HEC-RAS 2D Sediment Workshop: Adaptation Parameters

Alex Sánchez, PhD Stanford Gibson, PhD

Hydrologic Engineering Center, Institute for Water Resources, U.S. Army Corps of Engineers, U.S.A.

December 13, 2022

1

HHH.

Equilibrium vs. Non-Equilibrium Transport

Figure 5.5 Sediment discharge profiles in equilibrium transport model.

From: Wu (2008) Computational River Dynamics

Figure 5.6 Sediment discharge profiles in non-equilibrium transport model

Sediment Boundary Conditions

• Water Surface Boundary Condition

$$\left(\omega_{s}c + \varepsilon_{s} \frac{\partial c}{\partial z}\right)_{z=z_{s}} = 0$$

• Near-Bed Boundary Condition

$$\left(\omega_{s}c + \varepsilon_{s} \frac{\partial c}{\partial z}\right)_{z=z_{h}+\delta} = D_{s} - E_{s}$$

$$E_{s} = \left(-\varepsilon_{s} \frac{\partial c}{\partial z}\right)_{z=z_{b}+\delta} = \omega_{s} c_{b*}$$

 ε_{s} : Verticl diffusivity [L²/T]

 ω_s : Fall velocity [L/T]

 c_{b*} : Near-bed equilibrium (capacity) concentration [M/L³]

$$D = (\omega_s c)_{z=z_b+\delta} = \omega_s c_b$$

3

3

Sediment Boundary Conditions

• "Gradient" Boundary Condition

$$\left(-\varepsilon_{s} \frac{\partial c}{\partial z}\right)_{z=z_{b}+\delta} = \omega_{s} c_{b*}$$

• Equilibrium Condition

$$\left(\omega_{s}c + \varepsilon_{s} \frac{\partial c}{\partial z}\right)_{z=z_{h}+\delta} = D_{s} - E_{s} = 0$$

$$\therefore c_b = c_{b^*}$$

 ω_s : Fall velocity [L/T]

 ε_s : Verticl diffusivity [L²/T]

c(z): concentration[M/L³]

 E_{s} : Mass erosion rate [M/L²/T]

 D_s : Mass deposition rate [M/L²/T]

4

Noncohesive Erosion and Deposition of Suspended Load

Near-bed Model

$$D_{s} = \omega_{s} c_{h}$$

$$E_s = \omega_s c_{b^*}$$

 ω_s : Fall velocity [L/T]

 c_b : Near-bed concentration [M/L³]

 c_{h*} : Near-bed conc. capacity [M/L³]

- Near-bed concentration and capacity difficult to estimate for depth-averaged models
- · Values vary by several orders of magnitude
- Very few equations for near-bed concentration capacity
- Near-bed concentration capacity is very difficult to measure

.

5

Noncohesive Erosion and Deposition of Suspended Load

• Relating near-bed values to depth-averaged values

$$c_b = \alpha_c C$$
 $c_{b^*} = \alpha_{s^*} C_*$

• Inserting into deposition and erosion rates

$$D = \alpha_{\circ} \omega_{\circ} C$$
 $E = \alpha_{\circ} * \omega_{\circ} C_{*}$

 Depth-average concentrations can easily be computed and are readily available

$$\alpha_s \approx \alpha_{s*}$$

$$\therefore D_s - E_s = \alpha_s \omega_s (C - C_*)$$

- α_s : Adaptation coefficient (correction factor R_{cp}) [-]
- α_{s^*} : Adaptation coefficient under equilibrium conditions [-]
- ω_s : Fall velocity [L/T]
- C: Depth-averaged concentration[M/L³]
- C_{*}: Depth-averaged capacity [M/L³]

6

Noncohesive Erosion and Deposition of Suspended Load

 In fact, under equilibrium conditions defined as _____

$$D_{s} - E_{s} = 0$$

and the computed coefficients

$$\alpha_{s} \neq \alpha_{s*}$$

then

$$C \neq C_*$$

which is obviously incorrect

• This why forcing $\alpha_{c} = \alpha_{c^*}$ is a good approximation

- α_{s} : Adaptation coefficient (correction factor R_{cp}) [-]
- α_{s*} : Adaptation coefficient under equilibrium conditions [-]
- C: Depth-averaged concentration[M/L³]
- C_{*}: Depth-averaged capacity [M/L³]

7

7

Suspended-load Adaptation Coefficient

- Armanini and di Silvio (1986)
 - Approximate analytical integration of the pure vertical 2D advection-diffusion equation with "gradient" near-bed BC
- Zhou and Lin (1998)
 - Approximate analytical integration of the pure vertical 2D advection-diffusior equation with "concentration" BC for erosion and "gradient" BC for deposition

Complexity of Suspended-load Adaptation Coefficient

- Subgrid Bathymetry
 - 1D and 2D models with subgrid don't have a flat bed

e.g. Zhou and Lin (1998)

$$\frac{\alpha_{s,1D}}{\alpha_s} = \frac{\int_0^W h^{r+1} dy \int_0^W h^{(3r-1)m} dy}{W \int_0^W h^{(3r-1)m+r+1} dy}$$

- Subgrid Hydraulics and Sediment Dynamics
 - Non-equilibrium velocity and sediment profiles. Profiles highly influenced by advection and diffusion.
 - Bedform effects poorly understood
 - Fall velocity near bed affected by sediment concentrations and the Saffman (1965) lift force near the bed where velocity gradients are high

9

Bed-load Adaptation

 Bed-load exchange models are typically formulated as

$$D_b - E_b = \frac{1}{L_b} (q_b - q_{b^*})$$

- Adaptation length is a measure of the distance it takes for the load to reach equilibrium
- Methods
 - Constant L_{h}
 - Depth-dependent $L_b = f_{bL} h$ $f_{bL} \approx 7.3$

- L_{h} : Bed-load adaptation length [L]
- $q_{\scriptscriptstyle b}$: Actual bed-load transport rate [M/L/T]
- q_{h*} : Bed-load transport capacity [M/L/T]

Complexity of Bed-load Adaptation Length

- Varies spatially and temporally
- · Adaptation length is related to
 - Bedform length (from ripples to dunes)
 - · Bed-load saltation length
 - Scour hole size
 - etc.
- Grid Resolution
 - For computational accuracy stability $\Delta x \ll L_{\rm b}$
 - Can be limiting factor
 - Rule of thumb $\Delta x < L_{_{\! h}} < 2 \Delta x$

11

Total-load Adaptation Length

• Adaptation approach (Wu 2000)

$$D_{t} = \alpha_{t} \omega_{s} C_{t} \qquad E_{t} = \alpha_{t} \omega_{s} C_{t*}$$

- Total-load Adaptation Coefficient
 - Constant Adaptation Length

$$\alpha_{t} = \frac{hU}{L_{t}\omega_{s}}$$

• Weighted Bed- and Suspended-lengths

$$\alpha_{tk} = r_{sk}\alpha_{sk} + (1 - r_{sk})\frac{hU}{L_h\omega_{sk}}$$

 α_{i} : Total-load adaptation coefficient [-]

 L_{i} : Total-load adaptation length [L]

 C_i : Total-load concentration [M/L³]

 C_{t^*} : Total-load capacity [M/L/T]

 r_{c} :Ratio of suspended-load to total-load [-]

▼Sediment Data File Options View Help Suspended-Load Adaptation Coefficient User Defined Grain Classes ... Set Cohesive Options ... Bed Change Options (1D)... Calibrate Transport Function.. Transport Model and AD Parameters: Calibration parameter Routing Method (1D): Continuity • Many processes are lumped Sediment Junction Split Method: Flow Weighted Pool Pass Through Method: Upstream Capacity into parameter AD Parameters Erosion Parameters Adaptation Coefficent Weighted Length Armanini and di Silvio Zhou and Lin, Erosion Total Length: 30. Zhou and Lin, Deposition 10 Suspended Adaptation Coefficient: Constant Coefficient Constant Coefficient Constant Coef Zhou and Lin Armanini & di Silvio $\alpha_{\rm s} \approx 0.5 - 5$ 10 $R = 6 \omega / (\kappa u_*)$ 10

HEC

Discussion

- Total-load adaptation length
 - Use for single mode transport (e.g. well sorted fine sand)
 - At least 1-2x cell size
- Weighted bed and suspended load lengths
 - Use for mixed mode transport (e.g. poorly sorted sediments)
 - Try different formulations for suspended and bed-load adaptation parameters

17

17

Thank You!

HEC-RAS Website:

https://www.hec.usace.army.mil/software/hec-ras/

Online Documentation:

https://www.hec.usace.army.mil/confluence/rasdocs

18