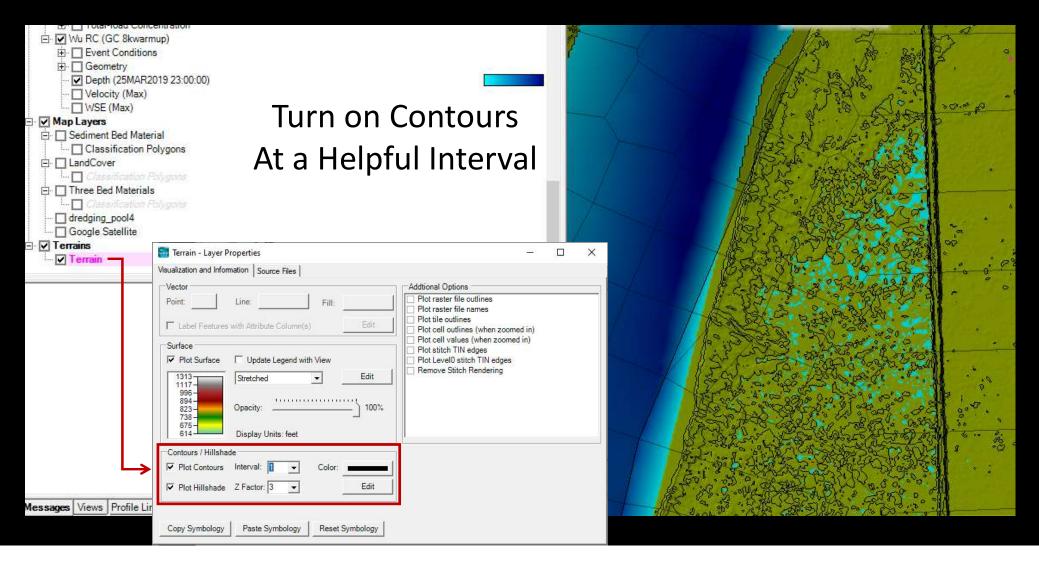

Only Meant to Snap the Outside Cell Faces to Banks Perimeter Spacing and Enforce Cell Protection Only

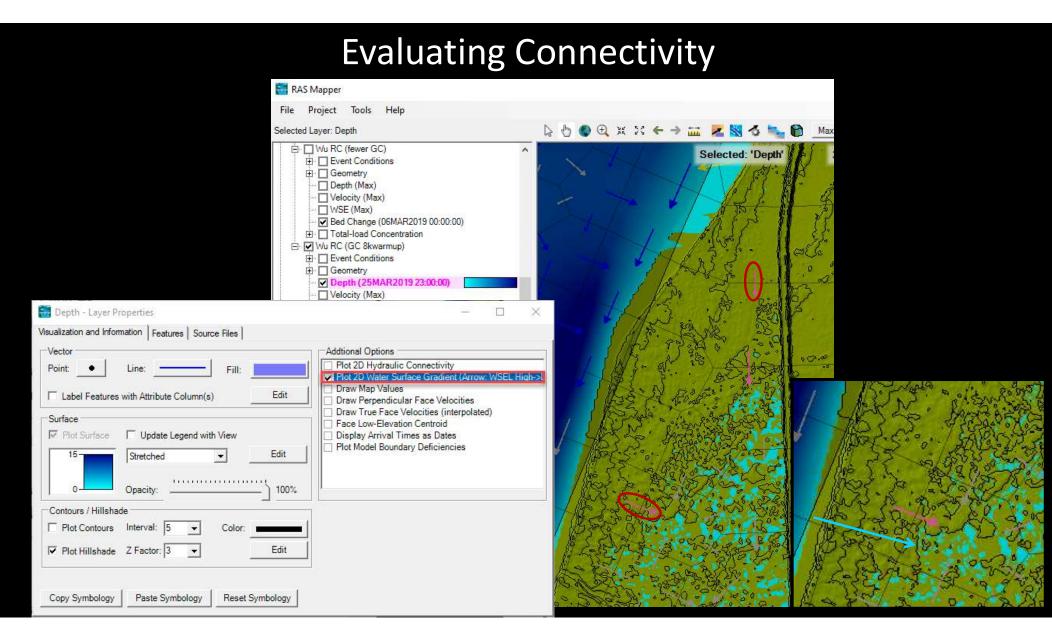
F F	Refinement Region Editor			2		×	
	1 🖸 🖄 🖆 🗆 🗆 Zoo	m To Selected					88
	Name	Cell Size X	Cell Size Y	Perimeter Spacing	Near Repeats	Far Spacing	Enforce 1 Cell Protection Radius
+	🥒 1 Channel			200	0		
+	Enforce Selected Regions	(When 2 overla	p, last row is	s consi <mark>de</mark> red on t	op)	OK	Cancel

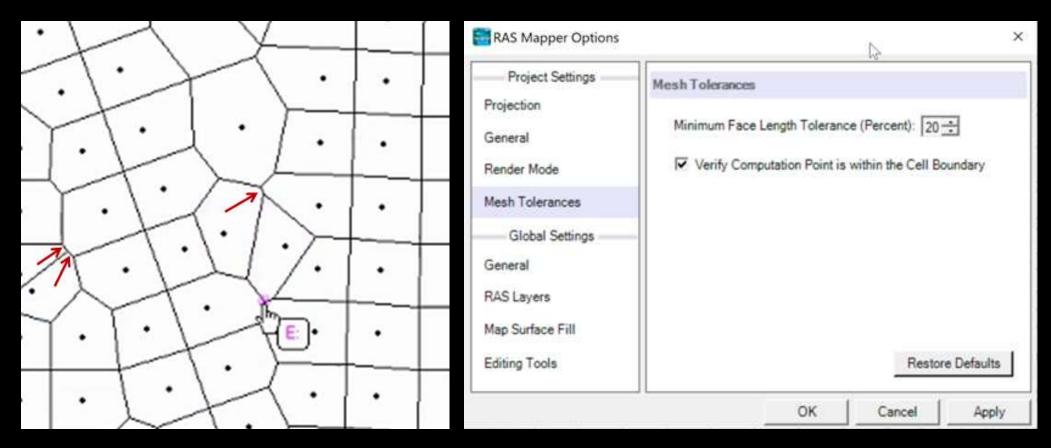
Alignment Video Tutorial


Use Breaklines for Linear Structures

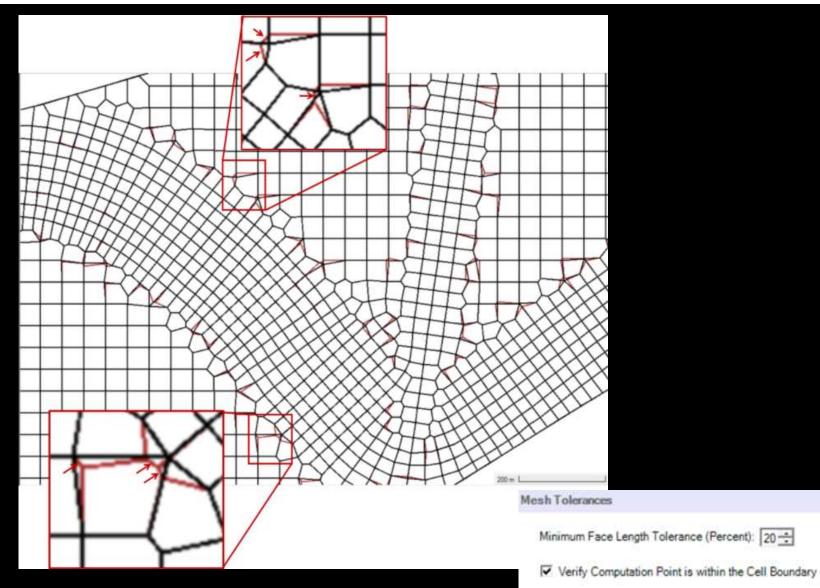
Developing a Quality, Aligned, Mesh Takes Time



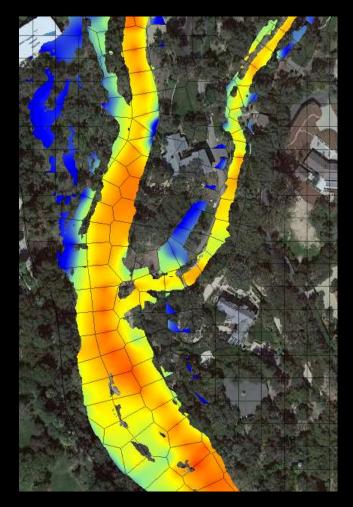

Evaluating Connectivity


Where does this floodplain water come from?

Evaluating Connectivity



Avoid Tiny Cell Faces

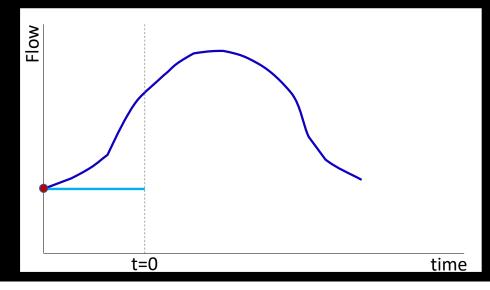

This is much easier to fix in recent versions. Use the Mesh Tolerances in Mapper Options

Hydraulic Best Practices for 2D Sediment Modeling

- 1. Top Two Issues
- 2. Mesh Best Practices
- 3. Computational Best Practices
 - Hydraulic Warmup
 - Hydrodynamic Equations
 - Turbulence and Mixing
 - Other Tips and Tricks

Initial Conditions: Hydraulic Warm Up/Ramp Up

上し	nstea	dy Fl	ow Analysis		×
File	Opt	ions	Help		
Plan:	~	Flov Flov	je and Flow Output Locations v Distribution Locations v Roughness Factors sonal Roughness Factors	(GC 8)	kwarmup)
Pro S	í.	Uns	omated Roughness Calibration teady Encroachments laged Lateral Inflows		~
Sim		Lev SA (n (Inline Structure) Breach ee (Lateral Structure) Breach Connection Breach nputation Options and Tolerances	e:	12:00
Cor Cor Mar Pro		Out Fric Fric	put Options tion Slope Method for Cross Sections tion Slope Method for Bridges al Backwater Flow Optimizations	: erval: il: :dimen	24:00 1 Hour ▼ 1 Day ▼ t_Chip 🛃
Time		Sed	iment Computation Options and Tolerances iment Output Options iment Dredging Options		


- 1D Unsteady Starts with a Steady Flow Run For Initial Conditions
- 2D Hydraulics Starts Dry: There is no "Steady Flow 2D"
- The "Ramp Up" Allows you to Reach "Dynamic Steady State"
- Giving a Model Enough Time to Reach Hydraulic Steady State is Critical for a Sediment Simulation

HEC-RAS Unsteady Computation Options and Tolerances

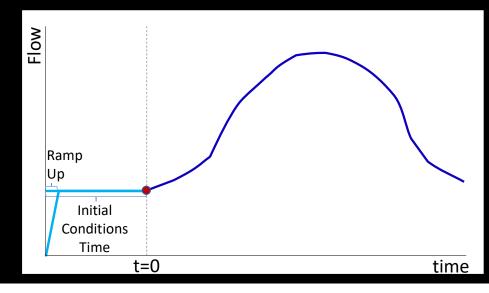
General 2D Flow Options | 1D/2D Options | Advanced Time Step Control | 1D Mixed Flow Options |

Use Coriolis Effects (not used with Diffusion Wave equation)

÷	Parameter	(Default)	Chippewa
1	Theta (0.6-1.0)	1	1
2	Theta Warmup (0.6-1.0)	1	1
3	Water Surface Tolerance [max=0.2](ft)	0.01	0.01
4	Volume Tolerance (ft)	0.01	0.01
5	Maximum Iterations	20	20
6	Equation Set	SWE-ELM (original/faster)	SWE-ELM (original/faster)
7	Initial Conditions Time (hrs)	12	12
8	Initial Conditions Ramp Up Fraction (0-1)	0.1	0.1

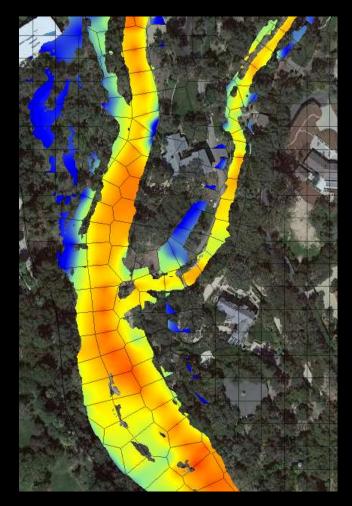
Initial Conditions: Hydraulic Warm Up/Ramp Up

上 UI	nsteady Fl	ow Analysis			X		
File	Options	Help					
Plan:	Flov	ge and Flow Output Locations w Distribution Locations w Roughness Factors	(GC 8k	warmup)	•		
Pro	Aut	sonal Roughness Factors omated Roughness Calibration	_		•		
র ব	Ung	iteady Encroachments Jaged Lateral Inflows	^				
□ □ Sim	Lev	n (Inline Structure) Breach ee (Lateral Structure) Breach Connection Breach			~		
	Cor	omputation Options and Tolerances	e:	12:00 24:00			
Cor Cor Mat	Fric Fric	put Options tion Slope Method for Cross Sections tion Slope Method for Bridges ial Backwater Flow Optimizations	erval: il: :diment	1 Hour 1 Day	•		
Time	Sed Sed	iment Computation Options and Tolerances iment Output Options iment Dredging Options]		

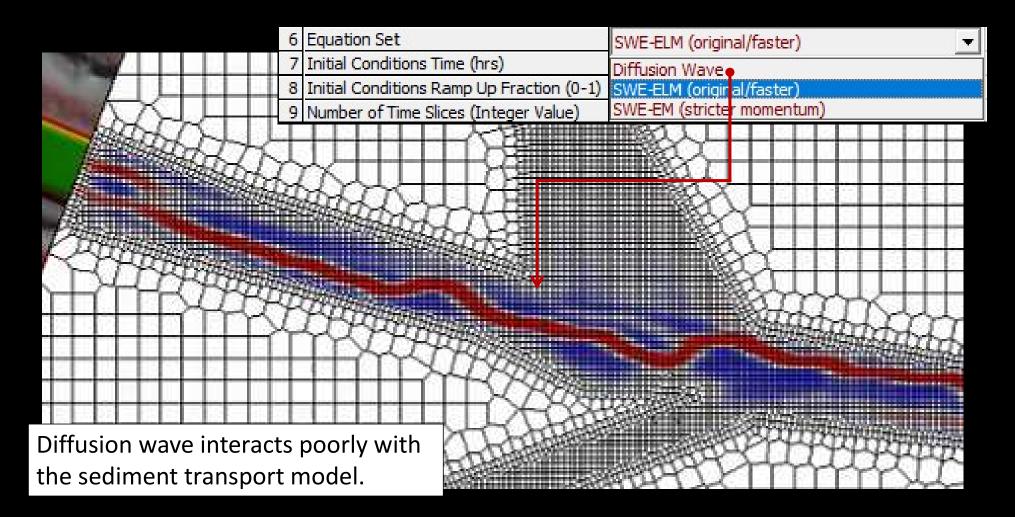

• Note: The Initial Conditions Time Does not Use the Adaptive Time Step

HEC-RAS Unsteady Computation Options and Tolerances

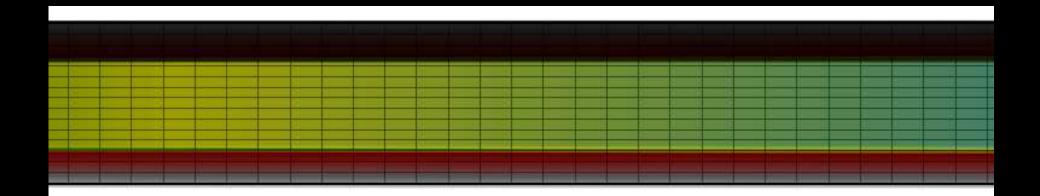
General 2D Flow Options | 1D/2D Options | Advanced Time Step Control | 1D Mixed Flow Options |

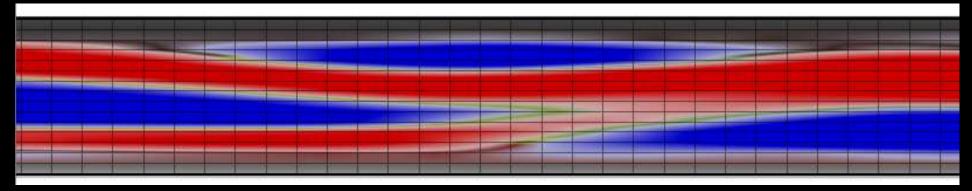

Use Coriolis Effects (not used with Diffusion Wave equation)

- 1	Parameter	(Default)	Chippewa
1	Theta (0.6-1.0)	1	1
2	Theta Warmup (0.6-1.0)	1	1
3	Water Surface Tolerance [max=0.2](ft)	0.01	0.01
4	Volume Tolerance (ft)	0.01	0.01
5	Maximum Iterations	20	20
6	Equation Set	SWE-ELM (original/faster)	SWE-ELM (original/faster)
7	Initial Conditions Time (hrs)	12	12
8	Initial Conditions Ramp Up Fraction (0-1)	0.1	0.1



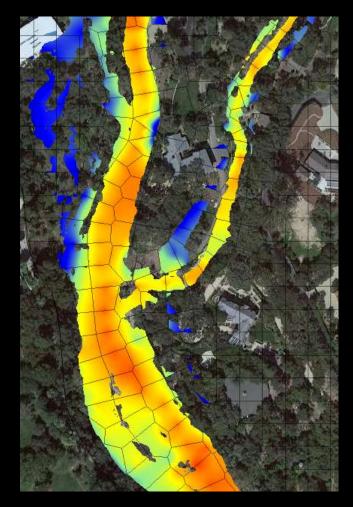
Hydraulic Best Practices for 2D Sediment Modeling


- 1. Top Two Issues
- 2. Mesh Best Practices
- 3. Computational Best Practices
 - Hydraulic Warmup
 - Hydrodynamic Equations
 - Turbulence and Mixing
 - Other Tips and Tricks



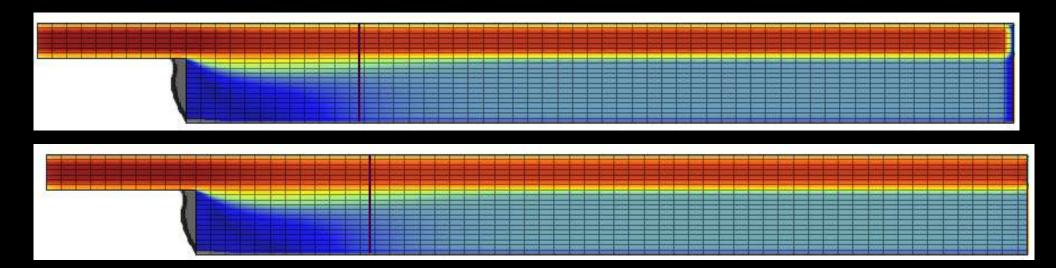
Always Use the Full Momentum Equations

Always Use the Full Momentum Equations



Diffusion Wave Result

Hydraulic Best Practices for 2D Sediment Modeling

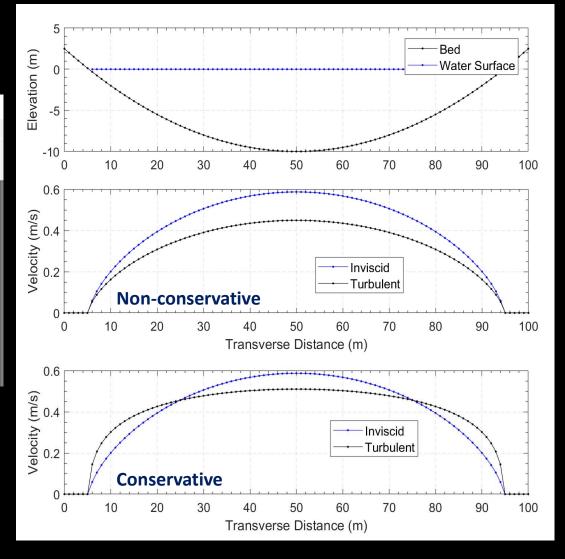

- 1. Top Two Issues
- 2. Mesh Best Practices
- 3. Computational Best Practices
 - Hydraulic Warmup
 - Hydrodynamic Equations
 - Turbulence and Mixing
 - Other Tips and Tricks

How does sediment transport laterally in RAS? (Choose all that apply)

 -	 	_	-	-	-	_				-	1.1							_		_	_	-				-	12.5				
	 		-		-				-	-	-				-	-	-	-	-	-	-		-	-	-		-		-	-	
	 	-	-	-		-	•	•	-	-				-	-			-	-	-	-	-	-		-	-	-	 	-	-	1.3
 	 					-	-		-	-	-	_			-			-	-	-	 	-	4			-	4	 -	-	-	
	 -				10-0	-	-		1	-	-		1.5	-	-	-		-	-		 -	-	-			-	-	 	-	-	
											-	-	-	-	-	****	-		-	-	 -	-			-	-	-	 	-	-	
																													-	-	100

Turbulence and mixing	Numerical Dispersion
Sediment Diffusion	Muskrat Metabolism

0.300 0.250 0.200 0.150 0.100 0.050 0.000


Turbulence Equations

HEC-RAS Unsteady Computation Options and Tolerances

General 2D Flow Options 1D/2D Options Advanced Time Step Control 1D Mixed Flow Options

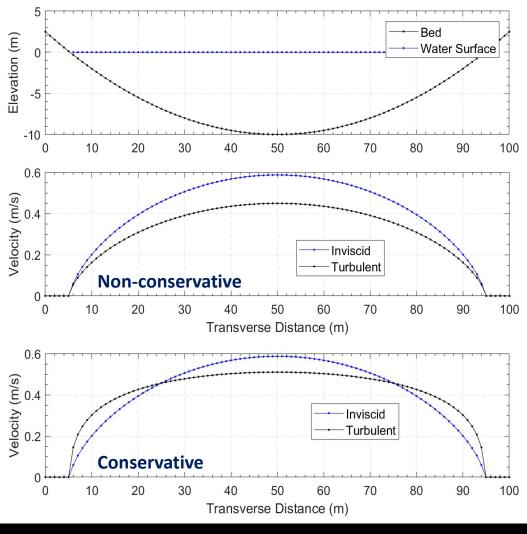
☐ Use Coriolis Effects (not used with Diffusion Wave equation)

	Parameter	(Default)	2D Area
1	Theta (0.6-1.0)	1	1
2	Theta Warmup (0.6-1.0)	1	1
3	Water Surface Tolerance [max=0.06](m)	0.01	0.01
4	Volume Tolerance (m)	0.01	0.01
5	Maximum Iterations	20	20
6	Equation Set	SWE-EM (stricter momentum)	SWE-EM (stricter momentum)
7	Initial Conditions Time (hrs)	0.5	0.5
8	Initial Conditions Ramp Up Fraction (0-1)	0.1	0.1
9	Number of Time Slices (Integer Value)	1	1
10	Turbulence Model	None	None
11	Longitudinal Mixing Coefficient		None
12	Transverse Mixing Coefficient		Conservative
13	Smagorinsky Coefficient	Ũ	Non-Conservative (original)
14	Boundary Condition Volume Check		

Turbulence Equations

Turbulence and mixing are essentially diffusion terms.

Non-Conservative

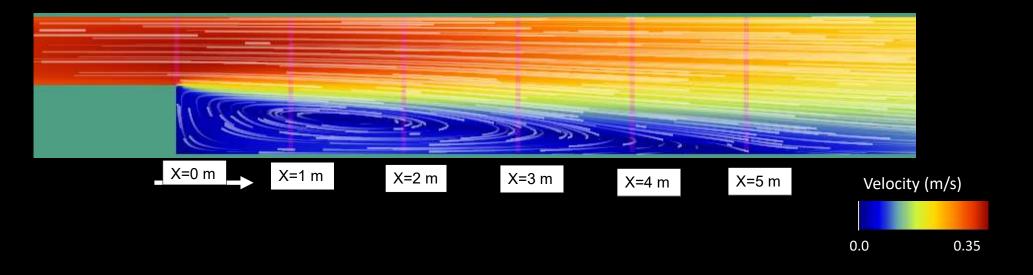

Assumes smoothly varying velocities (changes are gradual) The eddy viscosity can come outside the derivative But the spatial average drop – so this becomes a dissipation term not just a mixing term

$$\frac{\partial u}{\partial t} + v \frac{\partial u}{\partial y} - fv = -g \frac{\partial H}{\partial x} + v_t \left(\frac{\partial^2 u}{\partial y^2}\right) - c_f u$$

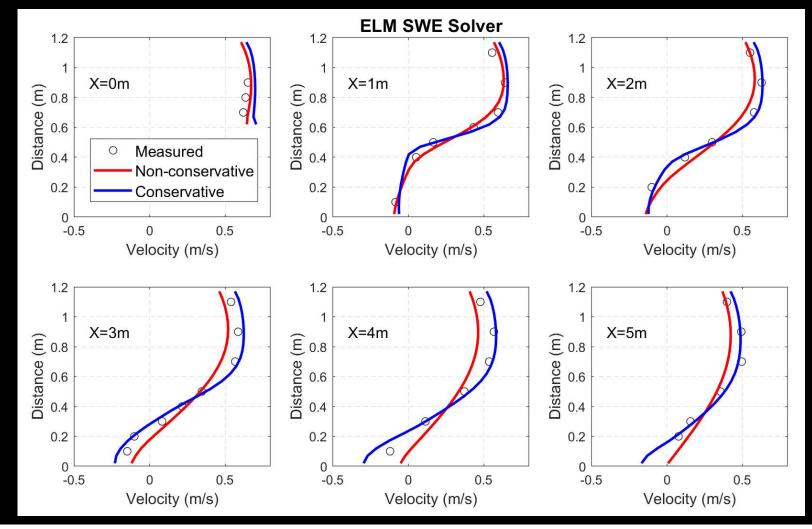
Conservative

Transforms the mixing term into the diffusive flux by moving the coefficient inside the derivative and multiplying by h/h This is a finite volume approach and yields a conservative formulation

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + fv = -g \frac{\partial H}{\partial x} + \left[\frac{1}{h} \frac{\partial}{\partial x} \left(v_{t,xx} h \frac{\partial u}{\partial x}\right) - c_f u\right]$$



(Note: Equations one-dimensionalized for simplicity)


Example: Sudden Expansion Lab Experiment

- Inflow: 0.039 m³/s
 Douvestween double 11
- Downstream depth: 11 cm
- Slope: 0.0001

- Grid Resolution: 2.5 cm
- Time step: 0.02 and 0.0333 s
- Manning's n: 0.015 s/m^{1/3}

Results: Sudden Expansion Lab Experiment

New Turbulence Approach in 6.0+

Old Method: Parabolic

Isotropic $(D_L = D_T)$ Sensitive to Roughness Not sensitive to cell size

New Method: Parabolic-Smagorisnky

Anisotropic $(D_L \neq D_T)$ Sensitive to Roughness Sensitive to cell size (Δ)

(As cell size decreases more of the sub-cell dispersion is accounted for explicitly, and the Smagorisnky term drops out)

$$\nu_{txx} = D_{xx}u_*h + (C_s\Delta)^2 |\bar{S}|$$

$$\nu_{ty} = D_{yy}u_*h + (C_s\Delta)^2 |\bar{S}|$$

 $v_t = Du_*h$

u.: Shear velocity

- h: Water depth
- D: Mixing coefficient
- D_L : Longitudinal mixing coefficient
- D_T : Transverse mixing coefficient
- C_s : Smagorinsky coefficient

$$\left|\overline{S}\right| = \sqrt{2\left(\frac{\partial u}{\partial x}\right)^2 + 2\left(\frac{\partial v}{\partial y}\right)^2 + \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}\right)^2}$$

New Turbulence Approach in 6.0+

$$\nu_{tx} = D_{xx}u_*h + (C_s\Delta)^2 |\bar{S}|$$
$$\nu_{tyy} = D_{yy}u_*h + (C_s\Delta)^2 |\bar{S}|$$

"<u>Vertical Stuff</u>" Bottom Friction Dispersion From the Vertical Velocity Distribution

"<u>Horizontal Stuff</u>" Dispersion across gradients in the horizontal plane

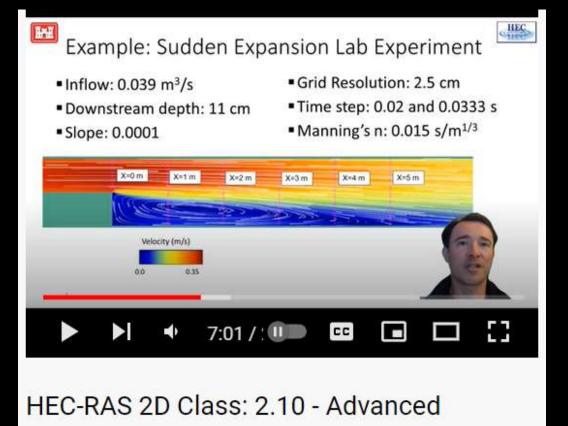
HEC made these changes with 2D sediment in mind.

Turbulence Coefficients

HEC-RAS Unsteady Computation Options and Tolerances

General 2D Flow Options 1D/2D Options Advanced Time Step Control 11

Use Coriolis Effects (not used with Diffusion Wave equation)

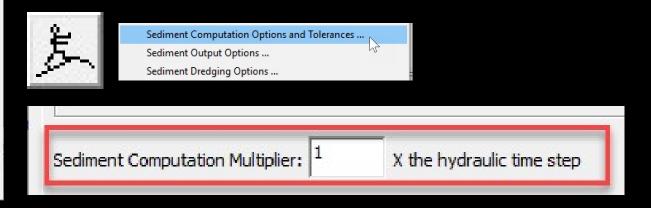

	Parameter	2D Area
1	Theta (0.6-1.0)	1
2	Theta Warmup (0.6-1.0)	1
3	Water Surface Tolerance [max=0.06](m)	0.01
4	Volume Tolerance (m)	0.01
5	Maximum Iterations	20
6	Equation Set	SWE-EM (stricter momentum)
7	Initial Conditions Time (hrs)	0.5
8	Initial Conditions Ramp Up Fraction (0-1)	0.1
_	Number of Time Slices (Integer Value)	1
10	Turbulence Model	Conservative
11	Longitudinal Mixing Coefficient	0.3
12	Transverse Mixing Coefficient	0.1
13	Smagorinsky Coefficient	0.05

Mixing Intensity	Geometry and Surface	D_L	D_T
Weak	Straight channel Smooth Surface	0.1 to 0.3	0.04 to 0.1
Moderate	Gentle meanders Moderately irregular	0.3 to 1	0.1 to 0.3
Strong	Strong meanders Rough surface	1 to 3	0.3 to 1

Smagorinsky Coefficient: 0.05 to 0.2

- $D_L \simeq 2-4 D_T$
- If $D_L = D_T$ (isotropic) the model will overpredict floodplain deposition
- Non-conservative formulation generally requires larger values (2x) compared to the conservative formulation
- Calibrating to WSE without turbulence can get stages right but be wrong about how the water moves. Sediment will reveal that error. Calibrate hydraulics with reasonable turbulence and mixing.

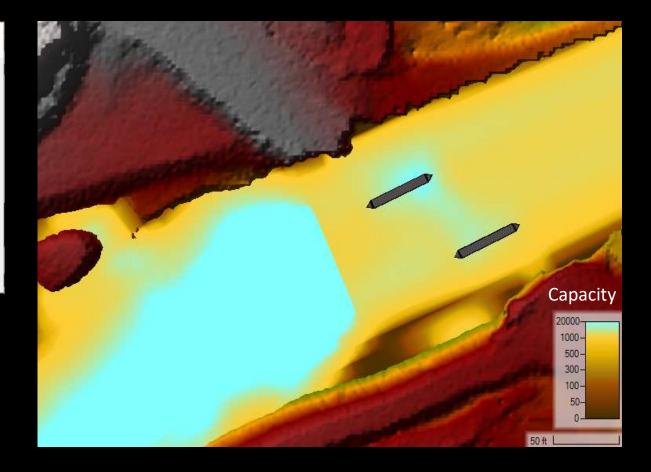
Turbulence Method


Computation Options

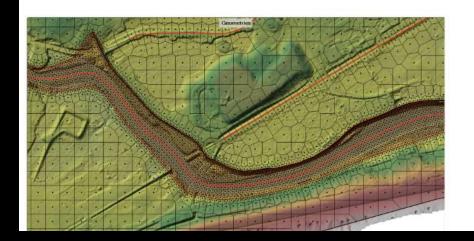
https://www.youtube.com/watch?v=nEr87YpHnzA

Fixed Bed Capacity Calculation

ed exchange iterations per tim	ie step (SP	PI):	10
lin bed change before updating	g Cross Se	ction (ft):	0.02
1in XS change before recomput	tation of h	ydraulics (ft):	0.02
Perform Volume Error Chec	k/Carry O	ver:	
ed Roughness Predictor:	None		•
Select Reaches to			
Roughness Predictors			
	r		
diment Computation Multiplier:	1	X the hydrau	lic time step
	1	X the hydrau	lic time step
ediment Warmup Periods:	1	X the hydrau	
ediment Warmup Periods: Concentration (2D Only):	1	X the hydrau	(days)
ediment Warmup Periods:	1	X the hydrau	
	1	X the hydrau	(days)
ediment Warmup Periods: Concentration (2D Only): Gradation:	1	X the hydrau	(days) (days)
ediment Warmup Periods: Concentration (2D Only): Gradation:	1	X the hydrau	(days) (days)
ediment Warmup Periods: Concentration (2D Only): Gradation:	1	X the hydrau	(days) (days)
ediment Warmup Periods: Concentration (2D Only): Gradation:	1	X the hydrau	(days) (days)


- Sediment transport does ~ and order of magnitude calculations than hydraulics.
- Carefully manage time step, cell size, and number of grain classes.
- HEC added a computational multiplier to help manage run times because rivers tend to erode and deposits on different time scale.

Fixed Bed Capacity Calculation


5, 2D Sediment Options	-		×
Sheet and Splash Erosion:	None		-
Erodibility:		1.	
Morphological Acceleration I	Factor:	Q	
Base Bed-Slope Coefficient:			
Hindered Settling:	No Correc	tion	•
	OK		Cancel

You can run 2D RAS as a fixedbed capacity model by setting the morphological acceleration factor to zero

Making a Channel Mesh

Another use for the refinement region is around the main channel of a stream. Shown in Figure 3-10 is an example where a single refinement region was created for the entire main channel. By doing this, the user can control the cell size inside of the channel and ensure that cell faces are aligned with the high ground at the main channel banks. This approach ensure that flow does not spill out of the channel until the water is high enough to cross over the outer cell faces representing the high ground of the main channel bank lines. In addition to the refinement region, a break line was placed right down the center of the refinement region, following the path of the flow. The break line is used to align the cells in the middle of the channel with the direction of the flow. For the breakline in the example below, the number of near repeats was set to 4. For the refinement region, the near repeats was set to zero. Additionally, the option to "Enforce a 1 cell protection radius" was turned on for both the refinement region and the break line. Also, the break line was enforced after the refinement region. This combination of a refinement region and a break line down the center of the channel makes for a very nice channel mesh (Figure 3-10).

https://www.hec.usace.army.mil/confluence/rasdocs/r2dum/latest/development-of-a-2d-or-combined-1d-2d-model/development-of-the-2d-computational-mesh#id-.Developmentofthe2DComputationalMeshv6.0-MakingaChannelMesh