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1. INTRODUCTION

• Loess is a form of non-parametric regression i.e., assume regression model has the form

y = f(x) + ε

for some function f(·) (may be continuous, differentiable etc.).
• Easy example of parametric regression is linear regression

y = a+ bx+ ε

which assumes f(x) = a+ bx. This assumption is often untenable on a global scale.
• Loess regression fits to non-linear functions, f , by using local linear regression

y = a(x) + b(x)x+ ε

where coefficients a(x), b(x) depend on x (hence, local).
• The challenge is how best to estimate a(x) and b(x) and how ‘local’ should the process

be?

1.1. Loess algorithm. The following Loess algorithm is from the original formulation from
[Cleveland et al., 1992]. Let (x1, y1), . . . , (xn, yn) denote the dataset. Then the following hyper-
parameters are needed

• Span: determines the length of the sliding window used to define a local fit. Let span ∈
(0, 1) and take the rounded-up integer of span · n, that is s := dspan · ne. This integer s
will be used to determine the window length in the following way: for any data point x0,
calculate the distances of x0 to any data point xi given by

∆i(x0) = |x0 − xi|.

With these distances, we can then sort them as an increasing sequence

∆(1)(x0) ≤ ∆(2)(x0) ≤ · · · ≤ ∆(n)(x0).
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We choose the window length to be the sth smallest pairwise distance, ∆(s)(x0). That is,
the window length λ(x0) is

λ(x0) = ∆(s)(x0).

(Note that the window length depends on span through the nearest integer s.) If span > 1,
we instead define

λ(x0) = ∆(n)(x0) · span1/d

where d is the degree of local polynomial being fit (see below).
• Weight/window function: used to weigh observations, with closer observations obtaining

more weight. The classic Loess algorithm uses the tri-cube weight function given by

W (x, t) =

{
(1− |x|3/t3)3 0 ≤ |x| ≤ t,
0 |x| > t.

With a window length λ, then the function W (x − x0, λ) will give maximum weight for
x = x0, that is W (0, λ) = 1, while giving less and less weight as x moves further away
from x0. The weight becomes 0 once x has a distance of λ or more from x0. Note, other
weight functions are possible as long as they satisfy the following conditions:

Symmetry: W (x, t) = W (−x, t) (weighting only depends on distance, not direction).
Non-negativity: W (x, t) ≥ 0 for all x and t > 0.
Monotonicity: for each t > 0, W (x, t) is decreasing for all x > 0 (distant points have

less weight than closer points).
Bounded: W (x, t) ≤ K for all (x, t) for some fixed K > 0. (Typically, we would want
K = 1).

• Degree of local fit: the Loess procedure fits a local linear regression in x and hence can
allow for polynomial fits. The typical choices are

linear:
n∑
i=1

W (x− xi, λ(x))× (yi − β0(x)− β1(x)xi)
2

quadratic:
n∑
i=1

W (x− xi, λ(x))× (yi − β0(x)− β1(x)xi − β2(x)x2i )
2

With the following parameters specified then the Loess fit can be fit for any point x by solving

min
β0,β1,β2

n∑
i=1

W (x− xi, λ(x))× (yi − β0(x)− β1(x)xi − β2(x)x2i )
2
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using weighted least squares and obtain β̂0(x), β̂1(x), β̂2(x) for the given x. Then the Loess pre-
diction is given by

ŷ = β̂0(x) + β̂1(x)x+ β̂2(x)x2.

2. SELECTION OF FITTING PARAMETERS

The most important fitting parameter is the span, which acts as a ‘smoothing parameter’. The
choice of the span is important to avoid two extreme problems:

under-smoothing: The span is too small, which results in extremely wild and jagged fits.
The result is typically a poor representation of the underlying process (principal of parsi-
mony).

over-smoothing: The span is too large, which results in ‘too smooth’ of a fit that does not
capture the trend in the data. This may capture a global trend well, but loses the fine details
for portions of the data.

Thus, the ideal goal is to land somewhere in between with the ‘just right’ amount of smoothing by
a well-chosen span from the data.

In some cases, the amount of smoothing can be chosen reasonably well by eye and some trial
and error. But in cases with a high density of points, where the eye can be more easily misled, the
need for model fitting criterion becomes important.

2.1. Generalized Cross-Validation. Cross-validation (CV) is a procedure for estimating the out-
of-sample performance of a fitted model using current data. This is accomplished by using a
portion of data for fitting the model (training) and a separate portion for evaluating performance
(testing/validation). A popular version of this is Leave-one-out CV, or LOOCV, that uses an indi-
vidual data point as a test data set while the remaining are used for training and repeats this for all
data points. The performance is evaluated using the average squared error over all test sets i.e,

LOOCV (span) =
1

n

n∑
i=1

(yi − f̂ (−i)(xi))2,

where f̂ (−i)(xi) is the prediction of yi using input xi with the trained model using all data points
except xi. Note, the estimated model f̂ depends on the choice of span. Minimizing the value of
the LOOCV over span typically gives the right amount of smoothing.

However, this requires n separate model fits for each data point xi which can be costly for
large data sets and/or complex models. A fast approximation of this given by Generalized Cross-
Validation (GCV) which is given by

GCV (span) =
1

n

n∑
i=1

(yi − f̂(xi)
2

(1− trace(S)/n)2
,
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where S is the ‘smoothing’ matrix for the model fit f̂ that satisfies ŷ = Sy (note: trace(S) is the
trace of the matrix S, which is the sum of the main diagonal elements i.e. trace(S) :=

∑n
i=1 Sii).

Since loess is still a linear method, even though it is local, there is still an associated S matrix
which can be used for this purpose.

2.2. Selecting span by GCV. To select for span by GCV , the goal is to find the value of span
that minimizes GCV (span). Since the minimization is too difficult to do analytically, in practice
we can obtain a close to optimal choice of span by a grid-search. A simple grid-search is to select
a grid of candidate span points, typically N equally spaced points, tj , in some interval [a, b] with
a < 1 and b = 1. If a = t1 < t2 < · · · < tn = b is the chosen grid, then we select span by

span = argmint1,...,tN {GCV (tj)}.

It is also good practice to plot the points (tj , GCV (tj)) to see how the GCV curves behaves as
a function of tj . There is some trial-and-error here as well, since the choice of grid-points tj is
subjective, but here’s some points to keep in mind:

(1) The lower-bound of the grid should be small enough to show the ‘under-smoothing’ be-
havior kick-in, which will show up in the GCV plot with larger errors as a result. But the
lower-bound can be too small, which will cause issues with the local weight calculations,
but this depends on the density (or sparisty) of the data for the x-axis for what is ‘too small’.

(2) The more grid points the better, for finding the ‘true optimal value’, but this comes at more
computational cost. Grid lengths of N = 100 to N = 500 seem about right for a ‘smooth’
enough curve for GCV , but this also depends on the grid bounds [a, b].

(3) There is not much utility in selecting the grid upper bound, b, to be larger than b = 1. At
b = 1, the procedure is practically ‘global’ and gives very similar results to ordinary linear
regression. It’s not a bad idea to leave b = 1 as the upper-bound, since the values of GCV
being minimized near b = 1 suggest a local fit may be unnecessary.

Example. Let f(x) = sin(2πx), the true regression function, and the data generated according
to

yi = f(xi) + εi = sin(2πxi) + εi

for xi sampled in [0, 1]. A possible realization is shown in Figure 1 (f(x) in black). A plot of
the estimated GCV and AICC curves is given for a grid of span parameters in Figure 2 and notice
the clear minimum at the lower-end. The previouis figure shows the Loess fit using the optimal
span from GCV along with a ‘trial and error’ value of 0.5 by inspecting the GCV curve. The ‘trial
and error’ version is typically preferable since the GCV selected minimum shows some signs of
overfitting (more wiggly in some regions). This can be argued since the GCV curve still suffers
from estimation error, so we can err on the side of ‘over-smoothing’ (less wiggly) and pick a larger
value of span, such as 0.5.
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FIGURE 1. Comparison of two loess fits: GCV selected minimum (red) and ‘trial
and error’ version (orange) along with the true regression function (black).

Lastly, it should be noted the GCV and AICC curves in Figure 2 both show a steady increas-
ing trend with span past a certain point, around 0.5, meaning a consistently worse fit. Since the
true function is non-linear (specifically, quadratic in x), this makes sense and shows the ‘over-
smoothing’ behavior mentioned previously.

2.3. Akaike Information Criterion (Corrected). Another option for selecting span is the use
of Akaike Information Criterion (AIC), a popular criteria for selecting competing models. An
improved version is the corrected AIC (AICC), which corrects the original AIC for small sample
sizes. When the sample size is large enough, AIC and AICC are very similar. For that reason, it’s
just as well to use AICC in general.
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FIGURE 2. Both estimated curves for selecting span have similar minimum values
(red dashed line) and a similar overall shape. Given the variability in the estimated
curve, we can see that the ‘trial and error’ choice of 0.5 is in the neighborhood of
the minimum for both curves.

The AICC criterion is given by

AICC(span) = log
(

1
n

∑n
i=1(yi − f̂(xi))

2
)

+ 1 +
2(trace(S) + 1)

n− trace(S)− 2
.

Selecting span by AICC can be done simultaneously, and in a similar fashion, as with GCV ,
since they both rely on the smoothing matrix S. In general, there should be little difference in the
choice of span by AICC or GCV for most problems.
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3. BIAS CORRECTION FOR LOG-LOG REGRESSION

Consider the log-log version with non-parametric regression.

log yi = a(x) + b(x) log(xi) + εi

which is fitted locally by loess, using the local coefficients a(x) and b(x). This gives the residuals

ε̂i = log yi − â(x)− b̂(x)× log(xi)

that can then be used for bias-correction methods such as [Ferguson, 1986] and [Duan, 1983].
Specifically, the Ferguson correction first calculates the log-log scale error variance

σ̂2 =
1

δ1

n∑
i=1

ε̂2i ,

with δ1 = trace(LTL) where L = In − S. Then, assuming normality and uncorrelated errors εi,
you form the bias-correction factor

b̂iasF = eln(10)
2σ̂2/2

and the bias-corrected estimate is then

ŷi = 10â(x) × xb̂(x)i × b̂iasF .

Similarly, the Duran bias-correction factor is given by

b̂iasD =
1

n

n∑
i=1

10ε̂i ,

which is a non-parametric alternative that is used in a similar fashion.
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