

HEC ĬŦĬ Verification: Advection and Diffusion Uniform flow with a step function Flow Analytical Problems Upwind, 4 mi 0.8 Grid and time step nd, 12 min + Upw - MUSCL, 4 min tration convergence 0.6 t_1 t_3 t_2 - MUSCL, 8 min Concen · Analysis of relative 0.4 MUSCL, 12 mir performance of ---Analytical, 4 mi 0.2 - Analytical, 8 mi difference schemes -Analytical 12 m 300 400 500 Distance, m 600 800 100 200 700 900 1000 Uniform flow with a boxcar function 1.0 mod 4 mi - Minmod, 8 min Flow 0.8 ---- Minmod, 12 mir - Upwind, 4 min Upwind, 8 min 0.0 Upwind, 12 min t_1 tz Concent Concent Superbee, 4 min - Superbee, 8 min Superbee, 12 mir --- Analytical, 4 min 0.2 - - Analytical, 8 mir -Analytical, 12 mi 0.0 10 100 200 300 400 500 600 700 800 900 1000 Distance

Diffusion Coefficient	Sediment Data File Options View Help Initic User Defined Grain Classes Set Cohosive Options Set Cohosive Options
🖏 Transport Model and AD Parameters: 🚽 🗆 🗙	Bed Change Options (1D) Transport Methods
$\frac{\partial}{\partial t} \left(\begin{array}{c} hC_{tk} \\ \beta_{tk} \end{array} \right) = \nabla \cdot \left(\begin{array}{c} \varepsilon_{tk} \\ \varepsilon_{tk} \end{array} \right)$ Transport equation $\frac{\partial}{\partial t} \left(\begin{array}{c} hC_{tk} \\ \beta_{tk} \end{array} \right) + \nabla \cdot \left(hUC_{tk} \right) = \nabla \cdot \left(\begin{array}{c} \varepsilon_{tk} \\ \varepsilon_{tk} \end{array} \right)$ $\frac{\partial}{\partial t} \left(\begin{array}{c} hC_{tk} \\ \beta_{tk} \end{array} \right) + \nabla \cdot \left(hUC_{tk} \right) = \nabla \cdot \left(\begin{array}{c} \varepsilon_{tk} \\ \varepsilon_{tk} \end{array} \right)$ $\frac{\partial}{\partial t} \left(\begin{array}{c} hC_{tk} \\ \beta_{tk} \end{array} \right) + \nabla \cdot \left(hUC_{tk} \right) = \nabla \cdot \left(\begin{array}{c} \varepsilon_{tk} \\ \varepsilon_{tk} \end{array} \right)$ $\frac{\partial}{\partial t} \left(\begin{array}{c} hC_{tk} \\ \beta_{tk} \end{array} \right) + \nabla \cdot \left(hUC_{tk} \right) = \nabla \cdot \left(\begin{array}{c} \varepsilon_{tk} \\ \varepsilon_{tk} \end{array} \right)$ $\frac{\partial}{\partial t} \left(\begin{array}{c} hC_{tk} \\ \beta_{tk} \end{array} \right) + \nabla \cdot \left(hUC_{tk} \right) = \nabla \cdot \left(\begin{array}{c} \varepsilon_{tk} \\ \varepsilon_{tk} \end{array} \right)$	$\frac{\text{Transport Methods}}{\text{Calibrate Transport Function}}$ $h\nabla C_{ik} + E_{ik} - D_{ik}$ ient
	-

Advection Scheme	HEC
HEC-RAS Sediment Computation Options and Tolerances General 2D Computational Options Tansport Advection Scheme: Sediment Matrix Solver: Implicit Sediment Weighting Fac Outer Loop Convergence Parameter: Outer Loop Convergence Parameter: Outer Loop Convergence Parameter: Concentration Max Abs Error (mg,l.): 0.001 Concentration RMS Error (mg,l.): 0.001 Grain Class % Max Abs Error: 0.001 Computational Sediment Layer Parameters Layer Thickness (Optional): Inside (ft) Max (ft) # of Computational Layers (Optional): Subgrid Subgrid Subgrid Regions (Optional): 1 Max Subgrid Length Scale (Optional):	 Upwind Most stable (and diffusive) First order and Linear (no iterations) Exponential (Patankar 1980) Based on 1D steady solution of Advection-Diffusion Equation First Order and linear (no iterations) Minmod (Roe 1985) TVD Flux Limiter Second Order Non-linear (requires iterations) Harmonic (van Leer 1977) TVD Flux Limiter Second Order Second Order Non-linear (requires iterations)
Defaults Cancel OK Show XS Weights >>	21

